免费文献传递   相关文献

New progress in the study of several cyanobacterial NAD(P)H dehydrogenase complexes

几种蓝藻光合NAD(P)H脱氢酶复合体研究的新进展



全 文 :第23卷 第8期
2011年8月
生命科学
Chinese Bulletin of Life Sciences
Vol. 23, No. 8
Aug., 2011
文章编号:1004-0374(2011)08-0812-05
几种蓝藻光合NAD(P)H脱氢酶复合体研究的新进展
吕中贤,马为民*
(上海师范大学生命与环境科学学院,上海 200234)
摘 要:蓝藻 NAD(P)H脱氢酶 (NDH-1)是一种重要的光合膜蛋白复合体,参与 CO2吸收、围绕光系统 I
的循环电子传递和细胞呼吸。就几种蓝藻 NDH-1复合体的鉴定、结构、生理功能等研究的新进展进行了综
述与分析,并对今后 NDH-1复合体的研究作了展望。
关键词:NDH-1L/L’复合体;NDH-1MS/MS’复合体;Act-NDH-1Sup复合体;蓝藻
中图分类号:Q946; Q945.1; Q949.22 文献标志码:A
New progress in the study of several cyanobacterial NAD(P)H dehydrogenase
complexes
LÜ Zhong-Xian, MA Wei-Min*
(College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China)
Abstract: Cyanobacterial NAD(P)H dehydrogenase (NDH-1) is an important photosynthetic membrane protein
complex, and is essential to CO2 uptake, cyclic electron transport around photosystem I and cellular respiration.
This mini-review mainly describes and analyzes the new progress in the study of several cyanobacterial NDH-1
complexes, including their identification, structure, and physiological function. This will further help in looking
ahead for the future research direction of cyanobacterial NDH-1 complexes.
Key words: NDH-1L/L’ complex; NDH-1MS/MS’ complex; Act-NDH-1Sup complex; cyanobacteria
收稿日期:2011-04-27; 修回日期:2011-05-04
基金项目:国家自然科学基金项目(30770175); 国家重
点基础研究发展计划“973”项目(2009CB118500); 教
育部重点项目(209045)
*通信作者:E-mail: wma@shnu.edu.cn; Tel: 021-
64321617
蓝藻是一类能进行光合放氧的原核生物,也是
研究光合作用的模式生物之一。一般认为,蓝藻光
合膜上存在光系统 II、细胞色素 b6f、光系统 I和
ATP合酶等四种光合膜蛋白复合体。1991年,人们
又在蓝藻光合膜上发现了第五种光合膜蛋白复合
体,称为 NAD(P)H脱氢酶复合体 (NDH-1)[1-2]。迄
今为止,人们已经知道该复合体参与 CO2吸收
[3]、
围绕光系统 I的循环电子传递和细胞呼吸 [4-7]。后来
的研究表明,NDH-1复合体对蓝藻细胞的生理活
动,甚至生存起着至关重要的作用 [8]。因此,该复
合体是一种重要的光合膜蛋白复合体。
通过反向遗传学等的研究,发现在蓝藻细胞中
至少存在两种功能截然不同的 NDH-1复合体:一
种参与围绕光系统 I的循环电子传递和细胞呼吸;
另一种则与 CO2吸收有关
[9-14]。2004年以来,通过
蛋白质组学等技术,在蓝藻细胞中鉴别出了多种
NDH-1复合体。本综述就这几种蓝藻 NDH-1复合
体的鉴定、结构、生理功能等方面的新进展进行了
概述与分析,并对今后蓝藻 NDH-1复合体的研究
作了展望。
1 NDH-1L/L’复合体
2004年,通过蓝绿温和胶电泳 (Blue-native
PAGE)结合蛋白免疫印迹等技术,Herranen等 [15]
首次在蓝藻集胞藻 6803(Synechocystis sp. strain PCC
6803)光合膜中鉴别出一种相对分子质量约 4.6 × 105
