免费文献传递   相关文献

Effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature stress.

冷激对高温胁迫下番茄幼苗生长及花芽分化的影响


为了解苗期冷激锻炼对番茄幼苗生长和花芽分化的影响,试验采用人工气候箱模拟夏季设施高温环境,每天对番茄幼苗进行10 ℃、10 min的冷激锻炼,研究冷激处理对高温胁迫下番茄幼苗生长、叶片超微结构和花芽分化进程的影响,并观察定植后开花和坐果情况.结果表明:在4叶期经过冷激锻炼的番茄幼苗茎粗、壮苗指数分别比对照提高了7.2%和55.5%;经过冷激锻炼处理的番茄幼苗叶片中叶绿体和线粒体等细胞器形状及结构正常完整,一定程度上缓解了高温对番茄幼苗叶肉细胞超微结构的破坏;冷激锻炼显著提高了番茄幼苗早期花芽分化的分化进程,但随着苗龄的延长这种差异变得不显著.定植后经冷激处理的番茄幼苗第1、2穗果的坐果数和坐果率显著高于未经冷激处理.表明冷激锻炼不仅能够缓解高温对番茄幼苗细胞超微结构的伤害和生长的胁迫,还有利于早期花芽分化进程的提前,提高番茄坐果数和坐果率.

In order to explore the effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature, tomato seedlings were subjected to coldshock treatments every day with 10 ℃  for 10 minutes in an artificial climate chamber. Tomato seedlings were treated with cold-shock at the first true leaf stage and the treatment lasted for 15 days. Tomato seedlings without cold-shock were used as control. At the fourth true leaf period of tomato seedlings, five plants were randomly sampled and the growth characteristics and the ultrastructure changes of mesophyll cell of tomato seedlings were examined. The flower bud differentiation process of tomato seedlings was observed at the periods of the second, fourth and sixth true leaves respectively. Flowering and fruiting of tomato seedlings were also investigated after transplanting. The results showed that the stem diameter and health index of tomato seedlings with cold-shock were enhanced by 7.2% and 55.5% compared with seedlings without cold-shock. Mesophyll cells of the seedlings with cold-shock arranged loosely and various organelles such as chloroplasts and mitochondria were morphologically integrated, while chloroplasts and mitochondria of seedlings mesophyll cells without cold-shock swelled up and thylakoids vacuolized apparently. The flower bud differentiation process of seedlings with cold-shock could be advanced significantly at the early seedling stage compared with the control and the advancement was weakened with the seedling growing. Fruit set number and percentage on the first and second inflorescence of tomato plants transplanted by seedlings with cold-shock were enhanced significantly compared with those of the control. These results indicated that the injury of membrane structure of various organelles, especially chloroplast and mitochondria could be alleviated by cold-shock treatment under high temperature tress. Cold-shock treatment could not only improve the seedling growth under high temperature stress, but also advance the process of early flower bud differentiation and improve the fruit set.


全 文 :冷激对高温胁迫下番茄幼苗生长及花芽分化的影响
李胜利1∗  夏亚真2  孙治强1
( 1河南农业大学园艺学院, 郑州 450002; 2平顶山市种子技术推广站, 河南平顶山 467000)
摘  要  为了解苗期冷激锻炼对番茄幼苗生长和花芽分化的影响,试验采用人工气候箱模拟
夏季设施高温环境,每天对番茄幼苗进行 10 ℃、10 min 的冷激锻炼,研究冷激处理对高温胁
迫下番茄幼苗生长、叶片超微结构和花芽分化进程的影响,并观察定植后开花和坐果情况.结
果表明:在 4叶期经过冷激锻炼的番茄幼苗茎粗、壮苗指数分别比对照提高了 7.2%和 55.5%;
经过冷激锻炼处理的番茄幼苗叶片中叶绿体和线粒体等细胞器形状及结构正常完整,一定程
度上缓解了高温对番茄幼苗叶肉细胞超微结构的破坏;冷激锻炼显著提高了番茄幼苗早期花
芽分化的分化进程,但随着苗龄的延长这种差异变得不显著.定植后经冷激处理的番茄幼苗
第 1、2穗果的坐果数和坐果率显著高于未经冷激处理.表明冷激锻炼不仅能够缓解高温对番
茄幼苗细胞超微结构的伤害和生长的胁迫,还有利于早期花芽分化进程的提前,提高番茄坐
果数和坐果率.
