免费文献传递   相关文献

Assessment of trunk diameter fluctuation for irrigation schedule in apple trees

基于茎干直径微变化制定苹果灌溉制度



全 文 :第 35 卷第 14 期
2015年 7月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol.35,No.14
Jul.,2015
http: / / www.ecologica.cn
基金项目:国家自然科学基金资助项目(51321001, 91425302,51309132); 江苏省农业气象重点实验室开放基金(S5312041001); 江苏省高校自
然科学研究面上项目(13KJB170015); 江苏省基础研究计划青年基金项目(BK20130995)
收稿日期:2013鄄11鄄13; 摇 摇 网络出版日期:2014鄄09鄄09
*通讯作者 Corresponding author.E鄄mail: kangshaozhong@ tom.com
DOI: 10.5846 / stxb201311132724
刘春伟, 康绍忠.基于茎干直径微变化制定苹果灌溉制度.生态学报,2015,35(14):4754鄄4762.
Liu C W, Kang S Z.Assessment of trunk diameter fluctuation for irrigation schedule in apple trees.Acta Ecologica Sinica,2015,35(14):4754鄄4762.
基于茎干直径微变化制定苹果灌溉制度
刘春伟1, 2, 康绍忠2,*
1 南京信息工程大学应用气象学院, 江苏省农业气象重点实验室, 南京摇 210044
2 中国农业大学中国农业水问题研究中心, 北京摇 100083
摘要:茎干直径的动态微变化是研究植物体水分和生长状况的重要指标。 利用测树器监测西北旱区盛果期苹果树茎干直径微
变化规律,根据监测记录获得茎干直径日最大值(MXTD)、茎干直径日最大收缩量(MDS)数据,并探讨茎干直径微变化规律及
其对环境因素的响应,为茎干直径微变化用于指导精确灌溉提供科学依据。 实验结果表明,晴天或多云天气下,苹果树茎干直
径在每天的 7:00或 8:00时刻达到一天最大值,在 16:00 左右达到一天的最小值,茎干直径年增长量与果实产量成反比例关
系。 整个生育期 MXTD呈先快速增加后平稳的变化特征。 2010 年 MDS 与茎干水势(渍stem)呈显著负相关关系( r2 = 0郾 76***,
n= 14),这表明 MDS可以反映苹果树的水势状况。 生育后期的 MDS对环境因素响应比生育前期敏感,全生育期 MDS与气象因
素的决定系数大小顺序为日最大水汽压差(VPDmax)>日最高温度(Tmax)>净辐射(Rn)。 茎干直径微变化规律可以反映西北旱
区盛果期果树的水分状况,可以为果园灌溉制度的确定提供科学依据。
关键词:茎干直径微变化; 茎干直径日最大收缩量; 苹果树; 环境因子; 灌溉制度
Assessment of trunk diameter fluctuation for irrigation schedule in apple trees
LIU Chunwei1,2, KANG Shaozhong2,*
1 Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology,
Nanjing 210044, China
2 Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
Abstract: Research on agricultural water consumption in northwest China is crucial to relieve problems associated with the
water crisis. Apples are a typical crop in China that have been used in agriculture for centuries. As production increases for
economic growth, it is essential to analyze water transport mechanisms and water accessibility to mature apple orchards in
arid regions. Trunk diameter fluctuation is an effective indicator of the water condition of plants. Its role as an indicator of
plant water conditions thus emphasizes that it is crucial to design an irrigation schedule. The changes in the trunk diameter
of mature apple trees (Malus domestica Borkh. cv Golden Delicious) was monitored using dendrometers at the Shiyanghe
Experimental Station for Water鄄saving in Agriculture and Ecology of China Agricultural University (37毅52忆N, 102毅51忆E,
altitude 1581 m). Stem water potential was measured using a pressure chamber. Wind speed, net radiation, relative
humidity, and air temperature were monitored by an automatic meteorological station, and soil moisture was measured every
5 days using Time鄄Domain Reflectometry (TDR) methods based on the previously described data analysis. Change in the
maximum daily trunk diameter (MXTD) and maximum daily diameter shrinkage (MDS), as well as their response to
environmental factors were also monitored. The results showed that MXTD occurred at 7:00 to 8:00 in the morning and
minimum of daily trunk diameter (MNTD) occurred at approximately 16:00 during sunny or cloudy days in 2008 on a daily
http: / / www.ecologica.cn
scale. The trunk diameter increased at night and decreased during the day, which was meanly depended on reference
evapotranspiration. MXTD increased during bud development, flowering, and leaf expansion periods (stage I) and remained
constant during the fruit expanding and maturing periods (stage II), which was closely related to the MDS of the apple tree.
Higher fruit yields were associated with smaller fruit stem diameter growth. MDS increased at the beginning and then
gradually decreased during the entire growing stage. The relationship between MDS and stem water potential was linear and
the determination coefficient was 0. 76*** . Consequently, MDS indicated the water status of the mature apple trees.