吕中贤,等:几种蓝藻光合NAD(P)H脱氢酶复合体研究的新进展第8期 813
的 NDH-1L复合体 (large NDH-1 complex) (图 1A)。
随后通过蛋白质质谱分析等手段,人们在NDH-1L复
合体中鉴定到了15种亚基 (NdhA ~NdhO)[15-18]。其中,
NdhA~NdhG和 NdhL等 8种亚基位于膜内,因此,
它们是疏水亚基;而 NdhH~NdhK和 NdhM ~NdhO
等 7种亚基位于膜外,因此,它们属于亲水亚基 (图
1A)。2011年,通过质谱等技术分析嗜热蓝藻
(Thermosyne chococcus elongatus BP-1)NDH-1L复合
体,Nowaczyk等 [19]鉴定到了 2种相对分子质量稍
小的新型膜亚基——NdhP和 NdhQ。因此,迄今为
止,人们发现 NDH-1L复合体至少由 17种亚基组
成 (图 1A)。
2004年,通过蛋白质组学结合反向遗传学的
研究,Zhang等 [20]发现 NDH-1L复合体参与了围
绕光系统 I的循环电子传递与细胞呼吸。2006年,
Arteni等 [21]用电子显微镜对通过 His6标签纯化的
NDH-1L复合体进行了观测,结果发现该 NDH-1
复合体呈“L”型 (图 1A)。通过反向遗传学等的预
测 [10],在蓝藻细胞中还应该存在 NDH-1L’复合体
(图 1B)。与 NDH-1L复合体相比,除了 NdhD亚
基不同外,它们具有类似的亚基组成、结构以及生
理功能等 (图 1A和 1B)[22-23]。然而,可能由于蓝藻
细胞中 NDH-1L’复合体的含量甚微或者不易从光
合膜中增溶出,因此,人们至今尚未通过蛋白质组
学等手段鉴定到该复合体。
人们发现蓝藻 NDH-1L复合体与高等植物
NDH-1复合体不仅具有类似的结构与生理功能 [23-25],
而且编码它们亚基的基因具有高度的同源性 [26-27]。
因此,高等植物 NDH-1复合体起源于蓝藻的 NDH-
1L复合体。尽管蓝藻 NDH-1L复合体与高等植物
NDH-1复合体均包含了 11种 (NdhA~NdhK)与大肠
杆菌 (E. coli)NDH-1复合体高度同源的亚基,但大
肠杆菌中 3种活性亚基 (NuoE、NuoF和 NuoG)[28-30]
的同源基因在蓝藻和高等植物的基因组中缺失。因
此,至今人们尚未找到蓝藻 NDH-1L复合体中的活
性亚基 (图 1中的问号 )。
2 NDH-1MS/MS’复合体
2005年,通过蛋白纯化等技术,Zhang等 [18]
在嗜热蓝藻光合膜上鉴定到了一种相对分子质量
约为 4.9 × 105 的 NDH-1MS 复合体 ( 图 2A)。与
NDH-1L复合体相比,体外的 NDH-1MS复合体不
太稳定,很容易降解为 NDH-1M复合体 (middle
NDH-1 complex, Mr = 3.5 × 105)和 NDH-1S复合体
(small NDH-1 complex, 约Mr = 2.0 × 105)[18,20]。同时,
利用蛋白质质谱等手段,人们在 NDH-1MS复合体
中鉴定到除 NdhD1、 NdhF1、 NdhP和 NdhQ以外的
所有 NDH-1L复合体亚基 [17-18],并且还鉴别出了蓝
藻特有的亚基 [31]:NdhD3、 NdhF3、CupA和CupS (图
2A)。因此,不同于 NDH-1L复合体,NDH-1MS
复合体是蓝藻细胞所特有的。
2004年,通过蛋白质组学结合反向遗传学等
的研究,Zhang等 [18,20]发现 NDH-1MS复合体参与
了 CO2吸收。然而,最近的研究结果表明 NDH-
1MS也参与围绕光系统 I的循环电子传递 [32]。2008
年,Folea等 [33]用电子显微镜通过 His6标签纯化
的 NDH-1MS复合体进行观测,结果发现该 NDH-1
复合体呈“U”型 (图 2A)。通过反向遗传学等的
预测 [10],在蓝藻细胞还应该存在 NDH-1MS’复合
体 (图 2B)。2008年,利用 CupB(NDH-1MS’复合
体特有的亚基之一 )蛋白融合 His6和 c-Myc标签,
Xu等 [34]成功地在集胞藻 6803中鉴定到了一种相
A: NDH-1L复合体;B:NDH-1L’复合体
图1 蓝藻NDH-1L/L’复合体示意图
生命科学 第23卷814
对分子质量大于 4.5 × 105的 NDH-1MS’复合体 (图
2B)。但遗憾的是,这些鉴别出的蓝藻 NDH-1复合
体均不具有氧化 NAD(P)H的活性。
3 Act-NDH-1Sup复合体
1998年,通过蛋白纯化等手段,Matsuo等 [35]
在集胞藻 6803细胞中鉴定到了一种相对分子质量
为 3.76 × 105、具有氧化 NAD(P)H活性的 NDH-1
亚复合体,但未能在该活性复合体中鉴别出疏水
亚基,如 NdhA和 NdhB。2003年,邓勇等 [36]在
