全 文 :基金项目:国家自然科学基金项目(No. 30671347)和福建省自然科学基金项目(No. 2012J01079)
收稿日期:2013-10-05 接受日期:2013-11-01
草酸胁迫下拟南芥三个差异表达microRNA的分析
陈晓婷 1,2* 刘军 1 孙翠霞 1 林桂芳 1
1福建农林大学生命科学学院,福州 350002;2福建农林大学生物农药与化学生物学教育部重点实验室,福州 350002
*通讯作者,levtring@126.com
摘 要 草酸是多种植物病原真菌(如核盘菌,灰葡萄孢等)的重要致病因子,这些草酸产生菌在侵染植
物时,会分泌草酸来酸化寄主组织,使得病原真菌的细胞壁降解酶能更迅速地协同发挥作用,加速细胞的
降解,而且草酸可夺取寄主细胞壁的钙离子形成草酸钙结晶从而破坏寄主细胞壁。植物microRNA广泛
参与植物生长发育各阶段的基因表达调控,在抗生物或非生物胁迫的应答中发挥着重要的作用。本研究
基于植物microRNA芯片研究3周龄拟南芥(Arabidopsis thaliana)在30 mmol/L草酸胁迫下microRNA的表
达。获得 3个差异表达的microRNA:miRNA-2988 (Ptc-miR3911),miRNA-3090 (Ath-miR858),miRNA-
3131(Ppt-miR1211)。根据 psRNATarget,对下调表达的小立碗藓(Physcomitrella patens) Ppt-miR1211的同
源物,找到一个最匹配的靶mRNA是At5g35753;另一下调表达的毛果杨(Populus trichocarpa)Ptc-miR3991
(与 Ath-miR399b同源)的同源物,对应的靶mRNA是一个泛素连接酶 (At2g33770);上调表达的 Ath-
miR858有 4个靶mRNA,分别为 At2g47460 (AtMYB12)、At5g49330 (AtMYB111)、At1g06180 (AtMYB13)和
At1g66230 (AtMYB20)。草酸胁迫下,qRT-PCR对其中下调表达的两个Ppt-miR1211及Ptc-miR3991同源
物的靶基因的表达情况分析表明,At5g35753及At2g33770在草酸胁迫 2 h后被诱导表达,于 12 h达到峰
值,24 h后表达量下降;qRT-PCR还表明:在草酸胁迫1 h后,Ath-miR858确实被诱导表达,于12 h达到峰
值,24 h后表达量下降,其靶基因MYB在草酸胁迫早期(2 h内)多数有下调的趋势,表明microRNA对其
靶mRNA确有负调控。此外,还对Ath-miR858与Ath-miR399b的启动子进行了生物信息学分析。本研
究结果为microRNA在拟南芥抗草酸胁迫中的作用提供了依据。
关键词 拟南芥,差异表达谱,microRNA芯片,草酸
Three Differentially Expressed MicroRNAs in Arabidopsis thaliana
Under the Stress of Oxalic Acid
CHEN Xiao-Ting1, 2* LIU Jun1 SUN Cui-Xia1 LIN Gui-Fang1
1 College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 2 Key Laboratory of Bio-pesticide and Chemistry
Biology, Ministry of Education, Fuzhou 350002, China
* Corresponding author, levtring@126.com
Abstract Oxalic acid (OA) is an important virulence factor of many plant fungal pathogens, such as
Sclerotinia sclerotiorum and Botrytis cinerea. These oxalic acid-producing pathogens can secrete OA to acidify
the host organs, leading plant pathogenic cell-wall-degrading enzymes to degrade plant cells more quickly and
synergistically. Moreover, oxalic acid can combine calcium to form calcium oxalate crystals, thus destroying
the host cell walls. Plant microRNAs are involved in the regulation of plant growth and development and play
important roles in the biotic and abiotic stresses. In this paper, the differentially expressed microRNAs of 3-
Online system: http://www.jabiotech.org
农 业 生 物 技 术 学 报
Journal of Agricultural Biotechnology
2014, 22(4): 432~439
DOI: 10.3969/j.issn.1674-7968.2014.04.005
0 引言
植物microRNA(miR)是一类长度约 20~24 nt
的非编码RNA,它不仅参与植物各生长发育阶段
的调控,而且在植物响应各种生物或非生物胁迫中
发挥着重要的作用。例如 miR172 通过控制
APETALA2的表达而决定拟南芥花器官的形成
(Chen, 2004);miR164c通过对其靶基因NAC转录
因子 CUC1和 CUC2的表达量来控制花瓣数目
(Baker et al., 2005);miR160通过调控生长素响应
因子 ARF10和 ARF16影响拟南芥根冠的形成
(Wang, 2005);miR395在维持拟南芥硫素平衡中起
重要作用,他靶向 3个ATP硫酸化酶基因 APS1、
APS3和APS4,低硫胁迫时,APS1的转录水平下降,
当供硫正常时,APS1的转录水平增加,miR395表
达完全受到抑制 (Jones- Rhoades et al., 2004);
miR399在维持植物磷稳态方面至关重要(Fujii et
al., 2005; Chiou, 2006);miR398是第一个报道受氧
化胁迫和生物胁迫负调控的miRNA,它靶向两种
Cu/Zn SOD:细胞质CSD1和叶绿体CSD2,逆境情况
下,miR398下调,导致CSD积累及对逆境的耐受性
(Sunkar, 2006; Jagadeeswaran et al., 2009);而
miR393能被植物病原菌(Pseudomonas syringae pv.
