Abstract:By incubating the reduced MoFe protein from Azotobacter vinelandii with O-phenanthroline under air and chromatographying the incubated solution on Sephadex G-25 column, inactive MoFe protein could be obtained. Its acetylene-reduction activity was remarkably recovered not only by incubation with the reconstituent solution composed of KMnO4, ferric homoeitrate, Na2S and dithiothreitol, but also with a mixture of 4Fe : 4S clusters and another cluster which had two structure units of 1Mo : 3Fe : 4S-bridged by three -OCH3 at the Mo atoms. Neither the reconstituent solution nor the mixture could reactivate apo-MoFe proteins from the mutants deleting nile and nifH genes and from the mutant UW45, which could be reactivated by the FeMoeo extracted from the MoFe protein. The results indicated that the FeMoeo-defieient MoFe proteins from these mutants seemed to be reconstituted only by the clusters which were probably structures only similar to FeMoeo. The partially metalloeluster-deficient MoFe protein could be reconstituted by the clusters with a certain kind of structure and composition; and was changed into different nitrogenase proteins with the ability to fix nitrogen.