集胞藻 6803细胞中分离纯化到了一种相对分子质
量约为 3.0 × 105的 NDH-1复合体。该复合体不仅
具有氧化 NAD(P)H的活性,而且含有疏水亚基
NdhA。2006年,通过 NAD(P)H-氮蓝四唑 (NBT)
活性染色等,Ma 等 [37]成功地在集胞藻 6803 细
胞中鉴定到了一种相对分子质量约为 1 × 106的
NDH-1活性超分子复合体 (active NDH-1 supercomplex,
Act-NDH-1Sup)。与上述鉴定到的几种蓝藻NDH-1复
合体相比,Act-NDH-1Sup具有高氧化 NAD(P)H
的活性。这一结果不仅指出了该蓝藻 NDH-1超分
子复合体具有重要的生理功能,而且包含有活性亚
基,但至今尚未鉴定出。
通过反向遗传学等手段,本课题组发现 Act-
NDH-1Sup参与了围绕光系统 I的循环电子传递和
细胞呼吸 [38-39],并且它介导的循环电子传递是减缓
热胁迫条件下光系统 II活性所必需 [40]。同时,本
课题组的研究还发现了细胞内外氧化还原水平 [41]
和葡萄糖浓度的变化 [42]调节了 Act-NDH-1Sup的表
达与活性。然而,迄今为止,人们尚不了解 Act-
NDH-1Sup复合体的其他属性,有待于进一步的研
究。
4 蓝藻NDH-1复合体结构域的分析
从 NDH-1复合体的进化角度来分析,可以把
组成蓝藻 NDH-1复合体的亚基划分为四种结构域:
保 守 域 (conserved domain)、 光 合 域 (oxygen
photosynthetic domain)、特定域 (specific domain)和
活性域 (active domain)。保守域由大肠杆菌、蓝藻
和高等植物 NDH-1复合体中共同包含的 11种 Ndh
亚基组成,也就是 NdhA~NdhK (图 1)[15-18,24-25,28-30]。
光合域由蓝藻和高等植物 NDH-1复合体共有的 6种
亚基构成,即 NdhL~NdhQ (图 1)[16-19,43-45]。2010年,
通过荧光蛋白标记和电子显微镜观测等手段,
Birungi等 [46]发现 NdhL~NdhO亚基形成了一簇 (图
1和 2)。然而,新鉴定到的 NdhP和 NdhQ亚基是
否也存在于这一簇中还有待于进一步研究。特定
域包含了蓝藻 NDH-1复合体特有的 7种亚基:
NdhD3、NdhD4、NdhF3、NdhF4、CupA、CupB
和 CupS (图 2)[13-14,47]。活性域则包括了那些至今尚
未在蓝藻细胞中鉴定到的活性亚基 (图 1和 2中的
问号 )。
5 展望
在过去的几年中,人们在这几种蓝藻 NDH-1复
合体的鉴定、结构和生理功能等方面已经取得了许
多瞩目的研究进展。然而,迄今为止,有关这几种
蓝藻 NDH-1复合体仍有许多问题亟待解决。例如,
活性区到底由哪些亚基组成;如何在体外纯化出有
活性的 NDH-1复合体;如何获得高分辨率的蓝藻
NDH-1复合体的 3D结构,等等。这些问题的解决
可能需要发展一种更为温和的蛋白质纯化技术和一
种更为灵敏的蛋白质鉴定手段,而如何解决这些问
A:NDH-1MS复合体; B:NDH-1MS’复合体
图2 蓝藻NDH-1MS/MS’复合体示意图
吕中贤,等:几种蓝藻光合NAD(P)H脱氢酶复合体研究的新进展第8期 815
题可能就是将来蓝藻NDH-1复合体研究的努力方向。
[参 考 文 献]
[1] Berger S, Ellersiek U, Steinmuller K. Cyanobacteria
contain a mitochondrial complex I-homologous NADH-
dehydrogenase. FEBS Lett, 1991, 286(1-2): 129-32
[2] Berger S, Ellersiek U, Kinzelt D, et al. Immunopurification
of a subcomplex of the NAD(P)H-plastoquinone-
oxidoreductase from the cyanobacterium Synechocystis
sp. PCC6803. FEBS Lett, 1993, 326(1-3): 246-50
[3] Ogawa T. A gene homologous to the subunit-2 gene of
NADH dehydrogenase is essential to inorganic carbon
transport of Synechocystis PCC 6803. Proc Natl Acad Sci
USA, 1991, 88(10): 4275-9
[4] Mi H, Endo T, Schreiber U, et al. Donation of electrons to
the intersystem chain in the cyanobacterium Synechococcus