关键词  冷激锻炼; 番茄幼苗; 耐热性; 花芽分化
Effects of cold⁃shock on the growth and flower bud differentiation of tomato seedlings under
high temperature stress. LI Sheng⁃li1∗, XIA Ya⁃zhen2, SUN Zhi⁃qiang1 ( 1 College of Horticul⁃
ture, Henan Agricultural University, Zhengzhou 450002, China; 2Seeds Technology Extension Sta⁃
tion of Pingdingshan, Pingdingshan 467000, Henan, China) .
Abstract: In order to explore the effects of cold⁃shock on the growth and flower bud differentiation
of tomato seedlings under high temperature, tomato seedlings were subjected to cold⁃shock treat⁃
ments every day with 10 ℃ for 10 minutes in an artificial climate chamber. Tomato seedlings were
treated with cold⁃shock at the first true leaf stage and the treatment lasted for 15 days. Tomato seed⁃
lings without cold⁃shock were used as control. At the fourth true leaf period of tomato seedlings, five
plants were randomly sampled and the growth characteristics and the ultrastructure changes of meso⁃
phyll cell of tomato seedlings were examined. The flower bud differentiation process of tomato seed⁃
lings was observed at the periods of the second, fourth and sixth true leaves respectively. Flowering
and fruiting of tomato seedlings were also investigated after transplanting. The results showed that
the stem diameter and health index of tomato seedlings with cold⁃shock were enhanced by 7.2% and
55.5% compared with seedlings without cold⁃shock. Mesophyll cells of the seedlings with cold⁃shock
arranged loosely and various organelles such as chloroplasts and mitochondria were morphologically
integrated, while chloroplasts and mitochondria of seedlings mesophyll cells without cold⁃shock
swelled up and thylakoids vacuolized apparently. The flower bud differentiation process of seedlings
with cold⁃shock could be advanced significantly at the early seedling stage compared with the control
and the advancement was weakened with the seedling growing. Fruit set number and percentage on
the first and second inflorescence of tomato plants transplanted by seedlings with cold⁃shock were
enhanced significantly compared with those of the control. These results indicated that the injury of
membrane structure of various organelles, especially chloroplast and mitochondria could be allevia⁃
ted by cold⁃shock treatment under high temperature tress. Cold⁃shock treatment could not only im⁃
prove the seedling growth under high temperature stress, but also advance the process of early flower
bud differentiation and improve the fruit set.
Key words: cold⁃shock; tomato seedling; heat resistance; flower bud differentiation.
本文由河南省蔬菜产业技术体系项目(S2010⁃03⁃03)和国家大宗蔬菜产业技术体系专项(CARS⁃25⁃C06)资助 This work was supported by the Program of
Technology System of the Henan Vegetable Industry (S2010⁃03⁃03) and the Program of Technology System of the National Vegetable Industry (CARS⁃25⁃C06).
2015⁃07⁃09 Received, 2015⁃11⁃21 Accepted.
∗通讯作者 Corresponding author. E⁃mail: lslhc@ yeah.net
应 用 生 态 学 报  2016年 2月  第 27卷  第 2期                                            http: / / www.cjae.net
Chinese Journal of Applied Ecology, Feb. 2016, 27(2): 477-483                    DOI: 10.13287 / j.1001-9332.201602.007
    在番茄的设施栽培中,秋延后和越冬茬育苗正
值夏秋高温季节,温度过高会影响幼苗的物质积累
和花芽分化的早晚与质量[1-2],最终影响番茄的产
量和品质[3-4] .高温逆境已成为夏秋季蔬菜集约化育
苗生产中的重要限制因子[5-7] .因此在番茄幼苗期采
取适宜的措施促进幼苗健壮生长和花芽分化,在理
论与生产上具有重要意义.已有研究表明,温度逆境
锻炼提高植物交叉适应性是植物获得抗逆性的一种
有效手段[8-10] .张俊环[11]在葡萄上的研究表明,8 ℃
低温锻炼能够诱导葡萄幼苗对高温逆境的交叉适应
性,保护叶绿体、线粒体等膜结构免受高温胁迫伤
害.另外,前人对温度等环境因素与番茄苗期花芽形
态分化的关系方面已有详细研究[12-14] .但前人对温
度逆境锻炼的研究多停留在作物抗逆现象的确认
上,而对通过温度逆境锻炼对幼苗花芽分化进程及
植株定植后坐果情况的影响则少有报道.在试验方
法上,以前研究高温胁迫大多是在恒定温度下开展,
而实际生产中高温胁迫是一个渐进的过程.本文作
者在前期高温胁迫下番茄幼苗对冷激的响应试验中
发现,每天对番茄幼苗进行温度为 10 ℃、持续时间
为 10 min的冷激锻炼能够缓解高温胁迫对幼苗的
影响[15] .为进一步了解冷激锻炼对番茄幼苗生长及
花芽分化等方面的影响,本试验以番茄幼苗为对象,
研究了每天进行温度为 10 ℃、持续时间为 10 min
的冷激锻炼对高温胁迫下番茄幼苗生长、叶片超微
结构、花芽分化及定植后坐果情况的影响,一方面为
阐释冷激锻炼对缓解幼苗高温胁迫伤害提供理论基
础,同时为番茄夏季集约化育苗生产提供新思路.
