全 文 :
DOI:10.13925/j.cnki.gsxb.20160056
非耕地日光温室油桃根域限制对冠层特征及果实品质的影响
牛茹萱 1,王晨冰 1,2,赵秀梅 1,王发林 1,2,王鸿 1
(1甘肃省农业科学院林果花卉研究所,甘肃兰州 730070;2甘肃农业大学园艺学院,甘肃兰州 730070)
摘 要:【目的】探明非耕地日光温室油桃根域限制对冠层特征的影响。【方法】以油桃品种‘中农金辉’
为试验材料,在西北地区戈壁非耕地日光温室中测定不同根域限制体积(135L、225L、360L、576L 和对
照 1440L)对油桃树体生长、结果特性的影响,并用 CI-110冠层分析仪,分析不同处理对冠层特征参数的
影响。【结果】结果表明,L135、L225 和 L360 限根体积处理的树体干径显著低于与对照处理(L1440),
但仅有 135L处理显著降低了油桃平均单果重及产量。利用 CI-110冠层分析仪分析叶面积指数(LAI)、散
射辐射透过系数(TCDP),L135 叶面积指数为 1.81,显著低于 L225(2.02)和 L360(2.21)限根处理,
L576限根处理的 LAI为 2.87,与对照处理(L1440)无显著差异。限根栽培限制了树体枝叶生长量,造成
L135、L225、L360限根处理的 TCDP升高到 0.34、0.30和 0.25。【结论】L225和 L360的限根体积可在适
当增大栽培密度的条件下,应用于西北非耕地日光温室桃限根生产栽培。
关键词:非耕地;油桃;叶面积系数;果实品质
中图分类号:S662.1 文献标志码:A 文章编号:1009-9980(2016)10-0001-08
Root restriction effects on nectarine tree canopy characteristics and
fruit quality in non-arable land greenhouse
NIU Ruxuan 1, WANG Chenbing 1,2, ZHAO Xiumei1, WANG Falin 1,2 , WANG Hong1*
(1 Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Anning,
Lanzhou 730070, PR China, 2 Horticulture college, Gansu Agricultural University, Anning,
Lanzhou 730070, PR China)
Abstract:【Objective】The shortage of arable land resources is a serious situation in china. Gobi
area, which located in Hexi Corridor of Gansu Province, where has suitable natural conditions for
fruit development such as light density, light period. However, Gobi is covered by coarse sand and
gravel, formed a hard top soil layer in the desert terrain, so, the development of peach industry in
Gobi non-arable land needs to remove 80cm deep gravel, then backfill soil come from other arable
land of the farmland which is limited in Hexi Corridor, which affected the quality of farmland
seriously, and caused serious damage to the fragile ecological environment. Peach trees are growth
strong in greenhouse, which substantial effect on photosynthesis and growth of the tree and on the
收稿日期:2016-02-29 接受日期:2016-06-08
基金项目:国家自然科学基金项目(31360467);公益性行业(农业)科研专项(201203004);果
树种质创新与新品种选育(2014GAAS04)
牛茹萱,女,研实员,研究方向为果树栽培与育种。Tel:0931-7612158,E-mail:niuruxuan2006@163.com
*通信作者 Author for correspondence. Tel:0931-7612158,E-mail:wrh991130@126.com
网络出版时间:2016-07-07 21:53:02
网络出版地址:http://www.cnki.net/kcms/detail/41.1308.S.20160707.2153.009.html
quality of the fruit. Through the branch pruning technology to control the tree is consuming
nutrition, cost-wasting, and can cause physiological diseases. Root restriction could save soil,
water and fertilizer on Gobi non-arable land. It is better for high density, high yield and high
efficient cultivation by controlling trees’ vegetative growth. Different root restriction volumes
influence tree growth, canopy characters and economic character. Suitable tree canopy
characteristics are reference basis for good tree architecture and high yield. Studying the
inheritance of root restriction effects on nectarine tree canopy characteristics can provide a
theoretical basis and practical experience for peach tree cultivation in non-arable land greenhouse.
