全 文 :第 35 卷第 5 期
2015年 3月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol.35,No.5
Mar.,2015
http: / / www.ecologica.cn
基金项目:国家自然科学基金 ( 41371375); 北京市自然科学基金 ( 8132018 ); 国家 “十二五 冶 科技支撑计划项目 ( 2012BAH33B03,
2012BAH33B05)
收稿日期:2013鄄10鄄13; 摇 摇 网络出版日期:2014鄄07鄄14
*通讯作者 Corresponding author.E鄄mail: huiwangyan@ sohu.com
DOI: 10.5846 / stxb201310132463
康孝岩, 王艳慧, 段福洲.单一景观空间分布指数及其适用性评价.生态学报,2015,35(5):1311鄄1320.
Kang X Y, Wang Y H, Duan F Z.Spatial distribution index and its applicability evaluation for single鄄type landscape.Acta Ecologica Sinica,2015,35(5):
1311鄄1320.
单一景观空间分布指数及其适用性评价
康孝岩, 王艳慧*, 段福洲
首都师范大学资源环境与旅游学院; 城市环境过程与数字模拟国家重点实验室培育基地; 三维信息获取与应用教育部重点实验室; 资源环境
与地理信息系统北京市重点实验室, 北京摇 100048
摘要:为描述单一景观的空间分布离散性和广度特征,引入基于香农熵的空间分布指数(MSHDI, Modified Shannon忆s Distribution
Index),利用河南省中南部地区 1990、2001和 2007 年 3 期 TM / ETM+遥感影像,进行了 MSHDI与经典景观指数的比较,并分析
了 MSHDI与面积指数(PLAND, Percentage of Landscape)在多网格尺度下的相关关系。 结果表明:(1)MSHDI在描述单一景观
的空间分布广度和离散程度特征方面具有较好的适用性。 MSHDI能适应不同制图综合程度的影响,并能反映出景观斑块边缘
的细微差别。 (2)通过分析 MSHDI与 PLAND之间相关系数的大小和变化程度可以分别验证 MSHDI的表征性和稳定性。 (3)
MSHDI适用于基底和散布状景观,两种指数之间有显著的正相关性(农用地 軃r = 0.939, 軈P = 0.000;城市建设 軃r = 0.877, 軈P =
0郾 004;工矿仓储軃r = 0.870, 軈P = 0.002;自然绿地軃r = 0.966, 軈P = 0.001),且随网格粒度变化不大(农用地 r= 0.921依0.054;城市建设
r= 0郾 867依0.107;工矿仓储 r= 0.883依0.052;自然绿地 r= 0.964依0.024);而对网状景观则缺乏稳定性。
关键词:香农熵; 单一景观; 空间分布指数; 面积指数; 适用性
Spatial distribution index and its applicability evaluation for single鄄type landscape
KANG Xiaoyan, WANG Yanhui*, DUAN Fuzhou
College of Resources Environment & Tourism; State Key Laboratory Incubation Base of Urban Environmental Processes and Digital Simulation; Key Laboratory
of 3鄄Dimensional Information Acquisition and Application, Ministry of Education; Beijing Key Laboratory of Resource Environment and Geographic Information
System, Capital Normal University, Beijing 100048, China
Abstract: A single鄄type landscape, as an important component of the landscape ecological system, is an abstract for the
complicated landscape. The SHDI ( Shannon忆s Diversity Index), typically used to describe the complexity of nonlinear
system, consists of various components, measures the diversity and variability on spatial structure, functional mechanism
and temporal dynamics. Because the single鄄type landscape cannot be described by SHDI, based on Shannon Entropy, a