1  材料与方法
1􀆰 1  试验材料
试验于 2013年 7—9月在河南农业大学蔬菜栽
培试验室和毛庄科教园区日光温室 ( 34° 16′ N,
112°42′ E)内进行.供试番茄(Solanum lycopersicum)
品种为“粉都 77”,由河南农业大学豫艺种业提供.
种子经浸种消毒催芽后,播种于 72 孔黑色穴盘(54
cm×28 cm)中,育苗基质为草炭 ∶ 蛭石 = 3 ∶ 1(V ∶
V),在适温条件培育幼苗至子叶展平真叶露出,然
后选择生长基本一致的幼苗移入模拟外界夏季晴天
自然条件温度变化规律的人工气候箱中.人工气候
箱的光强为 150~ 160 μmol·m-2·s-1,相对湿度为
70%,光照 12 h.温度为变温设置:8:00—12:00为 28~
32 ℃,12:00—16:00为(38±1) ℃(4 h的高温胁迫),
16:00—20:00 为 28 ~ 32 ℃,20:00—次日 8:00 为
25 ℃;冷激人工气候箱温度设为 10 ℃;适温人工气
候箱温度设置为:8:00—20:00 为 28 ℃,20:00—翌
日 8:00为 25 ℃ .定植期间温室平均气温 31.5 ℃,最
高气温 40.7 ℃,最低气温 24.8 ℃ .
1􀆰 2  冷激处理
适温条件下共播种番茄 20 个穴盘(72 孔).当
子叶展平真叶露出时,每天 10:00取其中的 10 个穴
盘幼苗放入到 10 ℃的人工气候室中进行冷激处理
10 min,然后将幼苗移出放回到原来的模拟夏季高
温变化人工气候箱中,另外 10个穴盘的幼苗一直在
模拟夏季高温变化人工气候箱中生长,以在该人工
气候箱中生长的番茄幼苗为对照.冷激锻炼持续 15
d (番茄幼苗生长至四叶一心时),每个穴盘取 5 株
幼苗,测试番茄生长指标,进行叶片细胞超微结构和
花芽分化的观察.于 8月 20 日每个处理各选取生长
一致的番茄幼苗 180 株,分 3 个小区定植于科教园
区日光温室内,肥水及定植密度按照常规的管理
方法.
1􀆰 3  测定项目及方法
1􀆰 3􀆰 1幼苗植株形态指标测定   用直尺测株高;用
游标卡尺测试下胚轴和不同节间的直径,其平均值
作为幼苗的茎粗;将植株分为地上部和地下部,于
105 ℃杀青 15 min,在 70 ℃下烘干至恒量,分别称
量地上、地下干物质量;壮苗指数 = (茎粗 /株高) ×
全株干质量.
1􀆰 3􀆰 2花芽分化的观察  分别在番茄幼苗生长至 2
片真叶、4片真叶和 6片真叶时,每个处理随机取 10
株,采用《蔬菜栽培学》 [16]中番茄花芽分化的观察分
级方法(表 1),把生长点部分取下,在 Nikon Eclipse
50i显微镜下解剖并观察其生长锥,使用 Nikon
D7000拍照,统计分化级数.
