全 文 :AnalysisandEvaluationofBiochemicalComponentsinBiterTeaPlant
Germplasms
WANGXin-chao, YAOMing-zhe, MAChun-lei, CHENLiang*
ResearchCenterforTeaGermplasmandImprovement, TeaResearchInstituteofChineseAcademyofAgriculturalSciences, NationalCenterforTeaImprovement,
Hangzhou310008
Abstract BiterteaisaspecialkindofteagermplasminChina.Themajorbiochemicalcomponentsof24biterteasandother8Cameliasinensisvar.
sinensisand8C.sinensisvar.assamicateagermplasms, whichwerestoredintheChinaNationalGermplasmHangzhouTeaRepository(CNGHTR), were
analyzedandevaluated.Theresultsshowedthatnosignificantdiferencesofmajorbiochemicalcomponentsafectingtheteaqualitywerefoundbetweenbit-
terteaandcommontea.Accordingtotheprocessingsuitabilityindex, biterteawassuitableforthemanufacturingofblacktea;whileaccordingtoevolu-
tionaryindicessuchasthecompositionandcontentofcatechin, biterteawassimilartoC.sinensisvar.assamicabelongingtotherelativelyprimitivetype
inevolution.TheresultsofclusteranalysisindicatedthatbiterteawasclusteredwithC.sinensisvar.asamica, soitcouldbeconsideredtobelongtoC.sinensisvar.assamica.
Keywords Teaplant(Cameliasinensis);Bitertea;Biochemicalcomponent;Catechins;Clusteranalysis
Received:September1, 2008 Accepted:September30, 2008
Supportedbythe“ StudyonHighEficiencyMachiningandMultiple
UtilizationTechnologyofTeaGermplasmResource” ofNationalScience&
TechnologySupportingProject(2006BAD06B01)and“DataStandardof
PerennialandVegetativePropagationCropGermplasmResourcesasaShare
ExperimentalUnit” ofNationalFundamentalResourcesPlatformofScience
&TechnologyProject(2005DKA21002-08).
*Correspondingauthor.E-mail:liangchen@mail.tricaas.com
BiterteaisaspecialkindofCameliasinensis(L.)
O.KuntzeinChina, whichmostlydistributesintheadjacent
areaofGuangdong, HunanandJiangxiProvinces, especialy
ontwosidesofNanlingmountain.Biterteahascharacteris-
ticsoflategermination, bitertasteandparticulararoma,
anditbelongstothesemi-arborinbotanymorphologywith
wideandsoftleaves, flatandglosysurface, anditsyoung
shootpubsescenceisabsentorsparse[ 1-5] .Intheoriginal
placeofbitertea, itisusualyregardedbyresidentsasa
medicinebecauseofitsefectsofhealing, detoxification,
clearingheartfireanddiaphoresis.Biterteaalsocancure
brimmingheat, long-timediarheaandincoordinationbe-
tweenheartandspleen, soithascertainpharmacological
efects[ 5-7] .Somebiterteagermplasm resourcesfrom
Guangdong, HunanandJiangxiProvinceswerecolectedin
TeaResearchInstituteofChineseAcademyofAgricultural
Sciencesduringtheeighth“Five-yearPeriod”, andaseries
ofnewgermplasmswereselected.Thereisfewsystematic
studyonbiterteasexceptresearchofJianghuaKucha[ 1 , 3] ,
sotheutilizationofthisspecialresourcelacksitstheoretical
basis.Accordingly, majorbiochemicalcomponentsof24 bit-
terteasfromdiferentregionsofChinawerecomparedwith
commontea, C.sinensisvar.sinensisandC.sinensisvar.
asamica(Masters)Kitamura, underthesameenvironment
inthisstudy, whichprovidedthetheoreticalreferenceforra-
tionalexploitationandutilizationofthisspecialresourcein
future.
MaterialsandMethods
Experimentaltimeandlocation
AlmaterialsfromtheChinaNationalGermplasmHang-
zhouTeaRepositoryweretestedinthespringof2006.
Materials
Testedmaterials Therewere24 biterteasand16 con-
trols, including8 C.sinensisvar.sinensisand8 C.sinensis
var.asamica, respectively.Namesandoriginalplacesof
materialswereshowninTable1, whileJianghongzhong,
JianghuaKuchaF1 , Jiangku2, LanshanKuchastrain, Lans-hanKuchaF1 andLantianweresystematicalyselectedfrom
anaturalhybridprogenyofJianghuaKuchaandLanshan
KucharespectivelybytheTeaResearchInstituteofChinese
AcademyofAgriculturalSciences.