spatial distribution index MSHDI (Modified Shannon忆s Distribution Index) was proposed to address the spatial distribution
division and breadth of single鄄type landscapes. Remote sensing technique can be used effectively to extract information of
single landscapes, which directly represent their development. Using three Landsat images (May 4, 1990 by TM sensor,
May 10, 2001 by ETM+ sensor and May 19, 2007 by TM sensor), this paper presents the quantitative comparison between
MSHDI and classic landscape indices (MPS, FI, et al), and discusses the correlative relationship between MSHDI and
area index (PLAND, Percentage of Landscape) with multiple mesh grains, choosing the South Central of Henan Province
as our study area.The method based on MSHDI in this study is mainly used in six single landscapes (Agriculture land,
Transportation landscape, Surface water landscape, Forest and Grassland, Urban construction landscape and Industrial and
http: / / www.ecologica.cn
mining area) . Results show that the spatial distribution index on spatial distribution scope and division忆s description has
significant feasibility and adaptability, as it accurately reveals different types of single landscapes忆 spatial distribution scope
and reflects the nuances of edges of different landscape patches. It is relatively stable in the spatial distribution relationships
among various single landscapes in this study area (MSHDI: Agriculture land (0.982依0.002) > Transportation (0.822依
0郾 020) > Water (0. 789 依 0. 015) > Forest and Grassland ( 0. 778 依 0. 015) > Urban construction ( 0. 643 依 0. 020) >
Industrial and mining area ( 0. 626 依 0. 025)). Area index can partially reflect the spatial distribution of single鄄type
landscape; moreover, it does not vary with the size of the mesh. Hence according to the intrinsically closely correlation
coefficient (between MSHDI and area index) and its degree of change, MSHDI忆s characterization and stability can be
verified respectively. The correlation between the two indices is significantly positive for matrix and scatter landscape
(Agriculture land: 軃r = 0.939, 軈P = 0.000; Urban construction: 軃r = 0.877, 軈P = 0.004; Industrial and mining area: 軃r =
0郾 870, 軈P = 0郾 002; Forest and Grassland: 軃r = 0.966, 軈P = 0.001), and little change (Agriculture land: r = 0.921依
0郾 054; Urban construction: r = 0.867依0.107; Industrial and mining area: r = 0.883依0.052; Forest and Grassland: r =
