Abstract:The method of non-enzymatic, manual microdissection was established to isolate zygotes and young embryos in Triticum aestivum L. The distribution of membrane-bound calcium and activated calmodulin in the isolated zygotes and young embryos was visualized by chlorotetracycline (CTC) and fluphenanize (FPZ) fluorescence probe respectively. The CTC fluorescence was polar distributed in the zygote protoplast. The distribution of the CFC and FPZ fluorescence from twocelled embryos to multicellular embryos was observed. In the young pear-shaped embryos the CTC and FPZ fluorescence of the embryos was slightly higher than that of the suspensor. In a pear-shaped embryo beginning with differentiation the CTC fluorescence was restricted to several-layer of cells between embryo and suspensor and the several ventral cells of the embryo. In the embryos with newly differentiated plumule the basal part of the embryo possessed a higher CTC fluorescence, while the FPZ fluorescence was only distributed in the basal part. It indicated that the distribution of CTC and FPZ fluorescence was in coincidence with the sites that plumule and radicle were beginning to differentiate. The technique of isolated zygotes and the possible function of calcium and calmodulin during embryo development are discussed.