【Methods】The Field experiment was conducted to examine the effects of root restriction volume
on the vegetative growth, its yield, quality and canopy characteristics of nectarine cv ‘Zhongnong
Jinhui’ in non-arable land greenhouse. The experiment included four treatments, the root
restriction volume (width × depth) are 0.9m × 0.5 m × 0.3 m(135 L),0.9m ×0.5 m × 0.5 m(225
L),0.9m ×0.8 m × 0.5 m(360 L) and 0.9m ×0.8 m × 0.8 m(576 L), root restriction material is
geotechnical cloth. Control treatment is the local cultivation mode, backfilling soil after removed
the original Gobi surface 80 cm (control, 1440 L). Randomized block design was used for this
experiment, each treatment repeats 3 times. The plant and row space is 0.9m × 2 m, the whole
experimental area is 150 m2. Canopy images were collected by CI-110 canopy analyzer. After
removed zenith angle (140°-170°) and azimuth angle( 45°-135° and 225°-315°) using plant
canopy analysis system V6.0, leaf area index (LAI) and transmission coefficient for diffuse
penetration (TCDP) were calculate by CI-110 canopy analyzer software. Measuring the sugar and
soluble solid content (SSC), single fruit weight, fruit number per tree and yield to evaluate
economic characters, and trunk diameter 10cm above graft point to evaluate plant growth.
【Results】The effects of root restriction obvious have inhibitory effect for vegetative growth of
nectarine trees in non-arable land greenhouse, mainly shows the impact on the stem diameter. The
diameter of L135 treatment stem is 21.7mm, only equaled to 49.7% of the control’s diameter,
treatment L225 and L360 reduced 20% of the diameter compared to the control. The treatment
L135 reduced the average fruit weight and yield, but SSC increased, significantly at P<0.05. The
treatment L225 had significant differences with control in average fruit weight, however its
productions have no statistics differences. The results show that leaf area coefficient around
1.81-2.90. Different limit root volumes had significant influence on the LAI. The LAI of the
treatment L135 is 1.81, which significantly lower than L225 (2.02) and L360 (2.21) treatments,
only equaled to 63%, 70% and 77% of control, respectively. There is no difference between L576
(2.87) and control (L1440) regards to LAI. Root restriction limited the branches and leaves growth
of nectarine trees; as a result, TCDP gets increasing when the root restriction volumes decreased.
In 135 L volume the TCDP increased to 0.34, three times as much as the control, which means
serious light-leaking. The TCDP of L225 and L360 are 0.30 and 0.25, respectively, which were
significantly higher than control. TCDP of treatment L576 was higher than control, but no
significant difference was observed. 【Conclusion】Leaf area index is an important parameter of
vegetation canopy structure characterization. The highest LAI was 2.90 measured by CI-110; this
value is smaller than the direct measuring method and other methods. Quantitative analysis and
measurement by CI-110 needs correct data according direct measuring method. Although the
canopy analyzer method is not very accurate, it is still a fast and efficient canopy analysis method.
The results showed that root restriction volume L135 treatment rose SSC, but yield and fruit
weight had dropped significantly; therefore, it is not suitable for non-arable land greenhouse.
Light-leaking loss of root restriction volume L225 and L360 is still above control. The L225 and
L360 volume could be used in non-arable land greenhouse, under the condition of increasing plant
density. These two volumes need only 15.6% and 25% soil of the control, which can protect the
limited land resource and ecological environment. According to the comparison and analysis of
the three methods of images processing, removed zenith angle (from 140°to 170°) and azimuth
angle( from 45° to 135° and from 225° to 315°), which reduced the experiment error caused by the
surrounding environment. This images processing method could reveal the actual differences
between experimental treatments.