0郾 964依0.024), while it is more complicated for the webbed landscape ( Transportation and Surface water landscape) .
Consequently, in order to address the single鄄type landscape appropriately, we proposed the spatial distribution index
MSHDI. This study clearly demonstrates that MSHDI is appropriate for single鄄type landscape on its scope and division忆s
description. We compared MSHDI with conventional landscapes indices comprehensively to prove its characterization. Then,
MSHDI忆s stability was certified by the correlation coefficient between MSHDI and PIAND and its magnitude of change.
Thus, it is rigorous and complete for the applicable certification of MSHDI.There are some inadequacies that need to be
considered in the future study. First, we only selected the study area in which agriculture is predominated. The regions of
other predominant land use types should be considered. Second, for the webbed landscape, the spatial distribution index
should be improved to meet its stability. These inadequacies will be resolved in the next step of the study.
Key Words: Shannon entropy; single鄄type landscape; spatial distribution index; area index; applicability
信息熵概念[1]与分析方法起源于信息论领域,最早应用于物种分布和遗传变异特征信息的描述,香农熵
作为度量生物多样性的指标被 MacArthur[2]应用于他的早期研究中。 自 20 世纪 50 年代以来,香农多样性指
数被广泛应用于景观生态学、土壤学等地学领域[3鄄6],Ib佗觡ez[3鄄4]基于土壤学和景观学的研究,提出了香农多样
性在地学研究中具有广泛性和普适性的特征。
以上各研究领域中,香农熵多是用于定量描述生物圈各非线性系统的复杂程度,即由不同类型要素构成
的景观在空间结构、功能机制和时间动态方面的多样性或变异性[7];而由于经典香农公式的缺陷,其无法解
释单一类型景观的空间分布特征。 Yabuki 等[8]基于日本北海道的土壤和土地利用的研究,对经典香农熵进
行了修改,赋予其新的内涵,并基于此对土壤多样性和土地利用多样性进行了关联评价;段金龙、张学雷
等[9鄄10]分别选取中国中、东部不同尺度典型样区为研究区域,将 MSHDI应用于土壤、区域地表水、植被指数和
热环境等领域,并对它们进行了关联评价。 景观指数名目繁多,之间的相关性往往很高,同时采用同一类型的
指数并不能增加新信息[11];且在不同空间分辨率和重采样粒度下,景观格局分析的结果往往差别很大[7]。 近
年来,布仁仓等[12]应用辽宁省影像数据对经典景观指数进行了系统的相关分析,并指出影响指数间相关关系
的因素有景观格局、生态学意义和计算公式等;曹银贵等[13]利用三峡库区长时间幅度遥感数据研究了经典景
观指数的粒度效应。
然而,在不同粒度下对指数之间的相关关系的研究相对较少[14]。 为了描述单一景观的空间分布的离散
性和广度特征,本研究将引入MSHDI(Modified Shannon忆s Distribution Index)指数;并通过与经典景观指数的比
较及其在多网格(Mesh)尺度下与面积指数(PLAND, Percentage of Landscape)的相关关系来定量评价 MSHDI
的适用性(表征性和稳定性),以期为香农熵理论在描述单一景观空间分布特征方面的适用性提供论证,并为
2131 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
土地资源的合理配置和持续利用提供基础资料和科学依据。
1摇 研究材料与方法
图 1摇 研究区位置示意图
Fig.1摇 Location of study area schematic plot
1.1摇 研究区概况
选取河南省中南部典型样区(平顶山市的市区、汝
州市、郏县、宝丰县和叶县,许昌市的市区、许昌县、长葛
市、禹州市和襄城县以及漯河市的舞阳县和临颍县等三
市连片区域)为研究区(图 1),区域内自然、气候与人文
