Abstract:About 7.0 Pg (1 Pg=109 t) of carbon is annually released to the atmosphere from fossil fuel combustion and the buring and clearance of tropical forests, of which 3-3.4 PgC of the carbon adds to the atmospheric carbon pool and about 2.0 PgC is uptaken by oceans. The terrestrial biosphere is considered to hold its carbon dynamic in balance with approximately equal rates of sequestration and emission. Therefore 1.6 to 2.0 PgC per year is unattributed and this is known as the ’missing sink’. Many studies, including the monitoring of atmospheric components, analysis of forest inventories, CO2 flux measurements and modeling simulations, have suggested that the mid- and high latitude terrestrial ecosystems of the Northern Hemisphere are functioning as a significant carbon sink, though with a large uncertainty and considerablly spatio-temporal heterogeneity. Global warming, CO2 fertilization, increasing nitrogen and phosphorus deposition, and the expansion and re-growth of forests are major factors impacting the size and distribution of these carbon sinks. Study on the role of soils in the carbon cycles-as well as long-term monitoring and improvement of existing carbon model simulations is a critical step required to reduce uncertainty in the size of this sink.