Key words: non-arable land; nectarine; leaf area index; fruit quality
我国耕地资源紧缺[1-2]。甘肃省以戈壁为主的河西走廊地区,有着发展设施果树产业得
天独厚的自然气候条件。戈壁是粗砂、砾石覆盖在硬土层上的荒漠地形,因此在戈壁非耕地
发展设施桃产业,需要将温室内 80cm深的沙砾清除,然后回填土壤,这样,每座日光温室
(500m2)至少需要“客土”400m3,这些土壤一般都要从周围面积有限的良田中挖取,建造
一座日光温室,需挖取双倍面积良田的 40cm表土层,这严重影响到原耕地的质量,并对原
本脆弱的生态环境造成严重破坏[3]。
桃树营养生长旺盛,往往影响到树冠内部光照及果实品质,通过地上部枝条修剪技术来
控制树势不仅费时费工,增加管理成本[4],并会造成生理性病害,因此,种植者尝试了很多
办法来控制树体过度生长,如根系修剪技术,可以打破原来的生长平衡,改变营养分配及激
素水平,促进新根的发生,控制旺长并改善果实品质[5, 6]。通过矮化砧木也可以控制树体旺
盛生长[7-10]。还有一种控制树体营养生长的方法,即根域限制(Rooting restriction)[11-13],
是直接调控根系生长发育的一项栽培技术,指人为的把植物根系限制在一定介质或空间中,
控制根系体积和数量、改变根系分布与结构、优化根系功能,通过根系调节整个植株生长发
育,从而实现优质高产高效的一项技术。有研究表明,根域限制可促进成花、提高果实品质、
控制树体营养生长,桃树适度限根可提高坐果率、增加产量,果实大小和可溶性固形物含量
( SCC )不受影响,但限根过度则起抑制作用[14-17]。
科学的树冠结构指标是培养良好的树体结构、确立丰产树冠结构参数的参考依据,近年
来随着设施桃的发展,如何提高温室桃的产量、果实品质一直是设施栽培果树研究的重点,
桃树冠层参数是影响产量、果实品质的重要因素。合理的冠层结构是从果树树体结构和植物
生理学的观点探讨果树合理负荷,营养物质合理分配,使其既有良好光照体系的牢固骨架,
又具备高效稳产的侧生部分。因此,合理的根域限制,可以在既保证日光温室高密度油桃正
常生长、结果的前提下,同时大量减少客土量,从而达到保护当地生态环境及降低成本的目
的。本研究以“中农金辉”油桃为试材,主要研究在河西走廊地区日光温室内不同限根体积对
主干形桃树树体生长、冠层特征和结果的影响,为确定该区域根域限制体积和适宜的栽植密
度提供理论参考。以期为正在发展的戈壁非耕地日光温室果树栽培提供理论依据。
1 材料与方法
1.1 试验材料与试验设计
试验在甘肃省嘉峪关市新城镇非耕地设施产业园区新建的日光温室内(98°22’22 E,
39°55’8 N)进行,该温室所在地原貌为戈壁滩非耕地类型。苗木定植前,沿南北向在温室
内原戈壁地表上机械辅助开沟,长度 × 宽度 × 深度(限根体积 L)分别为 0.9 m × 0.5 m ×
0.3 m(135 L),0.9 m × 0.5 m × 0.5 m(225 L),0.9 m × 0.8 m × 0.5 m(360 L)和 0.9 m × 0.8
m × 0.8 m(576 L),以土工布作为限根材料。以当地“客土”栽培模式为对照处理,即将原地
表下 80cm戈壁砂石清除后回填土壤,这种模式的体积为 0.9 m × 2 m × 0.8 m(CK,1440 L)。
对照设独立小区,顺序排列,重复 3次;其余各处理均按照随机区组试验设计分布,重复 3
次,每重复 2株,区组面积 150 m2。2012年 8月以山桃为砧木带木质部芽接“中农金辉”油
桃品种,芽苗于当年 12月按照株行距 0.9m × 2 m定植。主干形树形,主干离地面 50 cm以
下不留结果枝。为明确限根效果,本试验花期蜜蜂授粉后,不疏果,其它栽培技术按照王鸿
等[3]的栽培管理技术操作。
1.2 测定指标及方法
1.2.1 冠层特征指标测定 用 CI-110 数字式植物冠层结构分析仪(美国 CID公司)于 2015
年 4月 18日,早晚没有强烈直射光时[18],测定叶面积指数(leaf area index,LAI)及散射
辐射透过系数(Transmission coefficient for diffuse penetration),将鱼眼探测头置于树下离地
面高度 0.2 m处,于各处理小区内 2重复株间截获图像。每个处理重复 3次,测定时为保证
图片质量与稳定性,每个重复连续拍摄测定 5次。获得的图片用 Adobe photoshop CS6软件
进行后期处理,除去图片天空背景中温室屋顶钢架部分,再经植物冠层分析软件(Plant
canopy analysis system V6.0)除去图像天顶角 140°~170°(最大)部分,再除去方位角 45°~