Reagents Ninekindsofcatechinstandardsincludinggalic
acid(GA), galocatechin(GC), epi-galocatechin(EGC),
D, L-catechin(D, L-C), epigalocatechin-3-galateepicate-
chingalate(EGCG), epicatechin(EC), galocatechin-3-
galate(GCG), epicatechingalate(ECG)andcatechin
galate(CG)aswelasthecafeine(CAF)standardwere
purchasedfrom SigmaCompany(St.Louis, Missouri,
USA).Chromatographicgradeacetonitrilewaspurchased
fromMerckCompany(Darmstard, Germany).Waterwasul-
trapure(>18.2 MΨ), andotherreagentswerecommercial
analyticpure.
Methods
Preparationforteasamples Accordingtothereferenceof
“Descriptorsanddatastandardfortea”[ 8] , sampleswere
preparedandgroundfortesting.
Measurementofbiochemicalcomponents Thecontents
ofwaterextracts, teapolyphenolandfreeaminoacidwere
measuredbyGB/T8305, GB/T8313 andGB/T8314, re-
spectively.
Thecontentsofcatechinsandcafeinewereanalyzedby
HPLC.TheHPLCconditionswereasfolows:AgilentZorb-
axSB-C18 (4.6×150 mm, 5 μm)wasusedasthechroma-
AgriculturalScience&Technology, 2008, 9(4):127-131
Copyright 2008, InformationInstituteofHAAS.Alrightsreserved. MedicinalPlant, TeaandSericulture
DOI :10.16175/j.cnki.1009-4229.2008.04.023
tographiccolumnandmobilephasewascomposedof2%
aceticacid(Aphase)and100% acetonitrile(Bphase)by
agradientelutionwith0-9 min, 6.5%B, from6.5%Bat
9 minlinearlyupto15% at12 min, from15%Bat12 min
linearlyupto25% at16 min, 16 -20 min, 25% B, from
25% Bat20 minlinearlydownto6.5%at26min, atinter-
valsof3 min.Theflowratewas1.0 ml/min, detection
wavelengthwasat280 nm, columntemperaturewasat30
℃, andtheinjectionvolumewas5 μl.Accordingtoreten-
tiontimeandpeakarea, thequalitativeandquantitativea-
nalysiswascariedoutbytheexternalstandardmethod.The
chromatogramsofcatechinstandards, cafeinestandardand
teasampleswereshowninFig.1 andFig.2, respectively.
Table1 Namesandoriginalplacesoftestedmaterials
Nameofresource(type) Originalplace Nameofresource(type) Originalplace
Bitertea JiangkuNo.2 HangzhouinZhejiang
LechangLangtianbitertea LechanginGuangdong Nanshanbiterteaplant HangzhouinZhejiang
Longshanbitertea RuyuaninGuangdong NanshanbiterteaI HangzhouinZhejiangRuyuanbitertea RuyuaninGuangdong Nantian HangzhouinZhejiang
Chalingbittertea ChalinginHunan Var.sinensis
Jianghuabitertea JianghuainHunan FudingDabaicha FudinginFujian
Nanshanbitertea NanshaninHunan GuilvNo.1 GuilininGuangxi
YelowbudsofNanshanbitertea NanshaninHunan YuntaishanNo.1 AnhuainHunan
GreenbudsofNanshanbitertea NanshaninHunan Gaoqiaozao ChangshainHunan
Lingcountybitertea LingcountyinHunan Yinsun XiushuiinJiangxi
Anyuanbitertea AnyuaninJiangxi Jiulongtea JiulonginSichuan
Shuangfengbitertea AnyuaninJiangxi Hengshanzao AnjiinZhejiang
Zhongliubitertea AnyuaninJiangxi Longjing43 HangzhouinZhejiang
ChishuiNo.1 ChongyiinJiangxi Var.assamica
NieduNo.1.5bittertea ChongyiinJiangxi FengqingNo.6 FengqinginYunnan
NieduNo.2 ChongyiinJiangxi Dayeteapopulation MenghaiinYunnan
NieduNo.3 ChongyiinJiangxi ShuangjiangNo.4 ShuangjianginYunnan
NiedubiterteaNo.1 ChongyiinJiangxi Yuanjiangcamelia YuanjianginYunnan
Niedubiterteapopulation ChongyiinJiangxi Jingguredbuds JingguinYunnan
WuyuanGudanbitertea WuyuaninJiangxi LiangheNo.5 LiangheinYunnan
Jianghongzhong HangzhouinZhejiang YuanjiangYangjiepopulation YuanjianginYunnanJianghuabiterteaI HangzhouinZhejiang SuijiangNo.1 SuijianginYunnan
Fig.1 HPLCchromatogramofstandards
Fig.2 HPLCchromatogramofteasamples
Datastatisticalanalysis Theindexofcatechinquality=
(EGCG+ECG)×100/EGC[ 9] .Thedatawasstatisticaly
analyzedwithSPSS13.0 software(SPSSInc., 2001), the
averagediferencewastestedbyLSDmethod, andthecluster
analysiswasdeterminedbyWard-linkagemethod.