However, MDS was more responsive to net radiation, reference evapotranspiration, vapor pressure deficit, and air
temperature at stage II than at stage I because the canopy structure was not developed, and the water stored in the apple
trees less frequently fluctuated during stage I. The order of determination coefficient over the whole growing stage was as
follows: maximum vapor pressure deficit > maximum air temperature > net radiation. Multiple regression relationships among
MDS and environmental factors can be used to calculate the MDS for well water supplied to apple trees, which could be
considered as a reference value when the tree requires irrigation. Thus, the fluctuation regularities of tree trunk diameter
could reflect the water status of the entire fruit period of fruit trees situated in arid areas of Northwest China and help
improve orchard water management, as well as ensure the normal growth of fruit trees.
Key Words: trunk diameter fluctuation; maximum daily diameter shrinkage; apple tree; environmental factor; irrigation
schedule.
果树茎干直径微变化是指茎干直径每日膨胀和收缩的循环过程,是表征果树生长状况的重要指标,它与
土壤含水量、植物水分状况和气象因素关系密切[1鄄2]。 植物水分参数如茎干水势、叶水势和土壤水分等测定
耗时耗力,而茎干直径微变化监测简单易行,因此茎干直径微变化监测有望被用作诊断植物水分状况的手
段[3鄄4]。 测树器是目前测量茎干直径微变化的主要仪器之一[5],其基本原理是利用滑动电阻将茎干变化产生
的位移转换为电阻值的变化,通过对电阻值变化的自动记录实现对茎干直径微变化的连续监测。 茎干直径微
变化可以表征果树生长及其体内水分状况[6鄄7]。
从果树茎干直径微变化资料中可以得到多个参数,它们与植物体的生长和水分状况的关系是当前研究的
热点。 日最大茎干直径(MXTD)在生育后期可以很好的反映果树水分状况,且与土壤含水量关系密切[8];茎
干生长速率(TGR)是果树营养生长发育的体现,成熟期果树的根系深,植物体调节水分亏缺能力较强,在果
树坐果量较大时,TGR与环境因子的相关性较弱,不能用于指导灌溉[9]。 茎干直径日最大收缩量(MDS)与茎
干水势呈稳定的负相关关系,MDS受水势控制,不受随年际变化的产量影响[10鄄11],其大小可反映果树的水分
亏缺状况[12]。 TGR和 MDS可作为梨枣水分亏缺的诊断指标[13],而在不同生长阶段的棉花宜采用不同参数
作为水分诊断指标[14]。 西北旱区果树茎干直径变化规律如何,由茎干直径微变化监测数据得到的相关参数
是否与苹果树水分状况密切相关,有待进一步验证。
本研究采用测树器监测 2007—2010西北干旱区盛果期苹果树的茎干直径微变化,在分析茎干直径微变
化规律的基础上得到茎干直径微变化与作物水分状况的关系。 本文的目的是:(1)研究西北旱区特殊生长条
件下盛果期苹果树的茎干直径微变化规律及其影响因素;(2)探讨茎干直径微变化过程中相关参数指导盛果
期苹果树灌溉的可行性。
1摇 材料与方法
1.1摇 试验区概况
试验于 2007—2010年在中国农业大学石羊河流域农业与生态节水试验站(甘肃武威)进行。 试验站位
于北纬 37毅52忆,东径 102毅51忆,海拔高程 1581 m,属武威市平川灌区。 年平均气温 8 益,年积温( >0 益)3550
益,年平均降雨量 164.4 mm,年平均水面蒸发量 2000 mm,干旱系数在 15—25 之间,年平均日照时数 3000 h,
5574摇 14期 摇 摇 摇 刘春伟摇 等:基于茎干直径微变化制定苹果灌溉制度 摇
http: / / www.ecologica.cn
无霜期 150 d左右,为典型温带干旱大陆性气候。 地下水位为 40—50 m。 土壤质地为沙壤土,平均土壤干容
重为 1.46 g / cm3,平均土壤田间持水量为 0.30 cm3 / cm3。
1.2摇 不同年份的灌溉制度
试验对象苹果树为元帅系列红香蕉品种,砧木为山丁子(Malus domestica Borkh. cv Golden Delicious),树
龄为 29a(2010)。 苹果树分布呈东西走向,行距为 6 m,株距为 4 m。 试验苹果树生育期有发芽开花、展叶幼
果、果实膨大、果实成熟四个生育期。 依据多年平均耗水量计算灌水定额;采用小区畦灌的灌溉方式,用水表