tomato DC3000)的鞭毛蛋白诱导,抑制其靶基因生
长素受体(TIR1, AFB2和AFB3)的表达, 从而阻断
生长激素应答途径,抑制拟南芥中细菌性病菌的生
长,从而表现对出细菌性病害的抗性 (Navarro,
2006)。
草酸(oxalic acid, OA)是多种植物病原真菌的
关键致病因子 (Dutton, Evans, 1996; Bolton et al.,
2005),在致病过程中起着多种作用。最近的研究
认为:在病菌侵染初期,草酸会抑制寄主的防御反
应,如抑制胼胝质的形成,抑制寄主植物的氧爆发
和自噬作用,侵染后期,随着草酸的积累,草酸能
夺取寄主组织的钙,形成草酸钙晶体破坏细胞壁,
并且草酸的酸性会使得病原真菌的细胞壁降解酶
能更迅速有效地协同发挥作用,加速细胞的降解,
这一系列的过程又诱导了寄主植物活性氧的产
生,从而引发了植物细胞的凋亡 (Kabbage et al.,
2013)。另外,草酸浓度的高低也会影响到它对植
物的作用。
Lehner等 (2008)认为,高浓度的 OA(大于 6
mmol/L)会诱发拟南芥细胞的程序性死亡,有利于
真菌的发育,而外源低浓度OA(3 mmol/L)可诱导
一些防卫基因的表达,如 PAL1、PR1、PDF1.2、
Athsr3和Athsr4。用低浓度的OA预处理植株,能增
强拟南芥幼苗对 Sclerotium rolfsii的抗性。
miRNA芯片是高通量筛选差异表达miRNA
的强有力手段。自问世以来,在医药甚至植物领域
得到广泛的应用(Yan et al., 2007; Lei et al., 2009;
week-old Arabidopsis thaliana under the stress of 30 mmol/L OA were uncovered based on plant microRNA
microarray. Three differentially expressed microRNAs were obtained, that was miRNA-2988 (Ptc-miR3911),
miRNA-3090 (Ath-miR858) and miRNA-3131 (Ppt-miR1211). Among them, one down-regulated microRNA
was the homolog of Physcomitrella patens Ppt-miR1211, whose target mRNA was an unkown gene At5g35753
based on psRNATarget, the other down- regulated microRNA was the homolog of Populus trichocarpa Ptc-
miR3911, which was identical to Ath-miR399b, and its target mRNA was a ubiquitin-conjugating E2 enzyme
At2g33770, The only up- regulated differentially expressed microRNA was Ath- miR858, whose target
mRNAs were transcription factors At2g47460 (AtMYB12), At5g49330 (AtMYB111), At1g06180 (AtMYB13) and
At1g66230 (AtMYB20). qRT- PCR analyzed the expression profiles of the target genes of the two down-
regulated miRNAs, the expression of At5g35753 and At2g33770 was induced at 2 h, peaked at 12 h, and
decreased at 24 h with the challenge of oxalic acid. qRT- PCR analysis also showed that Ath- miR858 was
induced at 1 h, peaked at 12 h, and decreased at 24 h under the stress of oxalic acid, however, the expression
of most of its target mRNAs were decreased at the early stage (within 2 h) of OA stress, indicating the
negatively-regulated function of microRNAs. Moreover, the bioinformatic analyses were conducted with the
promoters of Ath-miR858 and Ath-miR399b. Our results provide the foundation of microRNAs in the role of
oxalic acid stress.