ResultsandAnalysis
Generalcharacteristicsof5conventionalcomponentsbe-
tweenbitterteaandcommontea
Thecontentsofmajorbiochemicalcomponentsafecting
theteaquality, suchaswaterextracts, alkaloids, teapoly-
phenol, freeaminoacidandtotalcatechins, aswelasTP/
AAratiobetween24 biterteasand16 controlswerecompar-
ativelyanalyzed(Table2).Theresultsindicatedthatno
significantdiferencewasfoundinwaterextracts, cafeine
andteapolyphenolamongthreetypesofteagermplasmre-
sources.Theaminoacidcontentofbiterteaandvar.assam-
icawassignificantlylowerthanthatofvar.sinensis, but
therewasnosignificantdiferenceinthetotalcatechinsa-
mongbitertea, var.sinensisandvar.asamica.Asforthe
processingsuitabilityindex, TP/AAratioofbiterteaand
var.asamicawassignificantlyhigherthanthatofvar.
sinensis, whichsuggestedthatbitertea, likevar.asamica,
wassuitabletothemanufacturingofblacktea.
Comparativeanalysisofcatechinsbetweenbiterteaand
commontea
Thediferenceincompositionandcontentofcatechins
areimportantindexesforreflectingevolutionarytypesoftea
germplasms[ 10] .Compositionofcatechinsbetweenbitertea
andcommontea, aswelasdiferenttypesofcatechinsratio
wereanalyzed(Table3 andTable4).Theresultsshowed
thatinthreetypesofgermplasms, theratioofestercatechin
andnon-estercatechinofbiterteawasbetweenthosefrom
var.sinensisandvar.asamica, andtherewasasignificant
128 AgriculturalScience&TechnologyVol.9, No.4, 2008
diferenceamongthem.Asforevolutionaryindicesofmain
catechinscomponentssuchasECcontent, Ccontent, EC+
Ccontent, EC+Cratioandnon-estercatechinsratio, these
indicesofbiterteawasbetweenthoseofvar.sinensisand
var.assamica, andtheirdiferencewassignificantwhen
comparedwiththecontrols.Anotherprocessingsuitability
index, thequalityindexofcatechinfrombiterteaandvar.
asamicawassignificantlylowerthanthatfromvar.sinensis.
Asforqualityindicesofblacktea, EGCcontentandratioof
biterteaandvar.asamicawerealsignificantlyhigherthan
thoseofvar.sinensis, whichalsoindicatedthatbiterteawas
suitabletothemanufacturingofblacktea.
Table2 MajorbiochemicalcomponentsandTP/AAratiobetweenbiterteaandcontrols
Typeofresource Waterextract∥% cafeine∥% Teapolyphenol∥% Aminoacid∥% Catechins∥mg/g TP/AAratio
Bitertea(n=24) 44.4±4.3a** 3.0±0.4a 30.8±6.6a 2.2±0.4a 121.2±29.5ab 14.5±4.8b
C.sinensisvar.sinensis(n=8) 41.5±2.5a 3.1±0.3a 28.4±4.6a 3.4±0.4b 111.7±16.5a 8.5±1.6a
C.sinensisvar.assamica(n=8) 41.4±3.3a 3.2±0.7a 31.1±5.3a 2.3±0.4a 140.0±19.8b 13.7±3.4b
Aldataweredescribedasaverage±standarderror, andthesameletershowedtherewasnosignificantdiferenceatthep=0.05level.
