Abstract:The chlorophyll fluorescence (CF) signature emitted from vegetation provides an abundance of information regarding photosynthetics activity and has been used as a powerful tool to obtain physiological information of plant leaves in a non-invasive manner. CF is difficult to quantify because the CF signal is obscured by reflected light. In the present study, the apparent reflectance spectra of wheat (Triticum aestivum L.) leaves were measured under illuminations with and without filtering by three specially designed long-wave pass edge filters; the cut-off wavelengths of the three filters were 653.8, 678.2, and 694.1 nm at 50% of maximum transmittance. The CF spectra could be derived as the reflectance difference spectra of the leaves under illuminations with and without the long wave pass edge filters. The ratio of the reflectance difference at 685 and 740 nm (Dif685/Dif740) was linear correlated with the CF parameters (maximal photochemical efficiency Fv/Fm, and the yield of quantum efficiency) measured by the modulated fluorometer. In addition, the ratio reflected the water stress status of the wheat leaf, which was very high when water deficiency was serious. This method provides a new approach for detecting CF and the physiological state of crops.