135°及 225°~315°部分(图 1),图像经 CI-110 植物冠层分析软件分析后,可得到叶面积指
数(LAI)、散射辐射透过系数(TCDP)等参数。
1.2.2 干径,产量与品质测定 于 2015年 4月果实成熟后,采用单株法测定单株产量、单果
重及可溶性固形物含量[15],折算 667 m2产量。2015年 4月对树体冠层结构进行测定分析,
调查嫁接口上 10cm处干径。
1.3 数据处理
采用 DPS 14.5统计分析软件对数据进行差异显著性检验(Duncan’s新复极差法)。
2 结果与分析
2.1 冠层与光辐射特征比较
由 CI-110 植物冠层分析仪采集的图片如图 1 所示,不同限根处理,其株间叶片群体分
布密度不同,随着限根体积的增大,图中可见天空部分面积减小。
本试验中,叶面积系数(LAI)值的范围在 1.81-2.90之间,不同限根体积对叶面积系数
有显著影响(表 1)。L225和 L360处理的 LAI值在 2.02-2.21之间,为对照的 70%-77%,
L135处理的 LAI低至 1.81,仅为对照的 63%。L576处理的 LAI与对照差异不显著。
群体散射辐射透过系数(TCDP)是描述群体内散射太阳辐射到达群体内部程度的指标。
太阳散射辐射对光合作用有较大的辅助作用。本试验表明,限根处理整体上群体散射辐射透
过系数较大,限根体积越小,TCDP越大。L135的限根体积条件下,TCDP达到 0.34,是对
照的 3 倍多(表 1),说明漏光严重。L225 和 L360 处理的 TCDP 也显著高于对照。L576
处理的 TCDP较对照高,但其差异不显著。
表 1 不同限根体积对日光温室油桃叶面积系数和散射辐射透过系数的影响。
Table 1 Effects of different root restriction volume on leaf area index (LAI) and transmission
coefficient for diffuse penetration (TCDP) in sunlight greenhouse
处理
Treatments
叶面积系数
Leaf area index (LAI)
散射辐射透过系数
TCDP
L135 1.81±0.03c 0.34±0.04a
L225 2.02±0.06b 0.30±0.02ab
L360 2.21±0.03b 0.25±0.03b
L576 2.90±0.18a 0.17±0.03c
L1440 2.87±0.16a 0.11±0.04c
表中数值为均值±标准差。同一列不同字母表示P<0.05水平上的差异显著性。
Values are given as means ±S.D.. Values followed by different letters within a column and in the same year
are significantly different (P<0.05).
天顶角Zenith170°
天顶角Zenith
140°
方位角
azimuth
45°
方位角
Azimuth
225°
a
方位角
azimuth
315°
d
天顶角Zenith
140°天顶角Zenith
140°
b c
方位角
azimuth
45°
方位角
azimuth
135°
方位角
Azimuth
225°
方位角
azimuth
315°
e
方位角
azimuth
45°
方位角
azimuth
135°
方位角
azimuth
225°
方位角
azimuth
315°
方位角
azimuth
45°
方位角
azimuth
135°
方位角
azimuth
225°
方位角
azimuth
315°
方位角
azimuth
45°
方位角
azimuth
135°
方位角
azimuth
225°
方位角
azimuth
315°
天顶角Zenith170°
天顶角Zenith
140°
天顶角Zenith
140°
天顶角Zenith
140°
天顶角Zenith
140°
天顶角Zenith170° 天顶角Zenith170°
天顶角Zenith170°
方位角
azimuth
135°
图1 日光温室内不同限根体积油桃树株间冠层分析仪拍摄图片。a: L135, b: L225, c:
L360, d: L576, e: L1440。
Fig.1 The photos of peach tree canopy using different root restriction volume in sunlight
greenhouse, taken by canopy analyzer CI-110. a:L135, b:L225, c:L360, d:L576, e:L1440.