Table3 Catechincontentofdiferenttypesofresources mg/g
Typeofresource GA GC EGC C EGCG EC GCG ECG CG
Bitertea 4.8±1.2a 7.2±1.5a 11.8±2.7b 11.1±2.3b 48.8±14.5a 5.8±1.8a 16.5±5.4a 16.0±4.9a 2.4±0.6a
C.sinensisvar.sinensis 4.0±0.9a 6.7±1.6a 9.3±3.9a 5.8±3.5a 47.1±5.5a 5.7±1.7a 16.6±2.1a 20.0±3.5ab 2.8±0.5a
C.sinensisvar.asamica 3.9±1.2a 9.2±2.4b 14.7±2.4c 15.6±6.0c 44.1±13.4a 10.9±4.3b 13.0±2.8a 21.1±10.5b 3.0±1.1a
Table4 Variouscatechinscontentofdiferenttypesofresources
Typeofresource Estercatechinmg/g
Estercatec-
hinratio∥%
Non-ester
catechin∥mg/g
Non-estercate-
chinratio∥% EC+C∥mg/g EC+C∥% EGC∥%
Qualityindex
ofcatechin
Bitertea 83.7±23.3a 68.5±6.3b 35.8±6.5b 30.5±5.2b 16.9±3.4b 14.3±2.7b 10.0±1.9b 5.6±1.4a
C.sinensisvar.sinensis 86.4±8.0a 78.0±7.2c 27.4±10.1a 23.9±6.1a 11.5±5.1a 9.9±3.0a 8.2±2.9a 9.2±3.6b
C.sinensisvar.asamica 81.2±17.9a 57.9±8.9a 50.3±9.3c 35.7±3.5c 26.5±8.6c 18.7±4.8c 10.6±1.8b 4.6±1.3a
Clusteranalysisofdiferenttypesofresources
Accordingtothechemicalcompositionvariation, genet-
icdistanceanalysis(Table5)andclusteranalysis(Fig.5)
ofthreetypesofresourcesfrombitertea, C.sinensisvar.
sinensisandC.sinensisvar.assamicawerestudiedbyWard-
linkagemethodwithSPSSsoftware.Theresultssuggested
thatbiterteawasnotcloselyrelatedtoC.sinensisvar.
sinensis, butcloselyrelatedtoC.sinensisvar.asamica, so
biterteawasclusteredwithC.sinensisvar.asamica.
Table5 Euclideandistanceamongdifferenttypesofresources
Typeofresource C.sinensisvar.sinensis Bitertea
C.sinensis
var.assamica
C.sinensisvar.sinensis 0 30.98 48.37
Bitertea 0 20.94
C.sinensisvar.assamica 0
Fig.3 Clusteringtreeofthreetypesoftearesources
Discussion
Taxonomicstatusofbittertea
Biterteaisaspecialteagermplasmresource, andits
taxonomyisalwaysindispute.Asdescribedinthetaxonomy
ofZHUANGWan-fang[ 11] , biterteaisascribedtoC.sinen-
sisvar.kulusisofssp.yunnanaccordingtoitsmorphology,
whileinthetaxonomyofZHANGHong-da[ 12] , itisascribed
toC.sinensisvar.kuchaZhangetWang.Accordingtoche-
motaxonomyandnumericaltaxonomy, biterteaisascribed
toC.sinensisvar.kuieaDuetLIbyDuQi-zhen[ 13] .Asde-
scribedbyLIGuang-taoandLIANGTao[ 14] aswelasSHU
Ji-lin[ 15] , karyotype, polenmorphologyandanatomical
structureofbiterteaisrelativelyprimitive, soitbelongsto
atransitionaltypebetweenthearborandtheshrubinevolu-
tion.Accordingtosystematicstudiesonteagermplasmre-
sourcesformanyyearsandanoveralinvestigationoncharac-
teristicsofteagermplasmresourcesinoriginalplacesby
CHENLiangetal[ 16] , biterteaisascribedtoC.sinensis
var.asamica.Theresultsofthisstudyshowthatthereisno
significantdiferenceinmajorbiochemicalcomponentsbe-
tweenbiterteaandotherteagermplasmresources.Howev-
er, whencomparedwiththecontrols, catechinindicesre-
flecteditslevelinevolution, suchasECcontent, Ccontent,
EC+Cratioandnon-estercatechinratio, theseindicesof
biterteaarebetweenthoseofC.sinensisvar.sinensisand
C.sinensisvar.assamica, andbiterteaiscloselyrelatedto
theprimitivetypeofC.sinensisvar.asamica.Theresults
ofclusteranalysisalsosuggestthatbiterteaisclusteredwith
C.sinensisvar.asamica(Fig.3).Furthermore, mainbio-
logicalcharacteristicsofbiterteaarestudied, andthere-
sultsshowthatbiologicalhabitsandmorphologicalcharacter-
isticsofbiterteaaremostlysimilartothoseofC.sinensis
var.asamica, soitisreasonablethatbiterteaisascribed
toC.sinensisvar.asamica.Asbiterteamainlydistributes
inareaswherebothC.sinensisvar.asamicaandC.sinensis
var.sinensisgrow, itmaybethehybridprogenyofC.sinen-
sisvar.asamica.andC.sinensisvar.sinensis, whichisal-
soatransitionaltypebetweenthearborandtheshrub.