控制水量,依据果园实际管理情况和环境条件确定灌水时间。 灌溉水源为地下水。 每年施肥量相同。 2007—
2010年的灌溉制度及降雨量见表 1。
表 1摇 不同年份灌溉制度
Table 1摇 Irrigation schedule in different years
生育期 Stages
2007
W N IDOY
2008
W N IDOY
200
W N IDOY
2010
W N IDOY
发芽开花期 Bud development and flowering 120.2 36 114.8 36 113 114.8 33 103 168.5 37 122
展叶幼果期 Leaf expansion 152.0 35 165 151.9 35 161 151.9 36 145 125.2 35 167
果实膨大期 Fruit expanding 149.0 97 197 149.0 78 204 149.0 70 184 149.0 74 203
成熟采收期 Fruit maturing 62.5 16 244 62.5 30 248 62.5 36 236 86.3 27 240
全生育期 Whole growth stage 483.7 184 478.2 179 478.2 175 528.9 173
摇 摇 IDOY: 灌溉时间在一年中的天数 the day of year for the irrigation time,N: 生育期天数 the number of days for growing season,W: 灌水量 the
irrigation amount (mm)
1.3摇 测定指标
本试验采用植物生长测量仪(Diameter Dendrometer, Ecomatik GmbH, Germany)连续自动监测果树茎干
直径变化。 两个生长测量仪 DD1、DD2分别安装在地面以上 50 cm处的东西方向和 100 cm 处的南北方向树
干上,用锡箔纸进行防晒处理。 生长测量仪与植物生理监测系统(Meteorological monitoring system; Jauntering,
Taiwan)的数据自动采集器(HL20 Data Logger)相连接,每隔 1 h自动记录生长测量仪滑动电阻的电阻值。 植
物生理监测系统监测数据还包括净辐射、温湿度、风速和土壤热通量等气象因素。 水汽压差由空气温度和相
对湿度计算。
相对茎干直径(D):
D= k伊ohm (1)
式中,ohm为生长测量仪监测的滑动电阻值(K赘),k为电阻、位移转换系数。 生长测量仪 DD1 和 DD2 的 k 值
分别为 0.204和 0.223。 i时刻茎干直径的变化量 驻 i由两个相邻时刻的相对茎干直径计算得到:
驻 i =Di-Di-1 (2)
若以监测起始时间作为茎干直径相对零点,则可以求得监测时段内茎干直径的微变化量。 MDS 为茎干
直径早晨某时刻日最大值和傍晚某时刻日最小值的差[1]。 当受大风、降雨等影响时,树干直径可能并非在以
上两个特定时刻出现最大和最小值,此时 MDS不能反映植物体内的水分状况,应将此时的 MDS数据剔除。
根区土壤体积含水率采用管式时域反射仪(Tube鄄TDR; IMKO Micromodultechink, Germany)监测。 试验
选取 3株果树,每株树布置 4根测管,测管深度 180 cm,每 5 d测定 1次,测点垂向间距为 10 cm。 每隔 30 d用
烘干称重法对 TDR进行校正。
茎干水势的测定方法如下:选取 3株样树,测定前 3 h,在接近果树树干处选取 2片叶柄粗壮的成熟叶片,
用锡箔纸覆盖的不透光密封塑料袋将叶片包裹好,在中午将叶片离体后立即测定。 采用压力室(SKPM 1400,
Skye, United Kingdom)测定中午遮盖叶片水势,并认为中午遮盖叶片水势与茎干水势相等[15]。
采用 FAO鄄56中的 Penman鄄Monteith公式计算参考作物蒸发蒸腾量[16]:
6574 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
ET0 =
0.408驻 Rn -( )G + 酌
37
T + 273
u2 es - e( )a
驻 + 酌 1 + 0.34u( )2
(3)
式中,Rn为冠层表面的净辐射(MJ m
-2 h-1),G为土壤热通量(MJ m-2 h-1),T为 2 m高度处的平均温度(益),
es和 ea分别为平均温度对应的饱和水汽压和平均实际水汽压(kP a),u2为 2 m处平均风速(m / s),驻 为温度水
汽压斜率(kP a / 益),酌为湿度计常数(kPa / 益)。
2摇 结果分析
2.1摇 茎干直径日变化规律
2008年不同生育期茎干直径和参考作物蒸发蒸腾量的变化如图 1 所示。 每个生育期选取 3 d 进行茎干
直径微变化分析,以所选日期初始的 0:00时刻为茎干直径相对 0点,记录茎干直径的波动状况。 从图中可以
发现,晴天或多云天气条件下,7:00—8:00 的平均 ET0接近 0 mm / h,这一时刻果树茎干直径达到最大值;在
8:00—16:00范围内,树干直径不断减小;在 16:00到次日 8:00时段内树干直径不断增大。
图 1摇 2008年西北旱区苹果园茎干直径微变化
Fig.1摇 The trunk diameter fluctuation of apple tree (2008)
2.2摇 茎干直径日最大值变化规律
茎干直径日最大值(MXTD)的生育期变化反映果树不同生育阶段的生长速率[2]。 从图 2 中可以看出,灌
水及降雨之后 1—2 d,MXTD值会增大 200 滋m—300 滋m,降雨后 3—4 d,MXTD值减小 50 滋m—100 滋m,果树