2.2 限根对干径、产量和果实品质的影响
限根对日光温室桃的营养生长有明显的抑制作用,主要表现为对干径的影响。对照
L1440的干径为43.6mm。L135处理的干径为21.7mm,是对照处理的49.7%。处理L225和L360
的干径分别为29.2mm和34.6mm,显著低于对照。L567的干径为40.9mm,对干径的抑制作用
与对照差异不显著。(图2)。受干径减小的影响,L135处理的平均单果重、单株结果数量和
产量均较其他处理分别显著减小为58.6g,66个和3.8kg,但果实的可溶性固形物含量显著提
高为13.8%。L225处理的平均单果重与对照存相比显著降低,为75.5g,但其产量与对照并无
差异。其他处理的可溶性固形物含量,平均单果重,单株结果数量及产量相对于对照差异均
不显著(表2)。
0
5
10
15
20
25
30
35
40
45
50
L135 L225 L360 L576 L1440
干
径
St
em
dia
m
et
er
(
m
m
)
处理 Treatment
图 2 日光温室内不同限根体积对油桃树干径的影响
Fig.2 Effects of different root restriction volume on peach tree stem diameter in sunlight
greenhouse.
表 2 不同限根体积对日光温室油桃可溶性固形物含量,平均单果重和产量的影响。
Table 2 Effects of different root restriction volume on single fruit weight, fruit number per tree,
yield and soluble sugar content (SSC) in sunlight greenhouse.
处理
Treatment
可溶性固形物含量
SSC
平均单果重(g)
Single fruit
weight
单株结果数量(个)
Fruit number per tree
产量(Kg/株)
Yield
L135 13.8±1.34a 58.6±3.91c 66.0±11.55b 3.8±0.29b
L225 12.1±1.41b 75.5±2.19b 89.2±16.13a 6.7±0.74a
L360 12.0±1.18b 79.8±2.95ab 87.7±18.25a 7.0±0.62a
L576 11.8±0.96b 85.8±3.77a 87.6±17.89a 7.5±0.43a
L1440 11.4±1.04b 81.7±4.91a 90.5±15.13a 7.4±0.31a
表中数值为均值±标准差。同一列不同字母表示P<0.05水平上的差异显著性。
Values are given as means ± SD. Values followed by different letters within a column and in the same year
are significantly different (P<0.05).