Utilizationofbitertea
Asaspecialkindoftearesources, howtoutilizebiter
teagermplamsisimportant.Manysuccesfulstudiesonutili-
129WANGXin-chaoetal.AnalysisandEvaluationofBiochemicalComponentsinBiterTeaPlantGermplasms
zationofbiterteaareaboutJianghuaKucha.Thesestudies
revealthatJianghuaKuchaissuitabletothemanufacturing
ofblacktea, anditisplantedinlargescaleinbrokenblack
teaareasofHunan[ 1.3] .Theresultsofthisstudyalsoreveal
thattheprocesingsuitabilityindexofTP/AAfrombitertea
issimilartothatfromC.sinensisvar.asamica, whichis
significantlyhigherthanthatfromC.sinensisvar.sinensis.
However, qualityindexofcatechinfrombiterteaissignifi-
cantlylowerthanthatfromC.sinensisvar.sinensisandsimi-
lartothatfromC.sinensisvar.asamica, whichindicates
thatbiterteaismoresuitabletothemanufacturingofblack
tea.ThestudiesprovethatEGCcontentandratioofbiter
teaarealsohigher.ItisreportedbyHiltonandPalmer-
Jones[ 17] thatbasedonEGCGandECGcontentinfreshleav-
es, therelationshipofEGCandtheaflavincontentinblack
teaisasignificantlypositivecorrelation, soEGCcontentcan
beareliableindexforpredictingtheaflavincontentinthetea
breedingprocess.TheresultsofthisstudyindicatethatEGC
contentofbiterteaissignificantlyhigherthanthatofC.
sinensisvar.sinensisandEGCcontentofsomebiterteare-
sourcesisover15mg/g.Forexample, EGCcontentofLong-
shanKuchais18.54 mg/gandNieduKuchaQuntiis17.06
mg/g.Therefore, biterteacanbewidelypopularizedandu-
tilizedasanexcelentresourceformanufacturingblacktea.
Additionaly, itisfoundbyLIMing-junthateugenolglyco-
side, aspecialmaterialwithclovearoma, existsinbitertea
(datanotpublished).Thus, biterteacanalsobeusedasa
specialparentinthenewvarietybreedingofteawithparticu-
lararoma.
References
[ 1] DONGLJ, ZHANGSG, YANGY.ResearchesonrarespeciesJianghua-
Kucha[J] .TeaCommunication, 200, 30(3):3-8.(inChinese).
[ 2] LUOFQ.PreliminaryreportonthebitertearesourceinLingCounty[J].
TeaCommunication, 1981, 8(2):35-36.(inChinese).
[ 3] PENGLM.PreliminaryreportonQingye-Kucha, oneofimprovedvarieties
inbrokenblackteainLanshanofHunanProvice[ J] .TeaCommunica-
tion, 1979, 6(1):29-30.(inChinese).[ 4] GUOYS.GeographicaldistributionandevolutiontrendofNanlingpopula-
tion[J].TeaScienceandTechnology, 1995, 2:1-6.(inChinese).
[ 5] XIEGS, ZHOUHZ.Primaryreportofthenorthernintroductionanddo-
mesticationexperimentonAnyuan-Kucha[J].NewsleterofSericulture
andTea, 1993, 4:9-10.(inChinese).
[ 6] HEMT, TANGJC, LIDS, etal.WildteaplantsinJianghuaofHunan
Provice[J] .TeaCommunication, 2005, 32(4):26-28.(inChinese).
[ 7] YURM, HUHB, SUNSX.BiterteainAnxiofFujianProvice[ J].
JournalofTeaBusiness, 1958, 1:19-21.(inChinese).
[ 8] CHENL, YANGYJ, YUFL, etal.Descriptioncriterionanddatestand-ardforteagermplasmresource[M].Beijing:ChinaAgriculturalPublish-
ingHouse, 2005:72.(inChinese).
[ 9] RUANYC, CHENGQK.Dynamicchemistryofteacatechin[ J] .Acta
HorticulturaeSinica, 1964, 3(1):95-08.(inChinese).
[ 10] WANXC.Teabiochemistry[ M] .3rded.Beijing:ChinaAgricultural
PublishingHouse, 2003:108-109.(inChinese).