茎干变化恢复到降雨前的增长趋势。 当降雨或灌溉发生时,茎干生长速率增大,之后 1—3 d 茎干生长速率为
负值。
DOY 94—120 d属于发芽开花期,此时苹果树叶面积指数小,叶片未伸展,果树茎干直径生长不明显;
DOY 120—186 d 属于展叶幼果期,此时生长速率较大,茎干直径不断增加,MXTD 与 DOY 关系图的斜率为
30—50;DOY 200 d后,进入果实膨大和成熟期,枝条和叶片生长显著减慢,果实迅速膨大,此期间 MXTD比较
稳定。
7574摇 14期 摇 摇 摇 刘春伟摇 等:基于茎干直径微变化制定苹果灌溉制度 摇
http: / / www.ecologica.cn
图 2摇 2007—2010年茎干直径日最大值MXTD(以果树发芽为 0点)
Fig.2摇 The season vairiation of maximum of stem daily diamter during 2007—2010 (MXTD, which increased from budding)
2.3摇 茎干直径日最大收缩量的变化规律
众多学者认为茎干直径日最大收缩量(MDS)与植物茎干水势关系密切,最能反映植物体内水分状况,并
认为 MDS主要受气象因素、土壤含水量影响[17鄄19]。 图 3为 MDS与参考作物蒸发蒸腾量的季节变化规律。 图
3表明,各年份整个生育期 MDS均呈现先增大后减小的季节变化趋势,且变化幅度较大,这可能与果园畦灌
灌溉方式有关。 4—5月 MDS开始增加,6—7月达到最大(400—500 滋m)。 2007年 MDS从 7月的 500 滋m逐
渐减小至 9月底的 300 滋m;2008 年 MDS 在 6 月初达到 400 滋m 逐渐减小到 9 月底 300 滋m;2009 和 2010 年
MDS从 4月的 50 滋m逐步增加至 5 月底的 300 滋m,6 月分别达到最大值 400 滋m和 500 滋m,然后逐步减小。
图 3还表明,除发芽开花期外,ET0增加时,苹果树 MDS增大。
苹果树 MDS与茎干水势(渍stem)呈显著负相关关系( r2 = 0.76
***, n = 14),随着 渍stem减小,MDS 增大(图
4)。 以往研究也表明,MDS与 渍stem呈线性关系[7, 18, 20鄄21]。 苹果树 MDS 与茎干水势关系密切,表明 MDS 可以
反映成年苹果树体内水分状况[11]。
通过多年试验资料,分析得到 MDS与气象因子间的关系(表 2)。 从表 2 中可以发现,除 2007 年外,果实
膨大和成熟期 MDS对净辐射、日最高空气温度(Tmax)、日最大水汽压差响应明显高于发芽开花和展叶幼果
期。 果实膨大和成熟期 MDS与日平均净辐射(Rn)、日最大水汽压饱和差(VPDmax)的相关系数均超过 0.5;
2009年果实膨大和成熟期 MDS与 VPDmax相关系数最高达到 0.948。 全生育期 MDS 与气象因素的决定系数
大小顺序为 VPDmax>Tmax>Rn。
3摇 讨论
3.1摇 茎干直径微变化规律
Ortu觡o等认为日最大、最小茎干直径分别在日出和下午的某个时刻[1]。 Intrigliolo和 Castel也认为茎干直
径在早晨达到最大值,在黄昏时达到最小值[22]。 石羊河流域苹果树日最大最小茎干直径出现在 8:00 和
16:00两个特定时刻,这为非连续测量确定日最大收缩量提供科学依据。
连续降雨天气条件下,果树茎干直径变化不再呈正弦曲线波动,茎干直径日最小值或最大值出现在一天
起始或结束时刻,而不是出现在 16:00 和 8:00。 这可能是由于树干吸水,直径膨大,此时得到的茎干直径微
8574 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
图 3摇 茎干直径日最大收缩量MDS (滋m)
Fig.3摇 Season variation of maximum daily stem shrinkage (MDS)
摇 图 4摇 晴天天气条件下旱区苹果园茎干直径日最大收缩量
(MDS)与茎干水势(渍stem)的关系
Fig. 4 摇 Relationship between maximum daily stem shrinkage
(MDS) and stem water potential (渍stem)
变化参数不能反映植物体吸水失水过程,应进行校正。
晴天和多云天气条件下茎干直径微变化规律无明显差
别,说明茎干直径微变化受热胀冷缩影响较小。 分析降
雨或灌溉导致的茎干直径波动有以下原因:(1)降雨和
灌溉使得植物体内水分状况良好,果树茎干直径显著增
大;(2)降雨后果树茎干树皮受水分影响发生膨胀,随
着树皮水分减少,果树茎干直径也减小,而且这种减小
可以抵消茎干直径生长。 这会引起茎干直径变化监测
结果误差,需要进行合理校正以得到正确的茎干直径变
化监测结果。
雨天天气下,茎干直径微变化峰值不明显。 除了阴
雨天气,日最大茎干直径(MXTD)在发芽后逐日增大;
成熟采收期 MXTD 不再增加,甚至是逐日降低。 2007
和 2008年,果树茎干直径在 DOY 194—200 d期间停止
增长,2009—2010年,在 DOY 186—194 d之间茎干直径不再增长。 DOY 120—186 d 为果树展叶幼果期和果
实膨大期前半段,这期间果树枝条叶片快速生长。
3.2摇 茎干直径日最大收缩量(MDS)与各环境因素关系
MDS可以反映成年苹果树体内水分状况,因此采用 MDS 探讨茎干直径微变化对环境因素的响应。 全生
育期 MDS与气象因素的决定系数大小顺序为 VPDmax>Tmax>Rn,这表明 VPDmax是影响苹果树的 MDS的主要因
素。 有研究表明其他气象因素,如太阳辐射[23]和空气温度[7]是与 MDS最相关的因素。 MDS与 VPDmax和 Tmax