状况相差不大,主体为典型农业景观。 平顶山市位于河
南省中南部,介于东经 112毅14忆—113毅39忆,北纬 33毅9忆—
34毅21忆之间,地势西高东低,呈梯形展布,处于暖温带和
亚热带气候交错的边缘地区,具有明显的过渡性特征。
许昌市地处中华中东部腹地,介于东经 113毅04忆—114毅
19忆,北纬 33毅46忆—34毅28忆之间,属北温带季风气候。 漯
河市位于河南省中南部,介于东经 113毅27忆—114毅16忆,
北纬 33毅 24忆—33毅 59忆之间,四季分明,属暖湿性季风
气候。
1.2摇 数据源及数据预处理
选用美国地球资源卫星( Landsat) 1990 年 5 月 4
日、2001 年 5 月 10 日和 2007 年 5 月 19 日覆盖研究区域的 3 个时期的 TM或 ETM+影像数据作为数据源。 由
于 3 期影像获取时间相近,研究忽略数据间的时相差异。 其他相关数据包括 19.5 m 分辨率 CEBERS 配准基
准图、研究区行政分布和轮廓图等。 首先对研究区影像数据进行监督分类,然后结合 Google Earth 高清影像
对分类数据进行了精细校正。 鉴于研究区域环境特点、土地利用的实际情况、影像数据的可分辨能力以及技
术处理等问题,研究以《土地利用现状分类》(2007 版) [15]为依据,将研究区域的土地利用方式分为地表水体
(含水利设施用地)、城市建设用地(包括主城区及较大乡镇)、农用地(包括面积较小的乡镇和农村)、工矿仓
储用地、交通运输用地(仅包括主要道路桥梁)和自然绿地(山区的林地、草地,包括其他较大面积的林地等)
等 6 个类型景观。 研究中使用的 GIS和遥感软件分别为 ArcGIS 9.3 和 ENVI 4.5;数据分析软件为 IBM SPSS
19.0。
1.3摇 研究方法
1.3.1摇 单一景观指数的测度方法
描述斑块类型水平的经典景观指数主要有 PLAND、平均斑块面积(MPS)、破碎化指数(FI)、景观分离度
(DIVISION)、单位周长的斑块数(NPUP)和边界密度(ED)等[7,11](表 1)。
经典景观指数侧重描述景观异质性,而对景观整体性缺乏把握。 本研究在前人[8鄄10]对 MSHDI 研究的基
础上,归纳抽象出空间实体(或现象)空间分布离散性(广度)的计量公式,并对单一景观进行表征:
MSHDI =
- 移
s
i = 1
pi lnpi
lnS
(7)
式中,MSHDI为空间实体(或现象)的空间分布指数(或称空间分布香农熵指数),取值为[0, 1];i = 1, 2,
…, S;S为某网格粒度下网格的数目;P i为第 i 个网格中空间实体(或现象)所覆盖的面积占区域内该空间实
体(或现象)所覆盖的总面积的比例。 MSHDI 取值越大,表明区域空间实体(或现象)的空间分布的广度越
大,离散性分布越突出;反之亦然。 该公式形式上与 Pielou均匀度类同,但内涵不同。
3131摇 5期 摇 摇 摇 康孝岩摇 等:单一景观空间分布指数及其适用性评价 摇
http: / / www.ecologica.cn
本研究的具体空间实体为单一景观,是对土地利用分类结果的进一步抽象。 以农用地景观为例,它包括
两种组分,将农用地视为一种组分,而将区域内其他土地利用类型归为一种组分[5];其他类型单一景观定义
与之相同。 这与传统意义上的以基底类型命名的单一景观不同,以下不再赘述。
1.3.2摇 关联分析的测度方法
为探究单一景观的 MSHDI与其 PLAND的关联程度,定义了一种关于两者之间相关性的关联系数,其公
式为:
r A,( )B = 依max rl A,( )B , rnl A,( ){ }B (8)
式中,A和 B分别为单一景观的 MSHDI和 PLAND指数,r(A, B)即为两者之间的关联系数,其符号与所取值
的原始值符号保持一致。 其中,rl(A, B)为两者之间的线性相关系数(Pearson积矩相关系数);rnl(A, B)为两
者的非线性相关系数,定义如下:
rnl A,( )B = 依max rl lnA,( )B , rl A,ln( )B , rl lnA,ln( ){ }B (9)
式中,rl(lnA, B)、rl(A, lnB)和 rl(lnA, lnB)分别为MSHDI的自然对数与 PLAND、MSHDI与 PLAND的自然对
数和 MSHDI的自然对数与 PLAND的自然对数之间的 Pearson积矩相关系数,rnl(A, B)的符号与所取值的原
始值符号一致。
表 1摇 经典的类型水平景观指数及其生态意义
Table 1摇 Classic indices and their ecological meaning of patch types
指数
Metrics
计算公式
Expression
应用层次
Level
生态意义
Ecological significance
面积指数 PLAND
Percentage of Landscape
A
TA
(1) 斑块类型 景观的组分,反映斑块类型空间分布情况
平均斑块面积 MPS
Mean Patch Area
A
N
10 -4 (2) 斑块类型 描述景观粒度,一定意义上揭示景观的破碎化程度
破碎化指数 FI
Fragmentation Index 1 -
amax
TA
(3) 斑块类型 景观异质性的重要组成,指征斑块破碎化程度,侧重景观内部
景观分离度 DIVISION
Landscape Division Index 1
- 移
N
j = 1
a j( )TA