[ 11] ZHUANGXF, LIUZS, CHENWH.Aversionoftheclasificationofthe
teavarieties[J] .JournalofZhejiangAgriculturalUniversity, 1981, 7(1):
41-47.(inChinese).[ 12] ZHANGHD.Arevisiononthetearesourceplants[J] .ActaScifntiarum
NaturaliumUniversitatisSunyaatseni, 1984, 1:1-12.(inChinese).
[ 13] DUQZ, LIMJ, LIUWH, etal.Chemotaxonomyandnumericaltaxonomy
ofsectthea[ J].JournalofTeaScience, 1990, 10(2):1-12.(inChi-
nese).
[ 14] LIGT, LIANGT.KaryotypestudiesonsixtaxaofcameliainChina[J].
Guihaia, 1990, 10(3):189-197.(inChinese).
[ 15] SHUJL, CHENL, WANGHS, etal.Polenmorphology, ultrastructure
andevolutionofteaplantandothergenuscameliaplants[ J].Journalof
TeaScience, 1998, 18(1):6-15.(inChinese).[ 16] CHENL, YUFL, TONGQQ.Discusionsonphylogeneticclasification
andevolutionofsect.thea[J] .JournalofTeaScience, 2000, 20(2):89
-94.(inChinese).
[ 17] HILTONPJ, PALMER-JONESR.Relationshipbetweenflavonolcompo-
sitionoffreshteaandtheaflavinscontentofmanufacturedtea[ J].Jour-
nalofScienceandFoodAgriculture, 1973, 24(7):813-818.
我国苦茶资源主要生化成分的鉴定评价
王新超 ,姚明哲 ,马春雷 ,陈 亮* (中国农业科学院茶叶研究所茶树资源与改良研究中心 ,国家茶树改良中心 ,浙江杭州 310008)
将来自全国各地的 24份苦茶资源与分类上属于茶(C.
sinensisvar.sinensis)和阿萨姆茶 [ C.siennsisvar.assamica(Mas-
ters)Kitamura]资源 ,在同一生境下进行主要生化成分的比较研
究 ,为今后合理开发利用这一特异资源提供理论参考 。
1 材料与方法
1.1 试验时间 、地点 试验于 2006年春季进行 ,所有试验材料
均来自国家种质杭州茶树圃 。
1.2 试验材料
1.2.1 苦茶 。苦茶资源 24份 ,对照资源 16份 ,其中茶、阿萨姆
茶各 8份 ,材料的名称和原产地见表 1(表见第 128页 Table1)。
其中江红中 、江华苦茶一代和江苦 2号以及蓝山苦茶单株 、蓝山
苦茶一代和蓝天为中国农业科学院茶叶研究所资源育种室分别
从江华苦茶天然杂交后代和蓝山苦茶天然杂交后代中经系统选
择而来 。
1.2.2 试剂 。 9种儿茶素 [没食子酸 (GA)、没食子儿茶素
(GC)、表没食子儿茶素(EGC)、D, L-儿茶素(D, L-C)、表没食
子儿茶素没食子酸酯(EGCG)、表儿茶素(EC)、没食子儿茶素没
食子酸酯(GCG)、表儿茶素没食子酸酯(ECG)、儿茶素没食子酸
酯(CG)]和咖啡碱(CAF)的标准品购自 Sigma公司 ,色谱纯级
乙腈购自 Merck公司 ,水为超纯水(>18.2MΨ),其他试剂为市
售分析纯级 。
1.3 方法
1.3.1 茶叶样品制作 。根据 《茶树种质资源描述规范和数据标
准》的方法 ,制作分析样品 ,粉碎后待测 。
1.3.2 生化成分的测定。水浸出物、茶多酚和游离氨基酸含量
的测定采用国标法(GB/T8305、GB/T8313、GB/T8314)。
儿茶素类物质和咖啡碱的含量采用 HPLC法测定 。 HPLC
条件:Agilent1100 Series高效液相色谱仪 , AgilentZorbaxSB-
C18色谱柱(4.6mm×150mm, 5μm),流动相为 2%乙酸(A相)
和 100%乙腈(B相),梯度洗脱:0 ~ 9min, 6.5%B, 9 ~ 12min, B
相由 6.5%线性升至 15%, 12 ~ 16 min, B相由 15%线性升至
25%, 16 ~ 20 min, 25%B, 20 ~ 26 min, B相由 25%线性降至