Keywords Arabidopsis thaliana, Differential expression profile, microRNA microarray, Oxalic acid
草酸胁迫下拟南芥三个差异表达microRNA的分析
Three Differentially Expressed MicroRNAs in Arabidopsis thaliana Under the Stress of Oxalic Acid 433
农业生物技术学报
Journal of Agricultural Biotechnology
Liu et al., 2008; Lv et al., 2010)。利用miRNA芯片
研究miRNA在不同逆境,不同组织或不同物种间
的差异表达情况逐渐成为研究热点,本研究利用
miRNA芯片获得草酸胁迫下拟南芥miRNA的表
达信息,寻找差异表达miRNAs调控的靶基因,对
差异表达的 miRNA启动子的顺式作用元件进行分
析,将深化人们关于拟南芥-草酸互作分子机制的
认识。
1 材料与方法
1.1 拟南芥miRNA芯片与探针
采用博奥公司植物 miRNA 芯片 V2.0,该
miRNA芯片共有 426个miRNA对应的探针(http://
bioservices.capitalbio.com/fwpt/bajxpt/4012.shtml)。
用芯片点样仪 SmartArrayTM (CapitalBio Corp.,
Beijing, China)将这些探针点制在经过化学修饰的
载玻片上。Hex作为点样阳性对照,8个人工制备
的 30 bp RNA对应的探针作为芯片的外标,50%
DMSO作为杂交阴性对照。每条探针重复3次。
1.2 拟南芥RNA的提纯检测
10% NaClO消毒拟南芥 (Arabidopsis thaliana)
种子,播于正常的MS培养基上,12 h光照,12 h黑
暗培养,对 3周龄拟南芥分别均匀地喷双蒸水和
30 mmol/L的草酸,2 h后用消毒的剪刀剪去根,洗
净后用液氮速冻,研磨成粉,提取总 RNA,采用
NucleoSpin®RNA clean-up试剂盒对总RNA进行过
柱纯化,用紫外分光光度计定量,甲醛变性胶电泳
质检。
1.3 拟南芥miRNA的分离与荧光标记
用 PEG方法,从 50~100 μg 拟南芥总RNA中
分离miRNA,利用T4 RNA连接酶标记方法进行荧
光标记(Thomson et al., 2006),再用无水C2H5OH沉
淀,吹干后用于芯片杂交。
1.4 芯片杂交、清洗与扫描
将 RNA溶于 16 μL杂交液中 (15%甲酰胺;
0.2% SDS; 3×SSC; 50×Denhardts),于 42 ℃杂交过
夜,先在42℃左右含0.2% SDS,2×SSC的液体中洗
4 min,随后在 0.2×SSC液体中室温洗 4 min。玻片
甩干后用LuxScan 10K/A双通道激光扫描仪(北京
CapitalBio公司)进行扫描。
1.5 数据分析
用LuxScan3.0图像分析软件对芯片图像进行
分析,把图像信号转化为数字信号,对数据进行预
处理,片间校正后挑选差异表达基因 (He et al.,
2005)。筛选条件为:假阳性率(false discovery rate,
FDR)控制在 5%以内,倍数变化(fold change)为 1.5
倍以上。
1.6 差异基因的生物信息学分析
利用在线工具 psRNATarget (http://plantgrn.
noble.org/psRNATarget/) (Zhang, 2005; Dai, Zhao,
2011)和Arabidopsis Small RNA Project (http://asrp.
cgrb.oregonstate.edu/)预测miRNA调控的靶基因,
基于The PlantCARE Database (http://bioinformatics.
psb.ugent.be/webtools/plantcare/html/) (Lescot, 2002)
分析差异表达miRNA启动子的顺式作用元件。
1.7 qRT-PCR检测基因或miRNA的表达
上午 9点用草酸处理 3周龄拟南芥,取0、1、2、
12 和 24 h 样品,3 次以上的生物学重复。用
Invitrogen 公司(美国)的反转录试剂盒进行 cDNA
第一链的合成,SYBR染色,荧光定量 PCR仪为
FTC2000(Funglyn, Toronto, Canada),扩增条件:
95℃ 3 min;94℃ 20 s,60℃ 20 s,72℃ 20 s循环35
次。扩增体系(50 μL):2×PCR buffer 25 μL,上下游
引物各 (10 μmol/L)0.6 μL,模板 1 μL,ddH2O 22.8
μL。扩增引物见表1。
miRNA 的 表 达 检 测 方 法 :用 ZYMO
RESEARCH 公司 (美国)的试剂盒 Direct- zolTM
RNA MiniPrep(No. R2050)进行RNA纯化,然后用
TARARA 公 司 ( 日 本) 的 试 剂 盒
SYBR®PrimeScriptTM miRNA RT- PCR Kit (No.