sp. PCC 7002. Plant Cell Physiol, 1992, 33(8): 1099-105
[5] Mi H, Endo T, Schreiber U, et al. Electron donation from
cyclic and respiratory flows to the photosynthetic
intersystem chain is mediated by pyridine nucleotide
dehydrogenase in the cyanobacterium Synechocystis PCC
6803. Plant Cell Physiol, 1992, 33(8): 1233-7
[6] Mi H, Endo T, Schreiber U, et al. NAD(P)H-dehydrogenase-
dependent cyclic electron flow around photosystem I in the
cyanobacterium Synechocystis PCC 6803: a study of dark-
starved cells and spheroplasts. Plant Cell Physiol, 1994,
35(2): 163-73
[7] Mi H, Endo T, Ogawa T, et al. Thylakoid membrane-
bound pyridine nucleotide dehydrogenase complex
mediates cyclic electron transport in the cyanobacteria
Synechocystis PCC 6803. Plant Cell Physiol, 1995, 36(4):
661-8
[8] Pieulle L, Guedeney G, Cassier-Chauvat C, et al. The gene
encoding the NdhH subunit of type 1 NAD(P)H
dehydrogenase is essential to survival of Synechocystis
PCC6803. FEBS Lett, 2000, 487(2): 272-6
[9] Ohkawa H, Sonoda M, Katoh H, et al. The use of mutants
in the analysis of the CO2-concentrating mechanism in
cyanobacteria. Can J Bot, 1998, 76(6): 1035-42
[10] Ohkawa H, Pakrasi HB, Ogawa T. Two types of
functionally distinct NAD(P)H dehydrogenases in
Synechocystis sp. strain PCC 6803. J Biol Chem, 2000,
275(41): 31630-4
[11] Price GD, Klughammer B, Ludwig M, et al. The
functioning of the CO2 concentrating mechanism in
several cyanobacterial strains: a review of general
physiological characteristics, genes, proteins and recent
advances. Can J Bot, 1998, 76(6): 973-1002
[12] Klughammer B, Sültemeyer D, Badger MR, et al. The
involvement of NAD(P)H dehydrogenase subunits,
NdhD3 and NdhF3, in high-affinity CO2 uptake in
Synechococcus sp. PCC 7002 gives evidence for multiple
NDH-1 complexes with specific roles in cyanobacteria.
Mol Microbiol, 1999, 32(6): 1305-15
[13] Shibata M, Ohkawa H, Kaneko T, et al. Distinct
constitutive and low-CO2-induced CO2 uptake systems in
cyanobacteria: genes involved and their phylogenetic
relationship with homologous genes in other organisms.