相关性高表明 MDS受最大需水时段内的气象条件影响大[24],Egea 等认为 MDS 与各气象因素相关程度差异
主要是果树种类不同造成的[24]。 从多元线性回归模型看(表 2),果实膨大和成熟期 MDS 与气象因子综合相
关系数高于发芽开花和展叶幼果期,这可能是果树体内储水量大,MDS的变化受气象因素的影响大[11]。
9574摇 14期 摇 摇 摇 刘春伟摇 等:基于茎干直径微变化制定苹果灌溉制度 摇
http: / / www.ecologica.cn
表 2摇 不同生育阶段MDS对环境因子的响应
Table 2摇 Relationship between MDS and environmental factors in different stages
年份
Year X
发芽开花和展叶幼果期
Bud development, flowering and leaf expansion
a b r2 n
果实膨大和成熟期
Fruit expanding and maturing
a b r2 n
2007 Rn / (W / m2) 3.04 -58.42 0.733*** 43 1.74 80.04 0.519*** 69
Ta / 益 47.38 -534.77 0.633*** 43 23.09 -164.15 0.294*** 69
Tmax / 益 28.47 -405.33 0.741*** 43 22.94 -323.71 0.655*** 69
Tmid13 / 益 27.67 -334.70 0.761*** 43 22.71 -274.46 0.643*** 69
T8—16 / 益 33.67 -403.14 0.789*** 43 25.24 -270.33 0.588*** 69
VPD(KP a) 165.55 225.24 0.200** 43 207.79 103.99 0.306*** 69
VPDmax / KPa 132.20 -86.26 0.775*** 43 100.48 -31.82 0.709*** 69
ET0 / (mm / d) 71.20 146.05 0.322*** 43 69.83 71.26 0.499*** 69
多元模型
MDS=-207.82+105.60VPD-25.03Ta+2.00Rn
+33.30T8—16+47.38ET0, r2 = 0.913
MDS= 332.25-27.07Tmax+213.11VPDmax,
r2 = 0.731
2008 Rn / (W / m2) 0.71 98.46 0.132** 96 1.24 20.90 0.677*** 71
Ta / 益 2.93 156.84 0.020 96 13.76 -43.45 0.326*** 71
Tmax / 益 3.02 123.22 0.042* 96 11.49 -119.50 0.560*** 71
Tmid13 / 益 3.54 117.11 0.061* 96 11.40 -97.04 0.537*** 71
T8—16 / 益 3.79 123.07 0.051* 96 13.45 -99.21 0.511*** 71
VPD / KPa 15.20 191.50 0.003 96 152.41 82.09 0.357*** 71
VPDmax / KP a 20.00 149.35 0.046* 96 63.46 29.65 0.602*** 71
ET0 / (mm / d) 16.93 140.68 0.041* 96 50.41 19.62 0.680*** 71
多元模型 MDS= 141.55+2.20Rn-69.08ET0, r2 = 0.239 MDS= 19.62+50.41ET0, r2 = 0.680
2009 Rn / (W / m2) 1.57 -76.96 0.420*** 95 1.91 -44.18 0.791*** 66
Ta / 益 22.36 -213.53 0.460*** 95 25.52 -223.18 0.402*** 66
Tmax / 益 16.32 -274.07 0.439*** 95 23.24 -403.95 0.862*** 66
Tmid13 / 益 14.75 -194.47 0.388*** 95 23.80 -365.43 0.820*** 66
T8—16 / 益 19.87 -259.26 0.491*** 95 27.52 -371.19 0.726*** 66
VPD / KPa 52.55 113.46 0.020 95 326.06 17.22 0.617*** 66
VPDmax / KPa 86.83 -65.81 0.374*** 95 113.03 -44.44 0.948*** 66
ET0 / (mm / d) 62.81 -67.86 0.408*** 95 77.35 -21.01 0.846*** 66
多元模型
MDS= 101.60-275.26VPD+175.80VPDmax+
41.92T-37.66Tmax+47.38ET0, r2 = 0.807
MDS=-53.57+0.32Rn+97.65VPDmax, r2 = 0.953
2010 Rn / (W / m2) 1.87 -80.79 0.480*** 79 1.80 -26.77 0.716*** 80
Ta / 益 19.58 -110.57 0.575*** 79 16.82 -90.65 0.337*** 80
Tmax / 益 16.24 -214.27 0.664*** 79 16.53 -243.77 0.692*** 80
Tmid13 / 益 16.39 -181.59 0.654*** 79 16.85 -217.11 0.697*** 80