130 AgriculturalScience&TechnologyVol.9, No.4, 2008
6.5%,间隔 3 min。流速 1.0 ml/min,检测波长 280 nm,柱温 30
℃,进样量 5 μl。采用外标法根据保留时间和峰面积大小定性
和定量 。儿茶素和咖啡碱的标准品和茶叶样品的色谱图见图 1
(图见第 128页 Fig.1)和图 2(图见第 128页 Fig.2)。
1.4 数据统计分析 儿茶素品质指数 =(EGCG+ECG)×100/EGC。
数据的统计分析采用 SPSS13.0分析软件 ,平均数差异性检验采用
LSD法 ,聚类采用 Wardlinkage法 。
2 结果与分析
2.1 苦茶资源与普通资源 5项常规成分的总体特征 在水浸
出物 、咖啡碱和茶多酚含量上 , 3种类型的茶树资源之间不存在
显著差异;苦茶和阿萨姆茶的氨基酸含量显著低于茶;苦茶的儿
茶素总量与茶 、阿萨姆茶不存在显著差异 。在反映茶类适制性
的指标酚氨比方面 ,苦茶和阿萨姆茶显著高于茶 ,这说明苦茶与
阿萨姆茶一样是比较适合制作红茶的资源(表 2)。
2.2 苦茶资源与普通茶资源儿茶素组分的对比分析 在 3种
类型的资源中 ,苦茶的酯型儿茶素所占比例和非酯型儿茶素所
占比例介于茶和阿萨姆茶之间 ,差异达到显著水平 。在反映茶
树品种进化程度的主要儿茶素组分 EC和 C的含量 、它们两者
之和以及 EC与 C之和占整个儿茶素的比例 、非酯型儿茶素比
例等方面 ,苦茶都介于茶和阿萨姆茶之间。另一方面 ,在反映茶
类适制性的另一个指标儿茶素品质指数上 ,苦茶和阿萨姆茶显
著低于茶。在反映红茶品质的指标 EGC含量和 EGC占整个儿
茶素总量的比例方面 ,苦茶和阿萨姆茶都显著高于茶 。这从其
他方面说明苦茶比较适制红茶(表 3、4)。
表 2 苦茶资源和对照资源主要化学成分和酚氨比的分析结果
资源类别 水浸出物∥% 咖啡碱∥% 茶多酚∥% 氨基酸∥% 儿茶素∥mg/g 酚氨比
苦茶(n=24) 44.4±4.3a 3.0±0.4a 30.8±6.6a 2.2±0.4a 121.2±29.5ab 14.5±4.8b
茶(n=8) 41.5±2.5a 3.1±0.3a 28.4±4.6a 3.4±0.4b 111.7±16.5a 8.5±1.6a
阿萨姆茶(n=8) 41.4±3.3a 3.2±0.7a 31.1±5.3a 2.3±0.4a 140.0±19.8b 13.7±3.4b
注:数据为平均值 ±标准误 ,相同字母表示在 0.05水平上差异不显著。
表 3 不同类型资源儿茶素含量的分析结果 mg/g
资源类别 GA GC EGC C EGCG EC GCG ECG CG
苦茶 4.8±1.2a 7.2±1.5a 11.8±2.7b 11.1±2.3b 48.8±14.5a 5.8±1.8a 16.5±5.4a 16.0±4.9a 2.4±0.6a
茶变种 4.0±0.9a 6.7±1.6a 9.3±3.9a 5.8±3.5a 47.1±5.5a 5.7±1.7a 16.6±2.1a 20.0±3.5ab 2.8±0.5a
阿萨姆茶 3.9±1.2a 9.2±2.4b 14.7±2.4c 15.6±6.0c 44.1±13.4a10.9±4.3b 13.0±2.8a 21.1±10.5b 3.0±1.1a
表 4 不同类型资源不同类型儿茶素的对比分析
资源类别 酯型儿茶素mg/g
酯型儿茶素
比例∥%
非酯型儿
茶素∥mg/g
非酯型儿茶
素比例∥% EC+C∥mg/g EC+C∥% EGC∥%
儿茶素品
质指数
苦茶 83.7±23.3a 68.5±6.3b 35.8±6.5b 30.5±5.2b 16.9±3.4b 14.3±2.7b 10.0±1.9b 5.6±1.4a
茶变种 86.4±8.0a 78.0±7.2c 27.4±10.1a 23.9±6.1a 11.5±5.1a 9.9±3.0a 8.2±2.9a 9.2±3.6b
阿萨姆茶 81.2±17.9a 57.9±8.9a 50.3±9.3c 35.7±3.5c 26.5±8.6c 18.7±4.8c 10.6±1.8b 4.6±1.3a
2.3 不同类型资源的聚类分析 遗传距离分析(表 5)和聚类
分析(图见第 129页 Fig.3)。表明 ,苦茶资源与茶的亲缘关系相
对较远 ,而与阿萨姆茶的关系相对较近 ,苦茶资源与阿萨姆茶聚
为一类 。
表 5 不同类型资源间的欧氏距离
资源类别 茶变种 苦茶 阿萨姆茶
茶变种 0 30.98 48.37
苦茶 0 20.94
阿萨姆茶 0
3 讨论
3.1 苦茶的分类地位 苦茶作为一种特异的茶树资源 ,它的分
类一直存在争议。在庄晚芳等分类法中 ,根据茶树的形态将其
定位为云南亚种下的皋芦变种(C.sinensisvar.kulusioZhang)。
而在张宏达分类法中 ,则将其定位为茶组茶系的苦茶变种 (C.