Proc Natl Acad Sci USA, 2001, 98(20): 11789-94
[14] Maeda S, Badger MR, Price GD. Novel gene products
associated with NdhD3/D4-containing NDH-1 complexes
are involved in photosynthetic CO2 hydration in the
cyanobacterium, Synechococcus sp. PCC 7942. Mol
Microbiol, 2002, 43(2): 425-35
[15] Herranen M, Battchikova N, Zhang P, et al. Towards
functional proteomics of membrane protein complexes in
Synechocystis sp. PCC 6803. Plant Physiol, 2004, 134(1):
470-81
[16] Prommeenate P, Lennon AM, Markert C, et al. Subunit
composition of NDH-1 complexes of Synechocystis sp.
PCC 6803: identification of two new ndh gene products
with nuclear-encoded homologues in the chloroplast Ndh
complex. J Biol Chem, 2004, 279(27): 28165-73
[17] Battchikova N, Zhang P, Rudd S, et al. Identification of
NdhL and Ssl1690 (NdhO) in NDH-1L and NDH-1M
complexes of Synechocystis sp. PCC 6803. J Biol Chem,
2005, 280(4): 2587-95
[18] Zhang P, Battchikova N, Paakkarinen V, et al. Isolation,
subunit composition and interaction of the NDH-1
complexes from Thermosynechococcus elongatus BP-1.
Biochem J, 2005, 390(2): 513-20
[19] Nowaczyk MM, Wulfhorst H, Ryan CM, et al. NdhP and
NdhQ: two novel small subunits of the cyanobacterial
NDH-1 complex. Biochemistry, 2011, 50(7): 1121-4
[20] Zhang P, Battchikova N, Jansen T, et al. Expression and
functional roles of the two distinct NDH-1 complexes and
the carbon acquisition complex NdhD3/NdhF3/CupA/
Sll1735 in Synechocystis sp. PCC 6803. Plant Cell, 2004,
16(12): 3326-40
[21] Arteni AA, Zhang P, Battchikova N, et al. Structural
characterization of NDH-1 complexes of Thermosyne-
chococcus elongatus by single particle electron microscopy.
Biochim Biophys Acta, 2006, 1757(11): 1469-75
[22] Battchikova N, Aro EM. Cyanobacterial NDH-1 complexes:
multiplicity in function and subunit composition. Physiol
Plant, 2007, 131(1): 22-32
[23] Battchikova N, Eisenhut M, Aro EM. Cyanobacterial
NDH-1 complexes: novel insights and remaining puzzles.
Biochim Biophys Acta, 2011, 1807(8): 935-544
[24] Peng L, Fukao Y, Fujiwara M, et al. Efficient operation of
NAD(P)H dehydrogenase requires supercomplex
formation with photosystem I via minor LHCI in
Arabidopsis. Plant Cell, 2009, 21(11): 3623-40
[25] Peng L, Yamamoto H, Shikanai T. Structure and
biogenesis of the chloroplast NAD(P)H dehydrogenase
complex. Biochim Biophys Acta, 2011, 1807(8): 945-53
[26] Ohyama K, Fukuzawa H, Kohchi T, et al. Chloroplast
gene organization deduced from complete sequence of
liverwort Marchantia polymorpha chloroplast DNA.
Nature, 1986, 322: 572-4
[27] Kaneko T, Sato S, Kotani H, et al. Sequence analysis of the
genome of the unicellular cyanobacterium Synechocystis sp.
strain PCC 6803. II. Sequence determination of the entire
生命科学 第23卷816
genome and assignment of potential protein-coding regions.