2
(4) 斑块类型 度量某类型景观不同斑块个体分布的离散程度,侧重景观内部
单位周长斑块数 NPUP
Number of Patches of Unit Perimeter
N
L
(5) 斑块类型 揭示某一景观破碎化程度
边界密度 ED
Edge Density
L
A
(6) 斑块类型 揭示某类型景观被边界的分割程度,直接反映景观破碎化程度
摇 摇 A: 区域内某类型景观的总面积(hm2);TA: 区域的总面积(hm2);N: 某类型景观的斑块数目;a j: 某类景观的第 j 个斑块的面积(hm2),其
中 amax为最大斑块面积(hm2);L: 某类型景观的总边长(m)。
最后,在 P= 0.01和 P= 0.05 下进行显著性检验。 当 | r | >0.8, P<0.01 时,为显著相关关系;当 0.7< | r | <
0郾 8, P<0.01时,为明显变化趋势关系;当 | r | <0.7, P>0.01时,为无相关关系。
1.3.3摇 主要分析过程
在 ArcGIS 9.3环境下,利用精校正土地利用分类图,分别提取各类型景观的图形数据库及相应属性数据
库。 然后对部分研究区的栅格分类图和矢量数据分别进行重采样化和网格化,分析两种粒度推绎的异同;在
许昌市样区影像图(1990 年)的基础上,分别定量论述 MSHDI与经典景观指数对于不同制图综合结果的敏感
程度,以验证其表征性。 而后以公里网格化的 3 期景观数据为材料,以研究区为例,分析 6 类景观的 MSHDI
与 PLAND是否存在同步变化关系。 最后,将研究区以县域为单位进行分区,应用 SPSS 19.0软件进行 Pearson
相关性分析来探究不同网格粒度下各类单一景观 MSHDI与 PLAND之间的内在联系的大小和变化程度,进而
评价 MSHDI的适用性。
2摇 结果与分析
2.1摇 土地利用分类结果
摇 摇 依据上述方法,本研究对研究区 3 期遥感影像进行了解译,精纠正过程采用了相同程度的制图综合得到
4131 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
土地利用类型图(图 2)。 从中可以看出,研究区整体上为典型农业景观,3 个时相的农业用地面积均高于
80%;其次为自然绿地,占 10%左右;地表水体和城市建设用地约占 2%—3%;而交通运输及工矿仓储用地均
约占 1%—2%。 由于斑块、廊道和基底的区分具有相对性,并且在实际研究中很难确切区分,故本研究中将其
统称为斑块,即基底可看作是整体景观中占支配作用的斑块;而将廊道视为狭长型的斑块[11]。 其中,整体水
平上,农用地为主要类型景观,交通运输与地表水体为网状景观,自然绿地、工矿仓储及城镇建设用地为散布
状景观。
图 2摇 研究区土地利用类型图
Fig.2摇 Maps of land鄄use types of the study area
2.2摇 网格粒度效应与经典粒度效应的比较
经典景观指数的粒度效应本质上是由于栅格影像随着空间粒度的变化,对斑块的分割、聚合和改变斑块
边界所致[16]。 Hess[17]曾明确指出景观格局分析中误差的严重性和普遍性。 目前,通用的景观指数软件,如
FRAGSTATS,多是利用栅格数据来估算景观指数,在研究粒度效应时多是通过聚合相邻栅格来实现粒度推
绎,而此时数据的质量也会随着粒度逐渐增大而下降,甚至出现错误,这是研究方法的系统误差。 对研究区的
栅格分类图和矢量图分别进行了重采样化和网格化,以图 3所示样区(33 km伊33 km)为例,由图 3b—f可以明
显看出,景观影像随着粒度 1—5 km向上推绎,其复杂程度和精度逐渐降低(以城建用地为例,其分布形状逐
渐规整,位置发生偏移),误差逐渐积累(其中除农用地面积增加外,其他类型均逐渐减小)。
网格粒度效应指的是指数模型本身与选取网格大小相关的情况。 网格化后的矢量数据并没有改变景观
的复杂程度,仅仅划定出研究的基本单元(网格粒度)。 尤其对于地表水系和交通道路等廊道景观,经过“粗
粒化冶重采样后,其连通性等分布特征被完全破坏而呈现斑块性,甚至在 4—5 km粒度下,交通类型消失,从而
使得经典指数对其描述时失效;而基于网格化的矢量数据的 MSHDI则避免了该种情况的发生,且更具有现实
意义。
本研究采用矢量数据(图 3g—i)进行精确计算和分析景观指数,而基于重采样的空间粒度效应不是此次
5131摇 5期 摇 摇 摇 康孝岩摇 等:单一景观空间分布指数及其适用性评价 摇
http: / / www.ecologica.cn
研究的内容(图 3b—f)。
图 3摇 2001 年研究区(部分)粒度推绎示意图
Fig.3摇 The sketch map of grain scaling of the study area in 2001
2.3摇 MSHDI与经典类型水平指数的比较
上述经典的景观指数均可以从不同角度不同程度地揭示单一景观的空间分布特征(多样性、离散性或破
碎性),但是它们的影响因素及侧重反映的生态意义各不相同。 从计算公式上看,MPS、DIVISION、NPUP 均与
单一景观斑块个数 N直接相关;FI由景观最大斑块的面积决定;ED 与景观斑块周长之和成正比;而 MSHDI
则与 N无关。 对于地表水体和交通道路景观,由于其具有空间连续性而难以判定斑块数目 N,故讨论其
MPS、FI、DIVISION等经典指数显然是无意义的。
在数据采集的工作中,采集者的主观思维对数据质量影响较大,不同的人或同一人不同时间对同一影像