T8—16 / 益 17.73 -158.89 0.641*** 79 18.09 -191.51 0.586*** 80
VPD / KPa 217.23 -10.51 0.333*** 79 225.17 32.81 0.509*** 80
VPDmax / KP a 121.42 -112.63 0.756*** 79 91.08 -30.56 0.794*** 80
ET0 / (mm / d) 77.02 -91.47 0.517*** 79 67.44 -13.81 0.700*** 80
多元模型
MDS=-86.61-130.28VPD+160.30VPDmax,
r2 = 0.799
MDS= 36.41-23.03Ta+15.29T8—16+95.38VPDmax,
r2 = 0.864
摇 摇 以 DOY 186—200将生育期划分为两个阶段; 表达式 MDS=aX+b,式中 X表示不同的环境因子,a,b为系数,r2为相关系数平方;Rn表示净辐
射,Ta、Tmax、Tmid13、T8—16分别为日平均、日最大、中午 13:00、和 8:00—16:00 的空气温度,VPD 和 VPDmax分别为日平均和日最大水汽压差
(KPa),ET0表示参考作物蒸发蒸腾量(mm / d);r2没有标记表示显著性因子高于 0.05,不显著,*、**、***分别表示显著性水平 P<0.05,P<
0.01,P<0.001
当 ET0增加时,苹果树茎干失水增加,这会导致茎干水势下降和植物与土壤间水势梯度上升,从而 MDS
0674 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
增大[11]。 由于发芽开花期叶片较小,ET0增大未导致果树茎干过量失水,茎干收缩不明显,故MDS与 ET0之间
的关系不明显。 不同生育阶段 MDS与 ET0之间的决定系数差别较大,发芽开花和展叶幼果期较小,果实膨大
和成熟期较高为 0.50—0.85(表 2)。 研究表明,成年柠檬树(30 年生)、樱桃树(2 年生)、石榴树(10 年生)和
油桃树(7年生)的 MDS与 ET0之间的决定系数分别为 0.68[7]、0.5—0.6[26]、0.76[26]和 0.37[27],不同果树 MDS
与 ET0的关系不仅与果树种类有关,还与土壤含水量[28]和树干液流量[29]有关。
3.3摇 茎干直径微变化与产量的关系
2007年 DOY 150—280之间,茎干直径增大 1994 滋m。 2008、2009 和 2010 年茎干直径增大总量分别为
4796、2152 滋m和 3063 滋m,2007—2010 年苹果产量分别为 81200、37715、82067、32597 kg / hm2,果实产量越
高,茎干直径年增长总量较小,果实负载量对茎干直径的增大总量有影响。 从年际变化看,直径年增长量有下
降趋势。 Berman和 DeJong的研究认为果实产量越高,茎干直径年增长量越低,单株果树产量与树干直径年
增长量呈反比关系[30]。 Conejero也认为果实产量与茎干直径微变化的关系密切[20]。
3.4摇 茎干直径日最大收缩量指导灌溉方法探讨
由于茎干直径微变化受气象因素、土壤水分、树龄、耕作措施等影响较大,目前很少采用其绝对值作为灌
溉标准,而是根据不同水分状况下的茎干直径微变化规律来进行精确灌溉[31]。 其基本原理是以充分供水下
各参数的变化为标准,根据实际的参数与充分供水下规律对比,得到实际生产中的灌溉制度。
充分供水条件下 MDS主要受气象因素影响,充分灌溉下 MDS 的值可作为灌溉参考值,当苹果树茎干
MDS持续高于水分充足条件下的 MDS 时,就需要进行灌溉来保证果树体内水分状况良好[17]。 MDS 可以充
分反映植物细胞吸水膨胀、失水收缩的过程,故通过充分供水下的 MDS的来指导灌溉是目前研究的热点。 根
据本研究结论,MDS可以由以下几种途径确定:第一,精确测定其特定时段树干直径(早晨和傍晚的最大和最
小值)可以得到近似的 MDS数据;第二,采用测树器实际测定 MDS 结果;第三,采用经验公式,根据单一因素
或多因素回归模型近似计算 MDS。 假定充分供水下的 MDS 为 MDSr,实际生长条件下的 MDS 为 MDSt,则可
以得到 MDS的信号强度 SIMDS的变化过程[1]:
SIMDS =MDSt / MDSr (4)
充分供水灌溉标准 SIMDS可取为 1或者小于 1;依据灌溉可利用水资源状况,可取 SIMDS为 1.15、1.25 等作
为非充分灌溉的标准。 一般当 MDSt值连续 3d超过所选阈值时进行灌溉。 若需要在某阶段进行非充分灌溉,
则调高这一阶段的信号强度[2]。
4摇 结论
果树茎干直径在 8:00左右达到最大值,在 16:00左右达到最小值,精确测定这两个时刻茎干直径可近似
得到其日最大收缩量(MDS)。 MXTD呈先增长后保持稳定的季节变化规律;MDS 与茎干水势关系密切,表明
茎干直径微变化可以反映苹果树水分状况;MDS对 VPDmax和 ET0响应最为明显,果实膨大和成熟期的 MDS对
净辐射、空气温度、水汽压差、参考作物蒸发蒸腾量响应明显高于发芽开花和展叶幼果期。 综上所述,苹果树
茎干直径微变化规律可以为制定苹果园的灌溉制度提供科学依据。
参考文献(References):
[ 1 ]摇 Ortu觡o M F, Conejero W, Moreno F, Moriana A, Intrigliolo D S, Biel C, Mellisho C D, P佴rez鄄Pastor A, Domingo R, Ruiz鄄S佗nchez M C,