c
aa
b
b
3 讨论
桃树是中国主要的果树树种之一[19],喜光,西北非耕地区域日光温室桃普遍采用的主
干形树型,这种树型利于密植和轻简化操作,但生长旺盛,影响光照、造成果实品质下降。
限根栽培通过根系调节整个植株生长发育,树体生长受到不同程度的抑制,从而实现优质高
产高效省力化栽培模式。因此通过探究叶片和光照在冠层空间内分布状态与树体生长及产量
的关系,可以确定最适宜的限根体积,最终提高树体的光能利用效率。叶面积指数与散射辐
射透过系数是表征植被冠层结构的重要参数,与果园的光能截获及利用、产量和品质的形成
等过程关系密切,在一定程度上决定了果园的生产效率[20-22]。赵宝龙[17]研究认为早露蟠桃
限根后能够不同程度地降低新梢生长量,适度限根可以控制树冠,提高平均单株产量,同时
平均每株果个数、平均单果重、固形物含量都有不同程度的提高,但限根过度则抑制植株生
长,会使产量降低,果个变小,品质变差。李勇等[16]认为限根栽培显著抑制了地上部的营
养生长,促进果实发育期光合同化产物向果实的积累。本实验结果发现,限根体积为 L135
时,LAI显著降低并且漏光严重,虽然可溶性固形物显著上升,但是产量和单果重却显著下
降,因此不适宜于西北地区非耕地日光温室桃生产中应用。L225和 L360两个处理,相对于
对照处理,单株产量差异不显著,但其冠层 LAI较低,散射辐射透过系数(TCDP)较高,
仍然造成漏光损失,因此,这两种限根体积的栽培模式,可以适当增加栽植密度,在保证单
株产量的前提下实现单位面积产量的增加。综合分析,225L和 360L的根域限制体积,可在
适当调整栽培密度后,作为该地区日光温室桃限根栽培最佳限根体积。这两种限根体积所需
要的“客土”量只有对照的 15.6%~25%,有利于保护该区域有限的耕地资源和生态环境。
本研究中使用了全图、除去天顶角(140°~170°)、除去天顶角(140°~170°)与方位
角(45°~135°及 225°~315°)三种方式处理图像后对冠层指数进行分析,未处理的图像由
于鱼眼镜头将日光温室后墙及后屋面包含在内,因此所得出的结论表现为叶面积指数高,辐
射透过系数低,在除去图像天顶角 140°~170°部分后,由于日光温室桃栽培行间距为 2m,
相邻行的树冠对数据分析也造成了很大影响,因此为了减小误差,采用再除去方位角 45°~
135°及 225°~315°部分后再进行分析,根据对这三种图片处理方法的对比分析,认为除去图
像天顶角 140°~170°(最大)部分,再除去方位角 45°~135°及 225°~315°部分后经 CI-110
植物冠层分析软件分析,这种方法可以减小周围环境所引起的误差,真实表现处理之间的差
异。一般主干型桃树的LAI为2-4[23,24],本试验中由冠层仪CI-110所获得的 LAI 最大为2.90,
该方法其数值较直接测量法及其余方法偏小[25,26],可能与主干形树型冠层重叠和集聚效应有
关。建议需要应用冠层分析仪定量分析测量 LAI 时,先用直接法校正[27]。
参考文献 Reference:
[1] 余振国,胡小平.我国粮食安全与耕地的数量和质量关系研究[J].地理与地理信息科学,2003,03(03):
45-49.
YU Zhenguo, HU Xiaoping. Research on the relation of food security and cultivated land’s quantity and quality in
China[J]. Geography and Geo-Information Science, 2003, 19(3): 45-49.
[2] 杜婷.我国粮食安全的现状及建议[J].现代化农业,2012,12(12):30-32.
DU Ting. Status and suggestion of food security[J]. Modernizing Agriculture, 2012 (12): 30-32.
[3] 王鸿,李宽莹,陈建军,王晨冰,王发林.非耕地日光温室桃根域限制栽培关键技术[J].甘肃农业科技,
2015,8(8):93-94.
WANG Hong, LI Kuanying, CHEN Jianjun, WANG Chenbing, WANG Falin. The key techniques of peach root
restriction cultivation in non cultivated in non-arable land greenhouse[J]. Gansu Agricultural Science and
Technology, 2015(8): 93-94.
[4] MILLER Stephen. Root pruning and trunk scoring have limited effect on young bearing apple trees[J].
Hortscience, 1995, 30(5): 981-984.
[5] YANG S, XING S, LIU C, DU Z, WANG H, XU Y. Effects of root pruning on the vegetative growth and fruit
quality of Zhanhuadongzao trees[J]. Horticulture Science, 2010, 37: 14-21.
[6] ASÍN L, ALEGRE S, MONTSERRAT R. Effect of paclobutrazol, prohexadione-Ca, deficit irrigation, summer
pruning and root pruning on shoot growth, yield, and return bloom, in a ‘Blanquilla’ pear orchard[J]. Scientia
Horticulturae, 2007, 113(2): 142-148.