解译的结果往往不同。 本研究以许昌市区及周边区域为样区(11 km伊11 km),选用 1990 年监督分类后影像,
提取主城区建设用地,并进行精校正和不同程度的制图综合(图 4)。 其中,结果玉的斑块复杂程度最高,而结
果 V最低,5 种提取结果的复杂程度依次递减,综合程度依次递增;5 种情况下,斑块的核心区基本一致,只有
边缘部分略有变化。 基于此,研究对 MSHDI与经典类型水平指数进行定量比较,讨论它们对不同程度制图综
合的敏感程度,并评价 MSHDI在描述空间分布离散性和广度特征方面的适用性。
由于本研究所引入的 MSHDI指数是基于矢量数据解算的,为了排除无关变量的干扰,经典景观指数也使
用了矢量数据进行求解。 图 5展示了对应于图 4中 5 种提取结果的 MSHDI 和经典景观指数的变化情况,从
图中可以明显看出不同提取结果对各种指数的影响程度:
(1)城建景观面积最大为 3483.8 hm2(玉),最小为 3308. 3 hm2(V),平均为 3422. 5 hm2,相对偏差为
6131 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
图 4摇 1990 年样区(许昌市区)提取城市建设用地的不同结果
Fig.4摇 Different extractions of urban construction land of the sample area (Xuchang Downtown) in 1990
图 5摇 1990 年样区(许昌市区)城建用地景观指数统计图
Fig.5摇 The chart of indices of urban construction land of the sample area (Xuchang Downtown) in 1990
7131摇 5期 摇 摇 摇 康孝岩摇 等:单一景观空间分布指数及其适用性评价 摇
http: / / www.ecologica.cn
(-3.3%, 1.7%);最大斑块面积对不同提取结果的敏感程度相对较高,尤其是结果吁较之其他 4 种(比结果郁
(次大)高 41.8%);MPS对不同提取结果的敏感程度十分显著,并且呈现递增态势,这是因为制图综合直接影
响 N的变化,而 MPS由景观面积与 N决定。
(2)FI受不同提取结果的影响也比较明显,总体上呈现递减态势;而 MSHDI 与 PLAND 对提取结果的敏
感程度相对温和,并且两者变化基本上呈现同步态势,其中 MSHDI 的大小顺序为域(0.898) >玉(0.897)= 芋
(0.897)>郁(0.894)> 吁(0.892),PLAND的大小顺序也为域(0.288)>玉(0.287)= 芋(0.287)>郁(0.280)> 吁
(0.273);而 DIVISION对提取结果也不敏感,并且相对偏差较小(-0.3%至 0郾 2%),但是其与其他各种指数均
无同步变化关系。
(3)ED、NPUP 和 N等 3 种指数受不同提取结果的影响比较明显,三者整体上均呈现递减趋势。 其中,
ED的变化幅度明显高于景观面积的变化,其主要受斑块总周长的影响;可以推断,对于面积相当的景观,其
斑块数 N与斑块总周长呈正相关关系,并且 N的递减速度高于总周长,从而使得 NPUP 也逐渐减少。
选用研究区其他样区和单一景观进行了相同试验,反映出来类似的规律。 因此,研究认为:(1)较之
MPS、FI、DIVISION等经典景观指数,MSHDI更能适应制图综合的影响以准确地描述出单一景观的广度分布
特征,并能反映出其中的偏差,即 MSHDI有良好的表征性。 (2)PLAND与 MSHDI存在一定的相关关系;并且
由于网格化不改变各类用地的空间位置和面积大小,即不对 PLAND 的大小产生影响,故可以通过两者在不
同网格粒度下的相关性的变化程度来评价 MSHDI在描述单一景观分布特征方面的稳定性。 (3)PLAND可以
一定程度上反映单一景观的分布特征,故分析两者相关系数的大小也可佐证 MSHDI的表征性。
图 6摇 各类型单一景观的面积指数和空间分布指数
Fig.6摇 PLAND and MSHDI of various types of single landscapes
2.4摇 单一景观的空间分布特征分析
选取 1990—2007 年长时间序列中的 3 个时期的遥
感影像数据,对 6 类单一景观的 PLAND和 MSHDI 在 1
km网格粒度下进行了解算(图 6)。 结果显示:(1)总体
上讲,6 种类型单一景观的 MSHDI 大小关系为:农用地
(0.982依0.002) >交通运输(0.822依0.020) >地表水体
(0郾 789依0.015) >自然绿地(0.778依0.015) >城市建设
(0郾 643依0.020)>工矿仓储(0.626依0.025),由此可见在
研究的时间幅度范围内各类型景观之间的空间分布关
系相对稳定。 (2)交通道路景观的 MSHDI 逐渐增大,3
个时期分别为 0.802、0.834和 0.842,其空间分布的广度
有所增大。 ( 3)地表水体、工矿仓储和自然绿地的
MSHDI呈递减态势,说明 3 类景观在空间上的复杂性
和广度在降低,不过前者的降低趋势较为显著;后两者
在 2001—2007 年的减小程度不明显。 (4)城市建设和
农用地景观的 MSHDI 均为先升后降,前者变化较为明
显,后者变化较为缓和。 (5)相较而言,各类型景观的
PLAND之间的大小关系规律性不强,各时期的 PLAND
大小关系有所变化。