RR716)进行反转,内参基因U6,荧光定量 PCR扩
增程序为 95 ℃ 30 s;95 ℃ 5 s,60 ℃ 20 s,循环 40
次。反应体系:SYBR Premix Ex TaqⅡ(2×) 10 μL,
正向引物(10 μmol/L) 0.8 μL,通用反向引物Uni-
miR qPCR Primer (10 μmol/L)0.8 μL,模板2 μL,加
ddH2O至20 μL。
2 结果与分析
2.1 RNA检测
甲醛变性胶电泳能检测到拟南芥RNA 18S、
434
28S rRNA两条清晰的亮带(图 1),条带亮度 28S∶
18S rRNA接近 1∶1,总量够用;经紫外分光光度
计检测定量,A260/230 在 1.8~2.1之间,说明RNA质量
合格。
2.2 芯片杂交结果
用 PEG方法分离拟南芥的 miRNA,利用 T4
RNA连接酶标记方法对miRNA进行荧光标记、杂
交、清洗,芯片扫描(图 2),把图像信号转化为数字
信号,经过数据预处理、片间校正以后用SAM软件
进行差异基因筛选。
4 张 miRNA 芯片的基因检测率分别为
表1 基因引物序列
Table 1 Primer sequences
基因
Gene
AtMYB12
AtMYB111
AtMYB13
AtMYB20
AtMYB83
At2g33770
At5g35753
18S
Ath-miR858
U6
引物名称
Primer name
At2g47460F
At2g47460R
At5g49330F
AT5g49330R
At1g06180F
At1g06180R
At1g66230F
At1g66230R
At3g08500F
At3g08500R
At2g33770F
At2g33770R
At5g35753F
At5g35753R
18S-F
18S-R
Ath-miR858F
U6-F
引物序列(5~3)
Primer Sequence(5~3)
AGGCAAAACGCAGACTTGGGAG
ACTCCATTATCGCCATTAATGC
AATGCACTAGTGAAGAGGCTG
TCGAACTTAAAAAACTTCCCTC
GTCTCTACTACAGCTGCGGAG
TCTATCTAGTGAGCCCTCCCA
CAAGAAACAATGGAGCGTCCT
ACTATTACCATAGTCGGACCA
AAAGTTGTCGCCTTCGCTGGA
TATTGTTAGGTGATGATCCTG
ATGCGACTGAATCCGAACC
AGAGCCTGAAACGAAAGAAGAA
GAAGAGGAATGTTGGTTTAGGG
TGTAGAAGACCACCGTCTCATTA-
AAACGGCTACCACATCCA
CACCAGACTTGCCCTCCA
TGCCTTTCGTTGTCTGTTCTACCTTA
GGACATCCGATAAAATTGGAACGA
片段长度/bp
Length
244
196
238
267
246
137
160
166
图 2 3周龄拟南芥喷施草酸 (30 mmol/L) 2 h后植物
MiRNA芯片杂交结果扫描图
Figure 2 The hybrid scattered spots of MiRNA array
using RNA extracted from 3-week-old Arabidopsis thalina
after 2 h stress of oxalic acid (30 mmol/L)
A~B:对照组;C~D:草酸处理组
A~B: Control, C~D: OA-treated groups
图1 用于microRNA芯片的RNA样品电泳图
Figure 1 Electropherogram of RNA samples for plant
microRNA microarray
1~3:对照组;4~6:草酸处理组;7:RNA标准品
1~3: Control;4~6: OA-treated groups;7: RNA standard
1 2 3 4 5 6 7
B
C D
A
草酸胁迫下拟南芥三个差异表达microRNA的分析
Three Differentially Expressed MicroRNAs in Arabidopsis thaliana Under the Stress of Oxalic Acid 435
农业生物技术学报
Journal of Agricultural Biotechnology
43.32%、43.65%、43.06%和44.11%。各质控指标符
合要求。
2.3 草酸胁迫下的拟南芥miRNA差异表达分析
以倍数变化大于1.50或小于0.67为标准筛选,
获得 3个差异表达microRNA(表 2)。对下调表达
的 小 立 碗 藓 Ppt- miR1211 的 同 源 物 ,根 据
psRNATarget,找到一个最匹配的靶 mRNA 为
At5g35753,是一功能未知的基因;另一下调表达的
毛果杨 Ptc-miR3991(与 Ath-miR399b同源),其靶
mRNA为At2g33770,编码一个泛素连接酶;上调表
达的Ath-miR858有4个已验证的靶mRNA,分别为
MYB 转录因子 At2g47460 (MYB12)、At5g49330