[7] 樊秀芳,刘旭峰,张建堂,史联让. SX系列矮化砧对苹果生长结果的影响[J]. 果树学报,2004,05:
399-401.
Fan Xiufang, Liu Xufeng, Zhang Jiantang, Shi Lianrang. Effects of dwarf rootstocks on apple growth and
fruiting[J]. Journal of Fruit Science, 2004, 05: 399-401.
[8] ATKINSON C J, ELSE M A, TAYLOR L, DOVER C J. Root and stem hydraulic conductivity as determinants
of growth potential in grafted trees of apple (Malus pumila Mill.)[J]. Journal of Experimental Botany, 2003,
54(385): 1221-1229.
[9] GASCO A., NARDINI A., RAIMONDO F., GORTAN E., MOTISI A., GULLO L, SALLEO S. Hydraulic
kinetics of the graft union in different Olea europaea L. scion/rootstock combinations[J]. Environmental and
Experimental Botany, 2007, 60(2): 245-250.
[10] COHEN S, NAOR A. The effect of three rootstocks on water use, canopy conductance and hydraulic
parameters of apple trees and predicting canopy from hydraulic conductance[J]. Plant, Cell & Environment, 2002,
25(1): 17-28.
[11] 王世平,张才喜,罗菊花,邵浩,郭庆海,朱丽娜. 果树根域限制栽培研究进展[J].果树学报,2002,
05:298-301.
Wang Shiping, Zhang Caixi, Luo Juhua, Shao Hao, Guo Qinghai, and Zhu Lina. Adcances in research of
rooting-zone restricted fruit growing[J]. Journal of Fruit Science, 2002, 05: 298-301.
[12] FERREE D C. Time of root pruning influences vegetative growth, fruit size, biennial bearing, and yield of
Jonathan’ apple[J]. Journal of the American Society for Horticultural Science, 1992, 117(2): 198-202.
[13] WILLIAMSON J, COSTON D, CORNELL J. Root restriction affects shoot development of peach in a
high-density orchard[J]. Journal of the American Society for Horticultural Science, 1992, 117(3): 362-367.
[14] MANDRE O, RIEGER M, MYERS S C, SEVERSEN R, REGNARD J L. Interaction of root confinement
and fruiting in peach[J]. Journal of the American Society for Horticultural Science, 1995, 120(2): 228-234
[15] 方金豹,顾红,陈锦永,田莉莉;,张威远.根域限制对幼年桃树生长发育的影响[J].中国农业科学,2006,
04(04):779-785.
FANG Jinbao, GU Hong, CHEN Jinyong, TIAN Lili, ZHANG Weiyuan. Effects of restricted root volume on
growth and development of young peach trees[J]. Scientia Agricultura Sinica, 2005, 35(4):779-785.
[16] 李勇,方伟超,朱更瑞,王力荣,彭福田. 双容器与控根器限根对桃树生长发育的影响[J]. 果树学报,
2014,31(02):213-220.
.LI Yong,FANG Weichao, ZHU Gengrui, WANG Lirong, PENG Futian. Effect of rooting-zone restriction with
pot-in-pot and root-control device on the growth and development of peach[J]. Journal of Fruit Science, 2014,
31(02):213-220.
[17]赵宝龙,孙军利. 不同限根方式及程度对 3年生蟠桃生长结果的影响[J].石河子大学学报(自然科学版),
2011,03:282-285.
ZHAO Baolong, SUN Junli. Effects of root confinement on growth and development of flat peach (Prunus persica
var. conpressa bean) [J]. Journal of Shihezi University (Natural Science), 2011, 03: 282-285.
[18] 张旺锋,王振林,余松烈,李少昆,房建,童文崧.种植密度对新疆高产棉花群体光合作用、冠层结构
及产量形成的影响[J].植物生态学报,2004,28(02):164-171.
ZHANG Wangfeng, WANG Zhenlin, YU Songlie, LI Shaokun, FANG Jian, TONG Wensong. Effects of planting
desity on canopy photosynthesis, canopy structure and yield formation of high-yield cotton in Xinjiang, China[J].