研究还发现:(1)在整体景观水平上,MSHDI与 PLAND无明显相关关系,P>0.01(1990 年 P = 0.052,2001
年 P= 0.050,2007 年 P= 0.061)。 换言之,不同单一景观的 MSHDI与 PLAND不具有可比性,以 1990 年为例,
地表水面积为交通用地的 3 倍,但两者的 MSHDI 相当(前后两者分别为 0.804, 0.802)。 从图中也可以明显
看出,同一时期各类型景观的 MSHDI与 PLAND明显无同步变化趋势,以 1990 年为例,6 类单一景观 PLAND
递增,而MSHDI呈现“先降后升,再降再升冶的变化趋势。 (2)在单一景观水平上,MSHDI与 PLAND存在普遍
8131 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
图 7摇 1990 年研究区自然绿地及分区分布
Fig.7摇 Forest and grassland and subareas of the study area in 1990
意义上的变化趋势,即同一类型景观在不同时期的两种
指数变化趋势大致相同,这点从图中可以看出。
2.5摇 MSHDI与 PLAND的相关分析
在上两节讨论的基础上,为了验证 MSHDI 在描述
单一景观空间分布特征的稳定性,对研究区进行细化研
究(图 7)以探讨同一时期各类单一景观的两种指数的
相关性。 首先,参照图 7所示方法对 3 期数据分别进行
分区(Z1—Z12),并分别计算各分区 6 种单一景观在 1
km、3 km 和 5 km 等 3 种网格粒度下的 MSHDI 和
PLAND指数。 然后,对同一时期同一景观同一网格粒
度下两种指数进行线性相关和非线性相关分析,并取绝
对值最大的相关系数作为两者之间的相关系数(公式
(8)),并对其进行显著性检验(表 2)。
表 2摇 空间分布指数与面积指数的相关分析
Table 2摇 The correlation analysis between MSHDI (Modified Shannon忆s Distribution Index) and PLAND (Percentage of Landscape)
网格 Mesh 1 km 3 km 5 km 1 km 3 km 5 km 1 km 3 km 5 km
农用地 Agriculture land 地表水体 Water 交通运输 Transportation
1990 0.966** 0.944** 0.833** 0.281 -0.619* -0.805** 0.804** 0.523 -0.507
2001 0.974** 1.000** 0.837** 0.434 -0.505 -0.662* 0.769** 0.292 -0.327
2007 0.985** 0.979** 0.929** 0.318 -0.627* -0.730** 0.756** 0.406 0.134
城市建设 Urban construction 工矿仓储 Industrial land 自然绿地 Forest and grassland
1990 0.977** 0.871** 0.613* 0.961** 0.938** 0.942** 0.981** 0.987** 0.982**
2001 0.966** 0.877** 0.759** 0.894** 0.749** 0.745** 0.988** 0.936** 0.916**
2007 0.981** 0.942** 0.908** 0.948** 0.807** 0.845** 0.995** 0.983** 0.922**
摇 摇 *P<0.05; **P<0.01; 下划线表示为线性相关系数,否则为非线性相关系数
可以明显看出:(1)在描述基底景观(农用地)和散布状景观(城市建设、工矿仓储和自然绿地)的空间分
布离散性和广度特征方面,MSHDI具有良好的稳定性。 MSHDI与 PLAND存在显著的正相关关系( 軃r >0.8,軈P<
0.01),且随网格粒度的变化程度不大。 (2)对于网状景观(地表水体和交通道路),因其两种指数的相关性与
网格粒度紧密相关,MSHDI的稳定性较差。 其中交通景观在 1 km 网格下两种指数有着明显变化趋势( 軃r =
0郾 776, 軈P <0.01),而在 3 km和 5 km粒度下表现为无相关关系(P>0.05);地表水体在 5 km 粒度下两种指数
存在明显的负相关趋势( 軃r = -0.732, 軈P <0.01),在 3—1 km推绎过程中发生不显著的负相关向不显著的正相
关的转变。
3摇 结论与讨论
(1)利用 MSHDI来描述单一景观的空间分布离散性和广度,具有可行性和适用性。 相较于经典香农熵
描述景观的内部特征,侧重于揭示非线性系统的空间异质性,MSHDI 描述的是单一景观的整体性特征,更侧
重于表征空间实体(或现象)的空间广度。 与经典景观指数多使用栅格数据估算不同,MSHDI 运用矢量数据
网格化精确解算,尤其在描述网状景观时更具有现实意义;其能够准确描述出单一景观整体上分布的广度特
征,并可以反映出景观边缘区的细微差别。
(2)在描述各类单一景观的广度分布特征方面,与经典景观指数相比,MSHDI具有良好的表征性,并能反
映出不同制图综合程度的偏差。 故可以预见,对多源数据而言,其会有较好的适应性。
(3)在研究区整体景观水平上,各类单一景观之间的 MSHDI和 PLAND 指数不具有可比性。 不同单一景
