Cloning and Characterization of the Microspore Development-Related Gene BcMF2 in Chinese Cabbage Pak-Choi (Brassica campestris L. ssp. Chinensis Makino)
作 者 :Yong-Qin WANG, Wan-Zhi YE, Jia-Shu CAO, Xiao-Lin YU, Xun XIANG and Gang LU
Abstract:For the sake of providing some important information relevant to the study of the molecular mechanism of genic male sterility in plants, gene differential expression in flower buds at different developmental stages, as well as in rosette leaves, florescence leaves, and scapes was analyzed using cDNA amplified fragment length polymorphism (cDNA-AFLP) in the genic male sterile A and fertile B line of Chinese cabbage pak-choi. Following amplification of 125 pairs of primer combinations, 11 differential fragments were obtained, of which eight were from the B line and the other three were from the A line. Of 11 differential fragments, four were verified by Northern hybridization that were expressed preferentially in fertile flower buds. Results of GenBank BLAST showed that one fragment was with unknown function, whereas the other fragments have strong nucleotide sequence similarities with the polygalacturonase (PG) gene, the pectinesterase (PE) gene, and the polygalacturonase inhibitory protein (PGIP4) gene. Only full-length cDNA from the differential fragment BcMF-A18T16-1 was amplified by rapid amplification of cDNA ends (RACE) and Northern analysis showed that this fragment was expressed only in medium and large-sized flower buds of the B line. The full-length cDNA, designated as BcMF2 (Brassica campestris Male Fertile 2), was 1 485 bp long and was composed of a 1 263-bp open reading frame, which had 83% nucleotide similarity to a PG gene from Arabidopsis encoding polygalacturonase. Analysis of the basic structure of the protein revealed that it had one polygalacturonase active site (RVTCGPGHGLSVGS) at 256th site of amino acids and was classified as being a member of family 28 of the glycosyl hydrolases. The role of the BcMF2 gene on microspore development is discussed in the present paper.