1􀆰 3􀆰 3电镜细胞显微结构观察  在番茄幼苗生长至
四叶一心(冷激锻炼持续第15天)时,取新鲜番茄
表 1  番茄花芽分化分级标准
Table 1   Grading of the differentiation of tomato flower
buds
分级
Grading
形态标志
Morphological characteristics
0 未分化,生长锥上只有叶芽,无花芽
1 花芽分化初期,生长锥上有圆状突起
2 萼片花瓣分化期,花芽拉长,茎基部变细,芽顶变
平,边缘有明显的小突起
3 雄蕊分化期,花芽继续拉长,呈球形或长圆形,花柄
及萼片上可见茸毛,已达到肉眼可见的小蕾程度
4 雌蕊分化期,花器官发育完全,花蕾较大
874 应  用  生  态  学  报                                      27卷
叶片同一部位(第 2片真叶中部),参照文献[17]的
方法,略有改动.将叶片切成 1 mm×3 mm 长方形小
片,置于干净的青霉素瓶(带胶塞)中,加入适量体
积 3%的戊二醛固定液,用针管抽真空,每 5 min 摇
晃一次,抽至叶片下沉即可, 4 ℃ 放过夜.经 0􀆰 2
mol·L-1的磷酸缓冲液(pH 7.2)冲洗 10 min,然后
用 1%的锇酸再次固定 2~3 h (4 ℃).固定后 30%~
100%乙醇系列脱水,包埋剂环氧树脂 618 处理 12
h,更换包埋剂,再次处理 4 h,60 ℃下聚合 48 h.使
用 Leica UC⁃6超薄切片机切片,厚度 70 ~ 90 nm,醋
酸双氧铀和柠檬酸铅电子染色,日立 7500透射电镜
观察,GATAN 832拍照.
1􀆰 3􀆰 4定植后开花座果情况调查  定植后从 6 叶期
进行花芽分化的观察,之后每隔 3 d 调查一次番茄
开花及坐果情况,开花以花瓣展开 45°角为准,坐果
以果实直径 3 cm并且果实光泽度较好为准.
1􀆰 4  数据处理
数据采用 SigmaPlot 10.0和Microsoft Excel软件
进行绘图,利用 DPS 7.05 软件进行统计分析,并运
用 LSD检验法进行差异显著性比较(P<0.05),数据
均采用平均值±标准误表示.
2  结果与分析
2􀆰 1  冷激锻炼对番茄幼苗生长指标的影响
从图 1可以看出,随着番茄苗龄的延长,冷激锻
炼对番茄幼苗生长形态的影响作用逐渐减弱.在 4
叶期,经冷激锻炼的番茄幼苗的株高、茎粗、单株干
质量和壮苗指数与对照处理之间的差异均达到显著
水平.而在定植后,随着番茄幼苗叶片数的增长,冷
激处理对番茄幼苗株高的抑制作用逐渐减弱,到 8
叶期时冷激锻炼处理的番茄幼苗与对照处理之间差
异已不显著.与株高变化一致的是番茄幼苗的单株
干质量,在番茄幼苗生长至 6叶期和 8叶期时,与对
照处理相比,冷激锻炼处理对番茄幼苗单株干质量
的影响差异已不显著.但与番茄幼苗株高和单株干
质量变化趋势不同的是,在试验观察时期内,冷激锻
炼能够显著提高不同苗期番茄幼苗的茎粗和壮苗指
数,在 4 叶期、6 叶期和 8 叶期,冷激处理的番茄幼
苗茎粗和壮苗指数分别比对照提高了 7. 2%和
55􀆰 5%、7.0%和 46.7%、8.1%和 11.9%.
2􀆰 2  冷激锻炼对番茄幼苗叶片细胞超微结构的
影响
在电子显微镜下,经过高温胁迫后的番茄幼苗
叶肉细胞内细胞器形状发生明显改变(图2):叶绿
图 1  冷激锻炼对高温胁迫下番茄幼苗生长指标的影响
Fig.1  Effects of cold⁃shock on the growth of tomato seedlings
under high temperature stress.
T: 冷激 Cold⁃shock; CK: 高温胁迫 High temperature stress; 4L: 4叶
期 4⁃leaf stage; 6L: 6叶期 6⁃leaf stage; 8L: 8叶期 8⁃leaf stage. 不同
字母表示处理间差异显著(P<0.05) Different small letters indicated
significant difference among treatments at 0. 05 level. 下同 The same
below.