Acta Phytoecologica Sinica, 2004 ,28(2): 164-171.
[19] 姜全,郭继英,赵剑波.桃生产技术大全[M].中国农业出版社,2003.
JIANG Quan, GUO Jiying, ZHAO Jianbo. Production and various technologies of peach[M]. Beijing: China
Agricultural Press, 2003.
[20] 张显川,高照全,付占方,方建辉,李天红.苹果树形改造对树冠结构和冠层光合能力的影响[J].园艺
学报,2007,03(03):537-542.
ZHANG Xianchuan, GAO Zhaoquan, FU Zhanfang, FANG Jianhui, LI Tianhong. Influences of tree form
reconstruction on canopy structure and photosynthesis of apple[J]. Acta Horticulturae Sinica, 2007, 34(3):
537-542.
[21] 高登涛,韩明玉,李丙智,张林森,白茹.冠层分析仪在苹果树冠结构光学特性方面的研究[J].西北农
业学报,2006,03(03):166-170.
GAO Dengtao, HAN Mingyu, LI Bingzhi, ZHANG Linsen, BAI Ru. The Characteristic of light distribution in
apple tree canopy using winscanopy2004a[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2006 ,15(3):
166-170.
[22] 岳玉苓,魏钦平,张继祥,王小伟,刘军,张强.黄金梨棚架树体结构相对光照强度与果实品质的关系
[J].园艺学报,2008,05(05):625-630.
YUE Yuling, WEI Qinping, ZHANG Jixiang, WANG Xiaowei, LIU Jun, ZHANG Qiang. Relationship between
the distribution of relative light intensity and fruit quality of trellis-trained Hwangkumbae[J]. Acta Horticulturae
Sinica, 2008, 35(5): 652-630.
[23] 高清华,叶正文,章镇,李世诚,吴钰良,苏明申.限根对不同品种油桃幼树光截获能力和一些生理特
性的影响[J].西北植物学报,2006,26(3):467-472.
GAO Qinghua, YE Zhengwen, ZHANG Zhen, LI Shicheng, WU Yuliang, SU Mingshen. Effects of root restriction
on light-intercepting capabilities and some physiological characters in young trees of different nectarine
varieties[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(3): 467-472.
[24] 王安柱,张芳芳,韩明玉,田海成,田玉命,赵彩平.主干形桃树对光截获能力和果实产量品质的影响
[J].果树学报,2009,9(26):86-89.
WANG Anzhu, ZHANG Fangfang, HAN Mingyu, TIAN Haicheng, TIAN Yuming, ZHAO Caiping. Effects of the
central leader tree form on the light interception ability, fruit yield and quality of peach[J]. Journal of Fruit Science,
2009, 9(26): 86-89.
[25] 苏宏新,白帆,李广起.3类典型温带山地森林的叶面积指数的季节动态:多种监测方法比较[J].植物生
态学报,2012,36(3):231-242.
SU Hongxin, BAI Fan, LI Guangqi. Seasonal dynamics in leaf area index in three typical temperate montane
forests of China: a comparison of multi-observation methods[J]. Chinese Journal of Plant Ecology, 2012, 36(3):
231-242.
[26] 马泽清,刘琪璟,曾慧卿,李轩然,陈永瑞,林耀明,张时煌,杨风亭,汪宏清.南方人工林叶面积指
数的摄影测量[J].生态学报,2008,1(5):1971-1980.
MA Zeqing, LIU Qijing, ZENG Huiqing, LI Xuanran, CHEN Yongrui, LIN Yaoming, ZHANG Shihuang, YANG
Fengting, WANG Hongqing. Estimation of leaf area index of planted forests in subtropical China by
photogrammetry[J]. Acta Ecologica Sinica, 2008, 1(5): 1971-1980.
[27] DEBLONDE G, PENNER M, ROYER A. Measuring leaf area index with the Li-Cor LAI-2000 in pine
stands[J]. Ecology, 1994, (75):1507-1511.