Abstract:Based on forest dynamics theory, gap model FOROAK was developed for simulating long-termdynamics of Mongolian oak (Quercus rnongolica Fisch. )-Korean pine (Pinus koraiensis Sieb. et Zucc. )forest. The model included two parts: biological growth and environmental impacts on growth. Different areapatches were used in simulating forest changes. The results showed that this forest gap was 0.05 hm2. Themodel testing demonstrated that it could reasonably simulate forest dynamic process, and had a very highaccuracy to predict species compositions. The observed species basal areas was similar to the predicted at 60,100 and 270 year forests, the observed species compositions were similar to the predicted at old forest period.Complex changes were found through modeling forest dynamics of bare ground. Mongolian oak and white birch( Betula platyphylla Sukacz. ) dominated at early stage, forest dominated by broad leaved species was formedat middle stage, and then Korean pine dominated at latter stage. The prediction of current primary forestshowed that it was steady during the next 300 year period, the number of trees and the biomass of Korean pine changed very little.