Abstract:The group 3 late embryogenesis abundant (LEA) proteins are thought to protect cells from stresses associated with dehydration during periods of water deficit. To investigate the functions of different members of the group 3 LEA genes, we isolated and characterized two new group 3 LEA genes, namely TaLEA2 and TaLEA3, from wheat (Triticum aestivum L.) and introduced TaLEA2 and TaLEA3 into Saccharmyces cerevisiae to examine the effect of these genes on yeast cell tolerance to osmotic, salt, and cold stresses. The TaLEA2 gene encoded a protein of 211 amino acids and possessed five repeats of 11-mer amino acid motifs. The TaLEA3 gene encoded a polypeptide of 211 amino acids with nine repeated units. Overexpression of TaLEA2 and TaLEA3 improved stress tolerance in transgenic yeast cells when cultured in medium containing sorbitol, salt and –20 °C freezing treatments respectively. However, the yeast transformants with TaLEA2 seemed to be more tolerant to hyperosmotic and freezing stress than transformants with TaLEA3. This implies that a close relationship exists between function and the number of repeats of the 11-mer amino acid motif in the group 3 LEA protein.