体膨胀变圆或呈球状,混乱地分布在整个细胞腔内,
中央大液泡遭到破坏,淀粉粒的数量及体积也明显
减少,叶绿体的膨胀使基质出现空洞,叶绿体膜被模
糊,少部分基粒片层和类囊体片层结构清晰,但较多
的基粒出现弯曲、膨胀、模糊、排列混乱的现象,线粒
体也发生膨胀,变圆,内外膜结构不明显,线粒体腔
出现严重的空洞.
经冷激锻炼处理的番茄幼苗叶肉细胞结构变化
不明显,叶绿体和线粒体等细胞器有序地排列在中央
液泡周围,也有较多的淀粉粒分布在叶绿体上,叶绿
体大多呈梭形,也有部分呈椭圆形,膜结构仍然完整
清晰,基粒片层和类囊体片层结构清晰,极少有基粒
排列混乱的现象,叶绿体中的嗜锇体数量多且体积
大,线粒体内外膜结构基本完整,内部嵴相对清晰.
2􀆰 3  冷激锻炼对高温胁迫下番茄幼苗花芽分化进
程的影响
根据蔬菜栽培学番茄花芽分化进程分级方法,
9742期                      李胜利等: 冷激对高温胁迫下番茄幼苗生长及花芽分化的影响           
图 2  冷激锻炼对高温胁迫下番茄幼苗叶片细胞超微结构的影响
Fig.2  Effects of cold⁃shock on the cell ultrastructure of tomato seedling leaves under high temperature stress.
a)单个细胞结构 Single cell structure; b)叶绿体结构 Chloroplast structure; c)类囊体结构 Thylakoid structure; d)线粒体结构 Mitochondria struc⁃
ture. CW: 细胞壁 Cell wall; ICS: 细胞间隙 Intercellular space; V: 液泡 Vacuole; PM: 细胞膜 Plasma membrane; CH: 叶绿体 Chloroplast; CM:
叶绿体膜 Chloroplast membrane; Gl: 基粒片层 Granum lamella; TH:类囊体片层 Thylakoid lamella; M: 线粒体 Mitochondria; Cr:线粒体嵴 Mito⁃
chondrial cristae; IM: 线粒体内膜 Inner mitochondrial membrane; OM: 线粒体外膜 Outer mitochondrial membrane; O: 嗜锇体 Osmiophilic body.
可将整个过程分为 5 个时期:未分化期、分化初期、
萼片分化期、雄蕊分化期和雌蕊分化期.由图 3 和图
4可以看出,在 2叶期,冷激锻炼处理的番茄幼苗花
芽分化级数显著高于对照处理,2 叶期时的番茄幼
苗多以营养生长为主,尚未进行生殖生长,此时期第
5和第 6片真叶的叶芽已经形成,生长锥略微突起,
形成扁平状,多数花芽尚未进行分化.在 4 叶期,番
茄幼苗花芽已经开始分化,多处于花芽分化初期向
萼片分化期过渡,冷激锻炼处理的番茄幼苗花芽分
化级数虽然高于对照处理,但未达到显著水平,该时
期番茄幼苗的第 8 到 9 片真叶已经形成,生长锥开
始增大,变得圆润肥大,形成半球状,之后部分番茄
幼苗的生长锥不断加宽拉长,茎基部变细,芽顶变
平,平坦顶端的边缘有明显的小突起,萼片原基形
成.在 6叶期,冷激锻炼处理的番茄幼苗花芽分化级
数仍高于对照处理,但未达到显著水平,此时番茄幼
苗大部分已经完成雄蕊分化,第 9到 10片真叶已经
形成,花芽继续拉长,呈球形或长圆形,花柄及萼片
上可见茸毛,已达到肉眼可见的小蕾程度,也有部分
番茄幼苗花芽的雌蕊开始形成,第11片到第12片
084 应  用  生  态  学  报                                      27卷
图 3  冷激锻炼对高温胁迫下番茄幼苗花芽分化级数的影响
Fig.3  Effects of cold⁃shock on the grading of differentiation of tomato flower buds under high temperature stress.
a)未分化期 Undifferentiated stage (×10); b)花芽分化初期 Early flower bud differentiation stage (×10); c)萼片花瓣分化初期 Early sepals and pet⁃
als differentiation stage(×10); d)雄蕊分化期 Stamens differentiation stage(×10); e)雌蕊分化期 Pistil differentiation stage(×4). 6~12: 第 6~12片
真叶 The sixth⁃twelfth true leaf.