sinensisvar.kuchaZhangetWang)。杜琪珍等则采用化学分类
和数值分类学方法将其定位为茶组三室茶的苦茶变种 (C.
sinensisvar.kuieaDuetLi)。李光涛和梁涛以及束际林等根据
染色体核型 、花粉的形态和解剖结构认为苦茶在染色体核型、花
粉形态和解剖结构上比较原始 ,在进化上属于过渡类型 ,是由乔
木型茶树过渡到灌木型的中间类型。陈亮等根据对茶树资源的
多年系统研究和对原产地茶树特征特性的全面考察 ,将苦茶归
并到茶种下的阿萨姆茶 (C.sinensisvar.assamica)。根据笔者
对苦茶主要化学成分的研究结果可以发现 ,苦茶在体现茶叶品
质指标的主要化学成分上与其他资源并不存在本质的差异 。但
是 ,与对照相比 ,在体现茶树进化程度的儿茶素指标上 ,苦茶在
EC和 C的含量 、EC和 C占总儿茶素比例 、非酯型儿茶素比例等
指标上 ,苦茶都介于茶和阿萨姆茶之间 ,并与较原始类型的阿萨
姆茶相接近 。聚类结果也表明 ,苦茶与阿萨姆茶聚为一类(图
3)。另外 ,根据笔者对苦茶的主要生物学性状进行的观察结果 ,
苦茶大多表现出类似于阿萨姆茶的生物学习性和形态特征 。所
以 ,将苦茶归并到阿萨姆茶下是有道理的。加之苦茶主要分布
于阿萨姆茶和茶混合生长的区域 ,所以 ,苦茶有可能是阿萨姆茶
和茶杂交后产生的杂交后代 ,是乔木型大叶种向灌木型茶变种
的过渡类型 。
3.2 苦茶资源的利用问题 对苦茶的利用研究比较多而成功
的是江华苦茶 。研究发现 ,江华苦茶等比较适宜制作红茶 ,并作
为适制红茶品种在湖南红碎茶茶区大面积推广 。该试验的研究
结果也发现 ,苦茶的适制性指标酚氨比与阿萨姆茶类似 ,显著高
于茶变种 ,另一指标绿茶儿茶素品质指数显著低于茶变种 ,而与
阿萨姆茶相近 ,说明苦茶类不适制绿茶 ,而适制红茶。研究还发
现 ,苦茶资源的 EGC的含量与比例也较高 。 Hilton和 Palmer-
Jones的研究表明 ,在鲜叶中 EGCG和 ECG有一定含量的基础
上 ,红茶成茶中 EGC含量与红茶中的茶黄素含量极显著正相
关 , EGC含量可作为茶树育种进程中预测茶黄素含量的一个可
靠指标 。该试验中发现苦茶的 EGC含量显著高于茶变种 ,部分
资源的 EGC含量达到 15 mg/g以上(龙山苦茶 18.54 mg/g,聂
都苦茶群体 17.06mg/g),因此可以作为优异的适制红茶资源推
广利用 。另外 ,李明君等研究发现(未发表资料),苦茶中存在一
种特殊的物质———丁子香酚甙 ,使苦茶具有特殊的丁香香气 。
因此 ,亦可以将苦茶作为特异的亲本用于选育带特殊香味的茶
树新品种。
基金项目 “国家科技支撑计划 ”项目 “茶资源高效加工与多功能利用
技术研究”(2006BAD06B01);“多年生和无性繁殖作物种质
资源标准化整理整合共享试点 ”项目(2005DKA21002-08)。
作者简介 王新超(1975-),男,安徽霍邱人, 助研,从事茶树资源 、遗
传改良与分子生物学研究。*通讯作者。
收稿日期 2008-09-01 修回日期 2008-09-30
131WANGXin-chaoetal.AnalysisandEvaluationofBiochemicalComponentsinBiterTeaPlantGermplasms