Casadesus J, Bonany J, Torrecillas A. Could trunk diameter sensors be used in woody crops for irrigation scheduling? A review of current knowledge
and future perspectives. Agricultural Water Management, 2010, 97(1): 1鄄11.
[ 2 ] 摇 Fern佗ndez J E, Cuevas M V. Irrigation scheduling from stem diameter variations: a review. Agricultural and Forest Meteorology, 2010, 150(2):
135鄄151.
[ 3 ] 摇 孟兆江, 段爱旺, 刘祖贵, 张寄阳. 根据植株茎直径变化诊断作物水分状况研究进展. 农业工程学报, 2005, 21(2): 30鄄33.
[ 4 ] 摇 康敏, 杜太生, 刘春伟. 西北旱区苹果树茎干直径变化规律及其对环境因素的响应研究. 节水灌溉, 2009, (9): 4鄄7.
[ 5 ] 摇 Otieno D O, Kurz鄄Besson C, Liu J, Schmidt M W T, Vale鄄Lobo Do R, David T S, Siegwolf R, Pereira J S, Tenhunen J D. Seasonal variations in
1674摇 14期 摇 摇 摇 刘春伟摇 等:基于茎干直径微变化制定苹果灌溉制度 摇
http: / / www.ecologica.cn
soil and plant water status in a Quercus suber L. stand: roots as determinants of tree productivity and survival in the Mediterranean鄄type ecosystem.
Plant and Soil, 2006, 283(1鄄2): 119鄄135.
[ 6 ] 摇 Ortu觡o M F, Brito J J, Conejero W, Garc侏a鄄Orellana Y, Torrecillas A. Using continuously recorded trunk diameter fluctuations for estimating water
requirements of lemon trees. Irrigation Science, 2009, 27(4): 271鄄276.
[ 7 ] 摇 Ortu觡o M F, Brito J J, Garc侏a鄄Orellana Y, Conejero W, Torrecillas A. Maximum daily trunk shrinkage and stem water potential reference equations
for irrigation scheduling of lemon trees. Irrigation Science, 2009, 27(2): 121鄄127.
[ 8 ] 摇 Ortu觡o M F, Alarc佼n J J, Nicol佗s E, Torrecillas A. Interpreting trunk diameter changes in young lemon trees under deficit irrigation. Plant Science,
2004, 167(2): 275鄄280.
[ 9 ] 摇 Cuevas M V, Torres鄄Ruiz J M, 魣lvarez R, Jim佴nez M D, Cuerva J, Fern佗ndez J E. Assessment of trunk diameter variation derived indices as water
stress indicators in mature olive trees. Agricultural Water Management, 2009, 97(9): 1293鄄1302.
[10] 摇 Ortu觡o M F, Garc侏a鄄Orellana Y, Conejero W, Ruiz鄄S佗nchez M C, Alarc佼n J J, Torrecillas A. Stem and leaf water potentials, gas exchange, sap
flow, and trunk diameter fluctuations for detecting water stress in lemon trees. Trees, 2006, 20(1): 1鄄8.
[11] 摇 Liu C W, Kang S Z, Li F S, Li S E, Du T S. Relationship between environmental factor and maximum daily stem shrinkage in apple tree in arid
region of northwest China. Scientia Horticulturae, 2011, 130(1): 118鄄125.
[12] 摇 Mercier V, Bussi C, Lescourret F, G佴nard M. Effects of different irrigation regimes applied during the final stage of rapid growth on an early
maturing peach cultivar. Irrigation Science, 2009, 27(4): 297鄄306.