DNA Res, 1996, 3(3): 109-36
[28] Friedrich T, Scheide D. The respiratory complex I of
bacteria, archea and eukarya and its module common with
membrane-bound multisubunit hydrogenases. FEBS Lett,
2000, 479(1-2): 1-5
[29] Sazanov LA, Hinchliffe P. Structure of the hydrophilic
domain of respiratory complex I from Thermus
thermophilus. Science, 2006, 311(5766): 1430-6
[30] Efremov RG, Baradaran R, Sazanov LA. The architecture
of respiratory complex I. Nature, 2010, 465(7297): 441-5
[31] Ogawa T, Mi H. Cyanobacterial NAD(P)H dehydrogenase
complexes. Photosynth Res, 2007, 93(1-3): 69-77
[32] Bernát G, Appel J, Ogawa T, et al. Distinct roles of multiple
NDH-1 complexes in the cyanobacterial electron transport
network as revealed by kinetic analysis of P700+ reduction
in various ndh-deficient mutants of Synechocystis sp. strain
PCC6803. J Bacteriol, 2011, 193(1): 292-5
[33] Folea IM, Zhang P, Nowaczyk MM, et al. Single particle
analysis of thylakoid proteins from Thermosynechococcus
elongatus and Synechocystis 6803: localization of the
CupA subunit of NDH-1. FEBS Lett, 2008, 582(2): 249-
54
[34] Xu M, Ogawa T, Pakrasi HB, et al. Identification and
localization of the CupB protein involved in constitutive
CO2 uptake in the cyanobacterium, Synechocystis sp.
strain PCC 6803. Plant Cell Physiol, 2008, 49(6): 994-7
[35] Matsuo M, Endo T, Asada K. Properties of the respiratory
NAD(P)H dehydrogenase isolated from the cyanobacterium
Synechocystis PCC6803. Plant Cell Physiol, 1998, 39(3):
263-7
[36] 邓勇, 叶济宇, 米华玲, 等. 集胞蓝藻PCC6803含疏水亚
基的NAD(P)H脱氢酶亚复合体的分离. 生物化学与生
物物理学报, 2003, 35(8): 723-7
[37] Ma W, Deng Y, Ogawa T, et al. Active NDH-1 complexes
from the cyanobacterium Synechocystis sp. strain PCC
6803. Plant Cell Physiol, 2006, 47(10): 1432-6
[38] Ma W, Mi H. Multiplicity of NDH-1 complexes in
cyanobacter ia[M]/ / Buchner TB, Ewingen NH.
Photosynthesis: theory and applications in energy,
biotechnology and nanotechnology. NY: Nova Science
Publishers, Inc., 2009: 213-25
[39] Ma W. Identification, regulation and physiological
functions of multiple NAD(P)H dehydrogenase complexes
in cyanobacteria. Front Biol Chn, 2009, 4(2): 137-42
[40] Ma W, Wei L, Wang Q. The response of electron transport
mediated by active NAD(P)H dehydrogenase complexes
to heat stress in the cyanobacterium Synechocystis 6803.
Sci Chn C: Life Sci, 2008, 51(12): 1082-7
[41] Ma W, Deng Y, Mi H. Redox of plastoquinone pool
regulates the expression and activity of NAD(P)H
dehydrogenase supercomplex in Synechocystis sp. strain
PCC 6803. Curr Microbiol, 2008, 56(2): 189-93
[42] Ma W, Mi H. Effect of exogenous glucose on the
expression and activity of NAD(P)H dehydrogenase
complexes in the cyanobacterium Synechocystis sp. strain
PCC 6803. Plant Physiol Biochem, 2008, 46(8-9): 775-9
[43] Shimizu H, Peng L, Myouga F, et al. CRR23/NdhL is a
subunit of the chloroplast NAD(P)H dehydrogenase
complex in Arabidopsis. Plant Cell Physiol, 2008, 49(5):
835-42
[44] Rumeau D, Bécuwe-Linka N, Beyly A, et al. New
subunits NDH-1M, -N, and -O, encoded by nuclear genes,
are essential for plastid Ndh complex functioning in
higher plants. Plant Cell, 2005, 17(1): 219-32
[45] Ishikawa N, Takabayashi A, Ishida S, et al. NDF6: a
thylakoid protein specific to terrestrial plants is essential
for activity of chloroplastic NAD(P)H dehydrogenase in
Arabidopsis. Plant Cell Physiol, 2008, 49(7): 1066-73
[46] Birungi M, Folea M, Battchikova N, et al. Possibilities of
subunit localization with fluorescent protein tags and
electron microscopy exemplified by a cyanobacterial
NDH-1 study. Biochim Biophys Acta, 2010, 1797(9):
1681-6
[47] Ogawa T, Kaplan A. Inorganic carbon acquisition systems
in cyanobacteria. Photosynth Res, 2003, 77(2-3): 105-15