(MYB111)、 At1g06180(MYB13) 和 At1g66230
(MYB20) (Addo-Quaye et al., 2008)。
2.4 下调microRNA靶基因在草酸胁迫下的表达
分析
qRT-PCR对其中下调表达的两个Ppt-miR1211
及Ptc-miR3991的靶基因的表达情况分析表明(图
3):At5g35753及 At2g33770在草酸胁迫 2 h后被诱
导表达,于 12 h达到峰值,24 h后表达量下降。综
合以上数据,可以认为microRNA对其靶mRNA确
有负调控。
2.5 mi858及其靶基因在草酸胁迫下的荧光定量
PCR分析
qRT-PCR对上调表达的Ath-miR858及其靶基
因在草酸胁迫下的的表达情况分析表明(表3):
在草酸胁迫 1 h后,Ath-miR858确实被诱导表
表2 草酸胁迫下拟南芥的3个差异表达microRNA及其靶mRNA
Table 2 Three differentially expressed Arabidopsis thaliana microRNAs under the OA stress and their targeted mRNA
微RNA
MicroRNA
Ppt-miR1211
(小立碗藓)
Ptc-miR3991
(毛果杨)
Ath-miR858
倍数变化
Fold
Change
0.252
0.632
1.876
探针序列
Probe
Sequence
CTTGCATAAC
CATCCCTCCCT
GAGGGCAACT
CTCCTTTGGCG
AAGGTCGAACA
GACAACGAAA
预测靶标 mRNA
Target mRNA
At5g35753
At2g33770
At2g47460
At5g49330
At1g06180
At1g66230
比对得分
Alignment
Score
3.0
0.5
2.5
2.0
2.0
2.0
序列对比
Alignment
miRNA 20 GUCCUUCUCUGCCAGUACGU 1
:::::::::.::::..::.
Target 1539 CAGGAAGAGGCGGUUGUGUU 1558
miRNA 21 GUCCCGUUGAGAGGAAACCGU 1
.::::::: :::.::::::::
Target 607 UAGGGCAAAUCUUCUUUGGCA 627
miRNA 20 UCCAGCUUGUCUGUUGCUUU 1
::: :::::::::::::::
Target 392 AGGGAGAACAGACAACGAAA 411
miRNA 20 UCCAGCUUGUCUGUUGCUUU 1
::: :::::::::::::::
Target 376 AGGAAGAACAGACAACGAAA 395
miRNA 20 UCCAGCUUGUCUGUUGCUUU 1
:: ::::::::::::::::
Target 393 UGGACGAACAGACAACGAAA 412
miRNA 20 UCCAGCUUGUCUGUUGCUUU 1
::: :::::::::::::::
Target 459 AGGAAGAACAGACAACGAAA 478
靶标注释
Target
annotation
Unknown
UBC24
AtMYB12
AtMYB111
AtMYB13
AtMYB20
草酸处理时间/ h
Time after oxalic acid treatment
基
因
相
对
表
达
量
R
el
at
iv
e
ex
pr
es
si
on
va
lu
e
图3 草酸胁迫下At2g33770与At5g35753的表达谱
Figure 3 Expression profiles of At2g33770 and
At5g35753 under OA stress
内参基因为18S;n=3;**:差异极显著(P<0.01)
18S as reference gene; n=3; **: Extremely significant differ-
ence (P<0.01)
436
达,于 12 h达到峰值,24 h后表达量下降。已验证
的 4个靶基因中,MYB111及MYB12在草酸胁迫
下,其表达量均有下调的趋势,其中以胁迫初期
(1~2 h)表达量下调最显著;MYB20及MYB13在
草酸胁迫初期也有下调的趋势,但后期表达又有
所上调。另一预测到的靶基因MYB83,在草酸胁
迫下,其表达下调,但是胁迫 24 h后表达量又有所
上升。
2.6 差异表达miRNA启动子分析
采用 plantCARE网页在线分析草酸胁迫下差
异表达miRNA上游1 kb启动子区域序列。我们分
析了拟南芥miR399b和miR858启动子区域与胁迫
相 关 的 结 构 元 件: 脱 落 酸 响 应 元 件 (ABA-
responsive element, ABRE),低温响应元件 (low
temperature-responsive element, LTR),赤霉素响应
元件(gibberellins(GAs)-responsive element (GARE,
P-box)),水杨酸响应元件(TCA-element),厌氧诱导