表 2  冷激锻炼对高温胁迫下番茄开花和坐果情况的影响
Table 2  Effects of cold⁃shock on flowering and fruit setting of tomato seedlings under high temperature stress
花序
Flower⁃bearing
处理
Treatment
开花节位
Node
开花数
Flowers number
坐果数
Fruits number
坐果率
Fruit setting rate (%)
第一 First T 7.7±0.2b 5.4±0.3a 2.85±0.3a 53.7±6.5a
CK 9.1±0.1a 4.3±0.3b 1.14±0.1b 25.6±2.8b
第二 Second T 10.7±0.2b 5.6±0.4a 3.64±0.3a 64.3±4.5a
CK 12.1±0.1a 4.7±0.3b 1.71±0.3b 42.6±5.7b
T: 冷激 Cold⁃shock; CK: 高温胁迫 High temperature stress. 不同字母表示处理间差异显著(P<0.05) Different small letters indicated significant
between different treatments at 0.05 level.
真叶已分化完成,第一花序的多个花蕾发育已经比
较完整,花蕾较大.从花芽分化级数观察结果来看,
与对照相比,冷激锻炼处理番茄幼苗花芽分化级数
提高,特别是在花芽开始分化的早期.
2􀆰 4  冷激锻炼对番茄幼苗定植后开花及坐果情况
的影响
由表2可以看出,番茄幼苗冷激处理对定植后
图 4  番茄幼苗花芽分化级数
Fig.4  Differentiation rating of tomato flower buds.
开花节位、开花数和坐果数有较大影响.与对照相
比,冷激处理的番茄幼苗定植后第一花序开花节位
降低了 15.4%,开花数和坐果数分别增加了 25.6%
和 163.6%,差异均达到显著水平.
3  讨    论
番茄生长的适温范围为 15 ~ 33 ℃,高于 30 ℃
时番茄幼苗就会徒长,生长发育不良,35 ℃以上时
番茄幼苗生长发育就会受到严重阻碍[18] .本试验
中,在番茄幼苗期和定植后田间的温度均超过了番
茄适宜生长的温度.冷激锻炼不仅提高了高温胁迫
下番茄幼苗的壮苗指数,而且定植到高温环境之后,
经冷激锻炼的番茄植株的茎粗与壮苗指数均显著高
于对照.前期研究表明,冷激处理诱导了番茄幼苗
CaHSP18和 LeHSP238 基因周期表达的现象[15],冷
激处理刺激番茄幼苗乙烯释放和抑制 GA3的合成具
有持续性[19] .这种现象表明了冷激处理使番茄幼苗
1842期                      李胜利等: 冷激对高温胁迫下番茄幼苗生长及花芽分化的影响           
对温度逆境的反应具有“记忆”功能,但这种功能会
随着中断冷激处理后时间的延续而逐渐削弱.如何
强化这种效应还需要进一步研究.
植物对环境刺激的反应和适应是通过细胞结构
和代谢相互制约的改变来实现的[20-21] .叶绿体、线
粒体等细胞超微结构的形态变化是在细胞水平上评
价植株对高温胁迫反应的重要指标[22-23] .本试验
中,经冷激锻炼处理的番茄幼苗叶肉细胞结构变化
不明显,叶绿体和线粒体等细胞器排列有序,膜结构
完整,基粒片层和类囊体片层结构清晰,而未经冷激
处理的番茄幼苗叶肉细胞结构则受到较大的损伤.
张俊环[11]认为,温度逆境锻炼对稳定逆境温度下葡
萄叶片叶绿体和线粒体等细胞结构发挥重要作用,
本研究与其在葡萄上的研究结论相一致,叶肉细胞
结构的完整是高温胁迫下番茄幼苗进行正常生理活
动的基础.
营养生长和营养物质的积累是花芽分化的物质
基础,花芽的分化和发育是一个形态建成过程,是一
定量的营养积累以及外界环境诱导综合作用的结
果[24-26] .本试验中,经过冷激锻炼处理的番茄幼苗
在前期(2叶期)花芽分化级数显著高于对照,定植
后随着冷激处理的中断,冷激处理与对照之间番茄
花芽分化级数差异逐渐减少.冷激锻炼处理的番茄
第一花序和第二花序开花数、坐果数和坐果率均高
于对照处理,这对于保证番茄的前期产量有重要作
用.薛义霞等[18]研究表明,番茄开花坐果对温度反
应比较敏感,4~5叶期的幼苗 35 ℃高温处理 21 d,
植株生长受到抑制,后期花粉萌发率和花粉管长度
降低,番茄坐果率显著降低.但冷激锻炼提高定植后
番茄植株坐果率的机理还需要进一步研究.