9131摇 5期 摇 摇 摇 康孝岩摇 等:单一景观空间分布指数及其适用性评价 摇
http: / / www.ecologica.cn
观各有自己的空间分布特点,其 MSHDI大小关系与 PLAND并不同步。
(4)通过分析MSHDI和 PLAND在不同网格粒度下的相关性变化程度,可以定量考量MSHDI指数的稳定
性。 研究得到:在单一景观水平上,对于基底和散布状景观,MSHDI 具有较好的稳定性;而对于网状景观,
MSHDI则不稳定。 对于农用地、城市建设、工矿仓储和自然绿地等 4 类单一景观,其两种指数之间存在显著
的正相关关系(农用地軃r = 0.939, 軈P = 0.000;城市建设軃r = 0.877, 軈P = 0.004;工矿仓储軃r = 0郾 870, 軈P = 0.002;自
然绿地軃r = 0.966, 軈P = 0.001),并且随粒度变化不大(农用地 r= 0.921依0.054;城市建设 r= 0.867依0.107;工矿仓
储 r= 0.883依0.052;自然绿地 r= 0.964依0.024);而对于网状景观的情况则较为复杂且不可预期。 研究推测其
复杂性可能与网状景观的线度及其线状分布特征有关,在下一步的研究中,将考虑对模型进行进一步修改和
细化网格粒度来探究网状景观的空间广度分布特征。
此外,必须指出的是,本研究是基于“粗粒化冶网格实现的,对于“细粒化冶推绎是否具有以上规律有待进
一步研究;并且本研究区总体上为典型农业景观,故研究结论是否适用于其他景观系统或者区域,尚需相关案
例的验证。
致谢:郑州大学张学雷教授及其课题组对本文给予了研究方法、样区数据的支持与帮助,特此感谢。
参考文献(References):
[ 1 ]摇 Rosenzweig M L. Species Diversity in Space and Time. Cambridge: Cambridge University Press, 1995.
[ 2 ] 摇 MacArthur R. Fluctuations of animal population and a measure of community stability. Ecology, 1955, 36(3): 533鄄536.
[ 3 ] 摇 Ib佗觡ez J J, De鄄Alba S, Berm俨dez F F, Garc侏a鄄魣lvarez A. Pedodiversity: concept and measures. Catena, 1995, 24(3): 215鄄232.
[ 4 ] 摇 Ib佗觡ez J J, De鄄Alba S, Lobo A, Zucarello V. Peddiversity and global soil patterns at coarser scales. Geoderma, 1998, 83(3 / 4): 171鄄214.
[ 5 ] 摇 肖笃宁, 布仁仓, 李秀珍. 生态空间理论与景观异质性. 生态学报, 1997, 17(5): 453鄄461.
[ 6 ] 摇 张建辰, 王艳慧. 黄河下游沿岸湿地景观格局变化研究. 地理信息世界, 2013, 20(1): 97鄄102.
[ 7 ] 摇 傅伯杰, 陈利顶, 马克明, 王仰麟. 景观生态学原理及应用. 北京: 科学出版社, 2001.
[ 8 ] 摇 Yabuki T, Matsumura Y, Nakatani Y. Evaluation of pedodiversity and land use diversity in terms of the Shannon entropy. http: / / cdsweb.cern.ch /
record / 1178038.
[ 9 ] 摇 段金龙, 张学雷. 中国中、东部典型样区土壤和水体多样性关联分析. 水科学进展, 2012, 23(5): 635鄄641.
[10] 摇 段金龙, 张学雷. 区域地表水体、归一化植被指数与热环境多样性格局的关联分析. 应用生态学报, 2012, 23(10): 2812鄄2820.
[11] 摇 邬建国. 景观生态学———格局、过程、尺度与等级(第二版) . 北京: 高等教育出版社, 2007.
[12] 摇 布仁仓, 胡远满, 常禹, 李秀珍, 贺红士. 景观指数之间的相关分析. 生态学报, 2005, 25(10): 2764鄄2775.
[13] 摇 曹银贵, 周伟, 王静, 袁春. 三峡库区 30a间土地利用景观特征的粒度效应. 农业工程学报, 2010, 26(6): 315鄄321.
[14] 摇 冯湘兰. 景观格局指数相关性粒度效应研究 [D]. 长沙: 中南林业科技大学, 2010.
[15] 摇 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB / T 21010鄄 2007土地利用现状分类. 北京: 中国标准出版
社, 2007.
[16] 摇 赵文武, 傅伯杰, 陈利顶. 景观指数的粒度变化效应. 第四纪研究, 2003, 23(3): 326鄄333.
[17] 摇 Hess G. Pattern and error in landscape ecology: A commentary. Landscape Ecology, 1994, 9(1): 3鄄5.
0231 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