元件(anaerobic-responsive element,ARE),赤霉素响
应元件 (gibberellin- responsive element, GARE),热
激响应元件(heatshock-responsive element, HSE)及
响应干旱诱导的MYB结合位点(drought-induced
MYB binding sites, MBS)的分布情况。从表4可见
miR399b含有4个ABRE元件、1个LTR、P盒、TCA
以及ARE结构元件,说明miR399b可能参与低温、
赤霉素、水杨酸等响应过程;ABRE元件位于脱落
酸响应基因的5上游区域,它们是保守的,miR399b
上游 1 kb区域含有 4个ABRE元件,说明miR399b
可能参与响应脱落酸过程。而miR858则含有1个
ARE、2个GARE、2个HSE以及1个MBS胁迫相关
元件,表明该miRNA可能参与厌氧、赤霉素、热激
响应、干旱等过程的响应。
3 讨论
本研究由 psRNATarget找到的小立碗藓 Ppt-
miR1211 同源 MiRNA 最匹配的目的基因为
结构元件
Structural element
脱落酸响应元件(ABA-responsive element, ABRE)
低温响应元件(low temperature-responsive element, LTR)
赤霉素响应元件(gibberellins(GAs)-responsive element (GARE, P-box))
水杨酸响应元件(cis-acting element involved in salicylic acid responsiveness, TCA-element)
厌氧诱导元件(anaerobic-responsive element, ARE)
赤霉素响应元件(gibberellin-responsive element, GARE)
热激响应元件(heatshock-responsive element, HSE)
响应干旱诱导的MYB结合位点(drought-induced MYB binding sites, MBS)
Ath-miR399b
4
1
1
1
1
-
-
-
Ath-miR858
-
-
-
-
1
2
2
1
表4 差异表达miRNA上游1 kb启动子区域已知的胁迫相关的结构元件分析
Table 4 Stress-related elements analysis in the 1kb upstream regions of differential miRNA genes
t / h
0
1
2
12
24
Ath-miR858
1.16±0.14 C
2.34±0.15C
2.57±0.33C
13.80±1.65A
6.32±0.89B
MYB12
1.09±0.12A
0.06±0.01C
0.04±0.01C
1.03±0.09A
0.63±0.12B
MYB111
1.03±0.04A
0.07±0.01D
0.06±0.01D
0.32±0.07B
0.17±0.03C
MYB13
1.22±0.19C
0.49±0.03D
0.60±0.10CD
2.41±0.18B
4.50±0.49A
MYB20
1.07±0.06BC
0.68±0.13C
0.76±0.03C
1.52±0.15B
3.60±0.55A
MYB83
1.10±0.11B
0.43±0.07C
0.32±0.02CD
0.16±0.03D
1.38±0.17A
基因相对表达量 Relatvie expression value
内参基因U6;n=3;同一列数字附不同大写字母表示差异极显著(P<0.01)
U6 as reference gene; n=3; Means followed by different capitalized letter within each column are extremely significant differ-
ence (P<0.01)
表 3 荧光定量PCR分析Ath-miR858及其靶基因在草酸胁迫下的表达情况
Table 3 qRT-PCRanalysis of relative expressionprofiles ofAth-miR858and its targetmRNAsunder the stress of oxalic acid
草酸胁迫下拟南芥三个差异表达microRNA的分析
Three Differentially Expressed MicroRNAs in Arabidopsis thaliana Under the Stress of Oxalic Acid 437
农业生物技术学报
Journal of Agricultural Biotechnology
At5g35753,该基因为功能未知基因,未见相关报
道,但含DNAJ结构域。芯片中另一下调表达的毛
果杨 Ptc-miR399(与Ath-miR399b同源),对应的靶
mRNA为 At2g33770,该基因编码一种泛素连接酶
UBC24,miR399 能够结合 At2g33770 mRNA 的
5UTR来负调控UBC24,这种调控对于植物响应磷
胁迫是十分重要的 (Fujii et al., 2005; Chiou et al.