综上所述,苗期每天的冷激处理不仅提高了番
茄苗期的耐热性和抗逆性,而且改善了定植后植株
对高温环境的适应性.冷激处理抑制了番茄幼苗的
徒长,增加了幼苗的茎粗,提高了壮苗指数,这为幼
苗良好的花芽分化打下了物质基础,冷激处理最终
提高了高温胁迫下番茄植株花芽分化的质量和坐
果率.
参考文献
[1]  Xu H⁃L (徐鹤林), Li J⁃F (李景富). Tomatoes in
China. Beijing: China Agriculture Press, 2007 (in Chi⁃
nese)
[2]  Mao L⁃P (毛丽萍), Li Y⁃L (李亚灵), Wen X⁃Z (温
祥珍). Influencing analysis of diurnal temperature on
yield⁃forming factors of tomato at seedling stage. Trans⁃
actions of the Chinese Society of Agricultural Engineering
(农业工程学报), 2012, 28(16): 172-177 ( in Chi⁃
nese)
[3]  Shabtai S, Salts Y, Kaluzky G, et al. Improved yielding
and reduced puffiness under extreme temperatures in⁃
duced by fruit⁃specific expression of rolB in processing
tomatoes. Theoretical and Applied Genetics, 2007, 114:
1203-1209
[4]  Sadashiva AT, Christopher MG. Genetic enhancement of
tomato crop for abiotic stress tolerance / / Singh HP,
eds. Climate⁃Resilient Horticulture: Adaptation and Mit⁃
igation Strategies, New Delhi, Springer India, 2013:
113-124
[5]  Gao X⁃X (高晓旭). Study on the Mechanism and
Measures of Controlling Hypocotyls Overgrowth of Cu⁃
cumber and Tomato Seedlings. Master Thesis. Beijing:
Chinese Academy of Agricultural Sciences, 2011 ( in
Chinese)
[6]  Zhang J (张   洁), Li T⁃L (李天来), Xu J (徐  
晶). Effects of daytime sub⁃high temperature on green⁃
house tomato growth, development, yield and quality.
Chinese Journal of Applied Ecology (应用生态学报),
2005, 16(6): 1051-1055 (in Chinese)
[7]  Ming C⁃H (明村豪), Jiang F⁃L (蒋芳玲), Hu H⁃M
(胡宏敏), et al. Effects of different leggy extent seed⁃
lings on cucumber growth, yield and quality. China Vege⁃
tables (中国蔬菜), 2011(4): 29-34 (in Chinese)
[8]  Jian L⁃C (简令成), Lu C⁃F (卢存福), Li J⁃H (李积
宏), et al. Increment of chilling tolerance and its physio⁃
logical basis in chilling⁃sensitive corn sprouts and tomato
seedlings after cold⁃hardening at optimum temperatures.
Acta Agronomica Sinica (作物学报), 2005, 31(8):
971-976 (in Chinese)
[9]  Sun JH, Chen JY, Kuang JF, et al. Expression of sHSP
genes as affected by heat shock and cold acclimation in
relation to chilling tolerance in plum fruit. Postharvest
Biology and Technology, 2010, 55: 91-96
[10]  Huang S⁃Z (黄上志), Huang X⁃F (黄祥富), Lin X⁃D
(林晓东), et al. Induction of chilling tolerance and
heat shock protein synthesis in rice seedlings by heat
shock. Journal of Plant Physiology and Molecular Biolo⁃
gy (植物生理与分子生物学学报), 2004, 30(2):
189-194 (in Chinese)
[11]   Zhang J⁃H (张俊环). Studies on Cell Physiology of
Cross Adaptation to Temperature Stress in Young Grape
Plants and Berries. PhD Thesis. Beijing: China Agricul⁃
tural University, 2005 (in Chinese)
[12]  Zhang L, Hao XM, Li YY. Response of greenhouse to⁃
mato to varied low pre⁃night temperatures at the same
daily integrated temperature. Journal of the American So⁃
ciety for Horticultural Science, 2010, 11: 1654-1661
[13]  Kosterna E. The effect of covering and mulching on the
soil temperature, growth and yield of tomato. Folia Hor⁃
ticulturae, 2014, 26: 91-101
[14]  Ploeg A, Heuvelink E. Influence of sub⁃optimal temper⁃
ature on tomato growth and yield: A review. Journal of
Horticultural Science and Biotechnology, 2005, 80:
284 应  用  生  态  学  报                                      27卷
652-659
[15]  Li S⁃L (李胜利), Xia Y⁃Z (夏亚真), Liu J (刘  
金), et al. Effects of cold⁃shock on tomato seedlings
under high temperature stress. Chinese Journal of Ap⁃
plied Ecology (应用生态学报), 2014, 25 ( 10):
2927-2934 (in Chinese)
[16]  Zhejiang Agricultural University (浙江农业大学 ).