[13] 摇 韩立新, 汪有科, 李晓彬. 基于茎直径微变化的梨枣灌溉指标的初步研究. 园艺学报, 2012, 39(3): 552鄄560.
[14] 摇 张寄阳, 段爱旺, 孟兆江, 刘祖贵, 陈金平, 刘战东. 不同水分状况下棉花茎直径变化规律研究. 农业工程学报, 2005, 21(5): 7鄄11.
[15] 摇 Turner N C. Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 1981, 58(1鄄3): 339鄄366.
[16] 摇 Allen R G, Pereira L S, Raes D, Smith M. Crop evapotranspiration鄄Guidelines for computing crop water requirements鄄FAO Irrigation and drainage
paper 56. Roma, Italy: FAO, 1998.
[17] 摇 Ortu觡o M F, Garc侏a鄄Orellana Y, Conejero W, Ruiz鄄S佗nchez M C, Mounzer O, Alarc佼n J J, Torrecillas A. Relationships between climatic variables
and sap flow, stem water potential and maximum daily trunk shrinkage in lemon trees. Plant and Soil, 2006, 279(1鄄2): 229鄄242.
[18] 摇 Intrigliolo D S, Castel J R. Continuous measurement of plant and soil water status for irrigation scheduling in plum. Irrigation Science, 2004, 23
(2): 93鄄102.
[19] 摇 Conejero W, Alarc佼m J J, Garc侏a鄄Orellana Y, Abrisqueta J M, Torrecillas A. Daily sap flow and maximum daily trunk shrinkage measurements for
diagnosing water stress in early maturing peach trees during the post鄄harvest period. Tree Physiology, 2007, 27(1): 81鄄88.
[20] 摇 Conejero W, Ortu觡o M F, Mellisho C D, Torrecillas A. Influence of crop load on maximum daily trunk shrinkage reference equations for irrigation
scheduling of early maturing peach trees. Agricultural Water Management, 2010, 97(2): 333鄄338.
[21] 摇 Moriana A, Gir佼n I F, Mart侏n鄄Palomo M J, Conejero W, Ortu觡o M F, Torrecillas A, Moreno F. New approach for olive trees irrigation scheduling
using trunk diameter sensors. Agricultural Water Management, 2010, 97(11): 1822鄄1828.
[22] 摇 Intrigliolo D S, Castel J R. Evaluation of grapevine water status from trunk diameter variations. Irrigation Science, 2007, 26(1): 49鄄59.
[23] 摇 Velez J E, Intrigliolo D S, Castel J R. Scheduling deficit irrigation of citrus trees with maximum daily trunk shrinkage. Agricultural Water
Management, 2007, 90(3): 197鄄204.
[24] 摇 Egea G, Pag佗n E, Baille A, Domingo R, Nortes P A, P佴rez鄄Pastor A. Usefulness of establishing trunk diameter based reference lines for irrigation
scheduling in almond trees. Irrigation Science, 2009, 27(6): 431鄄441.
[25] 摇 Abdelfatah A, Aranda X, Sav佴 R, De Herralde F, Biel C. Evaluation of the response of maximum daily shrinkage in young cherry trees submitted to
water stress cycles in a greenhouse. Agricultural Water Management, 2013, 118: 150鄄158.
[26] 摇 GalindoA, Rodr侏guez P, Mellisho C D. Assessment of discretely measured indicators and maximum daily trunk shrinkage for detecting water stress in
pomegranate trees. Agricultural and Forest Meteorology, 2013, 180: 58鄄65.
[27] 摇 Rosa De La J M, Conesa M R, Domingo R, Torres R, P佴rez鄄Pastor A. Feasibility of using trunk diameter fluctuation and stem water potential
reference lines for irrigation scheduling of early nectarine trees. Agricultural Water Management, 2013, 126: 133鄄141.
[28] 摇 余克顺, 李绍华, 孟昭清, 罗国光. 水分胁迫条件下几种果树茎干直径微变化规律的研究. 果树科学, 1999, 16(2): 86鄄91.
[29] 摇 丁凡, 潘存德. 库车白杏茎直径和茎液流速日变化及其与环境因子的关系. 新疆农业科学, 2013, 50(1): 38鄄45.
[30] 摇 Berman M E, DeJong T M, Doyle J F, Day K R. Seasonal patterns of vegetative growth and competition with reproductive sinks in peach (Prunus
persica). The Journal of Horticultural Science & Biotechnology, 2003, 78(3): 303鄄309.
[31] 摇 P佴rez鄄L佼pez D, P佴rez鄄Rodr侏guez J M, Moreno M M, Prieto M H, Ram侏rez鄄Santa鄄Pau M, Gij佼n M C, Guerrero J, Moriana A. Influence of different
cultivars鄄locations on maximum daily shrinkage indicators: Limits to the reference baseline approach. Agricultural Water Management, 2013, 127:
31鄄39.
2674 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