2006)。草酸处理下拟南芥中miR399的下调以及
实时定量 PCR结果表明靶基因 At2g33770受草酸
诱导表达,说明miR399能够负调控At2g33770。
本研究芯片中上调表达的miR858对应的4个
靶基因都属于含两个MYB 结构域的R2R3-MYB
转录因子家族成员,该基因家族广泛参与植物次生
代谢调控、细胞形态发生、胁迫应答、分生组织形成
及细胞周期控制等 (Stracke et al., 2001)。其中
AtMYB12是类黄酮生物合成中起关键作用的激活
剂,但AtMYB12功能缺失并不会导致类黄酮生物合
成完全不能进行,说明在拟南芥中AtMYB12存在功
能冗余现象,功能冗余基因为 AtMYB11 及
AtMYB111。AtMYB12的功能缺失将会阻碍生长素
及乙烯对类黄酮生物合成的促进作用(Stracke et
al., 2001; Luo et al., 2008),Lea等(2007)报道低氮胁
迫还会增强 AtMYB12 的表达。实际上,根据
psRNATarget,尚能预测到miR858的其他一些靶基
因,他们都属MYB基因家族,其中一个较匹配的靶
基因是 At3g08500(AtMYB83),我们的荧光定量
PCR的结果也表明草酸胁迫下,该基因也是下调
的。AtMYB83与植物次生壁的生物合成相关,特异
表达于纤维、微管等次生壁产生的地方。其过表达
能够激活纤维素、木聚糖、木质素等生物合成基因
的表达,导致次生细胞壁在植物体内异位积累;次
生壁MYB响应元件(SMRE)是个保守序列ACC(A/
T)A(A/C)(T/C),AtMYB46及 AtMYB83不仅能调控
其下游的一系列MYB转录因子,还能调控一系列
次生壁生物合成相关基因(McCarthy et al., 2009;
Zhong and Ye, 2012)。总之,miR858与植物的次生
代谢有关,草酸胁迫下表达上调的miR858可能通
过对MYB转录因子的负调控来降低次生代谢相关
基因的表达。
4 结论
本研究利用miRNA芯片筛选草酸胁迫下拟南
芥差异表达miRNA,寻找差异表达miRNAs调控的
靶基因,对差异表达miRNA启动子的顺式作用元
件进行分析,对其中下调表达的两个Ppt-miR1211
及Ptc-miR3991同源物的靶基因的表达情况分析表
明,At5g35753及At2g33770在草酸胁迫2 h后被诱
导表达;qRT-PCR还表明:在草酸胁迫 1 h后,Ath-
miR858确实被草酸诱导表达,其靶基因MYB在草
酸胁迫早期(2 h内)多数有下调的趋势,表明
microRNA对其靶mRNA确有负调控。研究结果
将有助于加深人们关于拟南芥-草酸互作分子机
制的认识。
参考文献
Addo- Quaye C, Eshoo T W, Bartel D P, et al. 2008.
Endogenous siRNA and miRNA targets identified by
sequencing of the Arabidopsis degradome[J]. Current
Biology, 18(10): 758-762.
Baker C C, Sieber P, Wellmer F, et al. 2005. The early extra
petals1 mutant uncovers a role for MicroRNA miR164c
in regulating petal number in Arabidopsis[J]. Current
Biology, 15(4): 303-315.
Bolton M D, Thomma B P H J , Nelson B D. 2006. Sclerotinia
sclerotiorum (Lib.) de Bary: Biology and molecular traits
of a cosmopolitan pathogen[J]. Molecular Plant
Pathology, 7(1): 1-16.
Chen X. 2004. A microRNA as a translational repressor of
APETALA2 in Arabidopsis flower development[J].
Science, 303(5666): 2022-2025.
Chiou T J. 2006. Regulation of phosphate homeostasis by
microRNA in Arabidopsis[J]. The Plant Cell Online, 18
(2): 412-421.
Dai X , Zhao P X. 2011. psRNATarget: A plant small RNA
target analysis server[J]. Nucleic Acids Research, 39
(Web Server issue): W155-159.
Dutton M V , Evans C S. 1996. Oxalate production by fungi:
Its role in pathogenicity and ecology in the soil
environment[J]. Canadian Journal of Microbiology, 42
(9): 881-895.
Fujii H, Chiou T-J, Lin S-I, et al. 2005. A miRNA involved in
phosphate-starvation response in Arabidopsis[J]. Current
Biology, 15(22): 2038-2043.