Vegetable Cultivation Theory ( South China). Beijing:
China Agriculture Press, 1987 (in Chinese)
[17]  Dai W⁃M (戴伟民), Zhao Y (赵  艳),Cai R (蔡 
润), et al. Selection of NaCl⁃tolerant calli and observa⁃
tion of microstructure. Journal of Shanghai Jiaotong
University (上海交通大学学报), 2001, 19(2): 112-
116 (in Chinese)
[18]  Xue Y⁃X (薛义霞), Li Y⁃L (李亚灵), Wen X⁃Z (温
祥珍). Effects of air humidity on the photosynthesis and
fruit⁃set of tomato under high temperature. Acta Horticul⁃
turae Sinica (园艺学报), 2010, 37(3): 397-404 (in
Chinese)
[19]  Li S⁃L (李胜利), Bi M⁃M (毕明明), Chen F (陈 
菲), et al. Mechanism of dwarfing effect of tomato (So⁃
lanum lycopersicon) seedlings induced by cold⁃shock
treatment under high temperature stress. Chinese Journal
of Applied Ecology (应用生态学报), 2015, 26(7):
2063-2068 (in Chinese)
[20]   Chen JH. Impact of drought stress on the ultrastructure
of leaf cells in three barley genotypes differing in level of
drought tolerance. Bulletin of Botany, 2011, 46: 26-28
[21]  Grigorova B, Vassileva V, Klimchuk D, et al. Drought,
high temperature and their combination affect ultrastruc⁃
ture of chloroplasts and mitochondria in wheat (Triticum
aestivum L.) leaves. Journal of Plant Interactions,
2012, 7: 204-213
[22]  Wang D⁃M (王冬梅), Xu X⁃Y (许向阳), Li J⁃F (李
景富), et al. Effect of heat stress on chloroplast ultra⁃
structure changes in mesophyll cell of tomato. Acta Hor⁃
ticulturae Sinica (园艺学报), 2004, 31(6): 820-821
(in Chinese)
[23]  Jian L⁃C (简令成), Wang H (王  红). Cell Biology
of Plant under Stress. Beijing: Science Press, 2009 (in
Chinese)
[24]  Qu B (曲  波), Zhang W (张  微), Chen X⁃H (陈
旭辉), et al. Research progress of flower bud differenti⁃
ation mechanism of plant. Chinese Agricultural Science
Bulletin (中国农学通报), 2010, 26(24): 109-114
(in Chinese)
[25]  Qiu W⁃M (邱文明), He X⁃J (何秀娟), Xu Y⁃H (徐
育海). Research progress on sex control of chestnut
flower buds. Journal of Fruit Science (果树学报),
2015, 31(1): 142-149 (in Chinese)
[26]  Huang D⁃H (黄冬华), Zhou C⁃H (周超华), Song X⁃
M (宋小民), et al. Effects of temperature and light on
flower bud differentiation in Daphne odoravar Marginata.
Acta Horticulturae Sinica (园艺学报), 2010, 37(10):
1685-1689
作者简介  李胜利,男,1975 年生,博士,副教授. 主要从事
集约化育苗研究. E⁃mail: lslhc@ yeah.net
责任编辑  张凤丽
李胜利, 夏亚真, 孙治强. 冷激对高温胁迫下番茄幼苗生长及花芽分化的影响. 应用生态学报, 2016, 27(2): 477-483
Li S⁃L, Xia Y⁃Z, Sun Z⁃Q. Effects of cold⁃shock on the growth and flower bud differentiation of tomato seedlings under high tempera⁃
ture stress. Chinese Journal of Applied Ecology, 2016, 27(2): 477-483 (in Chinese)
3842期                      李胜利等: 冷激对高温胁迫下番茄幼苗生长及花芽分化的影响