He H, Jazdzewski K, Li W, et al. 2005. The role of microRNA
genes in papillary thyroid carcinoma[J]. Proceedings of
the National Academy of Sciences of the USA, 102(52):
19075-19080.
438
Jagadeeswaran G, Saini A , Sunkar R. 2009. Biotic and
abiotic stress down- regulate miR398 expression in
Arabidopsis[J]. Planta, 229(4): 1009-1014.
Jones- Rhoades M W, Bartel D P , Bartel B. 2006.
MicroRNAs and their regulatory roles in plants[J].
Annual Review of Plant Biology, 57(1): 19-53.
Kabbage M, Williams B , Dickman M B. 2013. Cell death
control: The interplay of apoptosis and autophagy in the
pathogenicity of Sclerotinia sclerotiorum[J]. PLoS
Pathog, 9(4): e1003287.
Lea U S, Slimestad R, Smedvig P, et al. 2006. Nitrogen
deficiency enhances expression of specific MYB and
bHLH transcription factors and accumulation of end
products in the flavonoid pathway[J]. Planta, 225(5):
1245-1253.
Lei P, Li Y, Chen X, et al. 2009. Microarray based analysis of
microRNA expression in rat cerebral cortex after
traumatic brain injury[J]. Brain Research, 1284: 191-
201.
Lehner A, Meimoun P, Errakhi R, et al. 2008. Toxic and
signalling effects of oxalic acid: Oxalic acid- natural
born killer or natural born protector?[J]. Plant Signal
Behavior, 3(9): 746-748.
Lescot M. 2002. PlantCARE, a database of plant cis- acting
regulatory elements and a portal to tools for in silico
analysis of promoter sequences[J]. Nucleic Acids
Research, 30(1): 325-327.
Liu H H, Tian X, Li Y J, et al. 2008. Microarray- based
analysis of stress- regulated microRNAs in Arabidopsis
thaliana[J]. RNA, 14(5): 836-843.
Luo J, Butelli E, Hill L, et al. 2008. AtMYB12 regulates
caffeoyl quinic acid and flavonol synthesis in tomato:
Expression in fruit results in very high levels of both
types of polyphenol[J]. The Plant Journal, 56(2): 316-
326.
Lv D- K, Bai X, Li Y, et al. 2010. Profiling of cold- stress-
responsive miRNAs in rice by microarrays[J]. Gene, 459
(1-2): 39-47.
McCarthy R L, Zhong R , Ye Z H. 2009. MYB83 Is a direct
target of SND1 and acts redundantly with MYB46 in
the regulation of secondary cell wall biosynthesis in
Arabidopsis[J]. Plant and Cell Physiology, 50(11): 1950-
1964.
Navarro L. 2006. A plant mirna contributes to antibacterial
resistance by repressing auxin signaling[J]. Science, 312
(5772): 436-439.
Stracke R, Werber M, Weisshaar B. 2001. The R2R3- MYB
gene family in Arabidopsis thaliana[J]. Current Opinion
in Plant Biology, 4(5): 447-456.
Sunkar R. 2006. Posttranscriptional induction of two Cu/Zn
superoxide dismutase genes in Arabidopsis is mediated
by downregulation of miR398 and important for
oxidative stress tolerance[J]. The Plant Cell Online, 18
(8): 2051-2065.
Thomson J M, Parker J, Perou C M, et al. 2004. A custom
microarray platform for analysis of microRNA gene
expression[J]. Nature Methods, 1(1): 47-53.
Wang J W. 2005. Control of root cap formation by microRNA-
targeted auxin response factors in Arabidopsis[J]. The
Plant Cell Online, 17(8): 2204-2216.
Yan N, Lu Y, Sun H, et al. 2007. A microarray for microRNA
profiling in mouse testis tissues[J]. Reproduction, 134
(1): 73-79.
Zhang Y. 2005. miRU: An automated plant miRNA target
prediction server[J]. Nucleic Acids Research, 33(Web
Server): W701-W704.
Zhong R , Ye Z H. 2011. MYB46 and MYB83 bind to the
SMRE sites and directly activate a suite of transcription
factors and secondary wall biosynthetic genes[J]. Plant
and Cell Physiology, 53(2): 368-380.
草酸胁迫下拟南芥三个差异表达microRNA的分析
Three Differentially Expressed MicroRNAs in Arabidopsis thaliana Under the Stress of Oxalic Acid
(责任编辑 任立刚)
439