全 文 :第 35 卷第 7 期
2015年 4月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol.35,No.7
Apr.,2015
http: / / www.ecologica.cn
基金项目:浙江省科技厅科技攻关项目“浙江省发展生态旅游产业对策研究冶(2005C30013, 2005.04鄄 2006.04); 浙江省哲学社会科学基金重大
项目“浙江省旅游生态化发展与管理的对策研究冶(WT0316, 2003.06鄄2005.06)
收稿日期:2013鄄06鄄08; 摇 摇 网络出版日期:2014鄄07鄄22
*通讯作者 Corresponding author.E鄄mail: yanlj@ zju.edu.cn
DOI: 10.5846 / stxb201306081461
戴刚, 严力蛟, 郭慧文, 章戈.基于 MSIASM和能源消费碳排放的中国四大直辖市社会代谢分析.生态学报,2015,35(7):2184鄄2194.
Dai G, Yan L J, Guo H W, Zhang G.Societal metabolism analysis of China忆s four municipalities based on MSIASM theory and carbon emissions from energy
consumption.Acta Ecologica Sinica,2015,35(7):2184鄄2194.
基于 MSIASM 和能源消费碳排放的中国四大直辖市
社会代谢分析
戴摇 刚1, 严力蛟1,*, 郭慧文1, 章摇 戈2
1 浙江大学生命科学学院生态研究所, 杭州摇 310058
2 美国佐治亚理工学院地理信息系统中心, 美国佐治亚州摇 30308
摘要:通过社会代谢多尺度综合评估(Multi鄄Scale Integrated Assessment of Societal Metabolism, MSIASM)方法,采用生物鄄经济压
力和不同组织尺度下的体外能代谢率、能源密度指标,并将能源消费碳排放融入评估框架,评价了中国四大直辖市 2004 年至
2010年的社会代谢及其综合发展状况。 研究中能源消费碳排放的加入较好补充了 MSIASM 在生态评估方面的弱势。 研究结
果显示,四大直辖市整体社会代谢发展良好,体外能代谢率和生物鄄经济压力稳步上升,能源密度和单位能耗碳排放不断降低,
总体呈现良性发展态势。 从各个直辖市的社会经济系统各部门表现来看,各城市体现了自己的突出特点。 在深入到行业尺度
研究体外能代谢率、能源密度后,整体显示出控制工业部门和交通运输部门的能耗增长对于提高经济生产能源效率的突出作
用,同时应继续加大金融和计算机等低能耗高经济生产率行业的发展力度。
关键词:社会代谢多尺度综合评估; 体外能代谢; 碳排放; 直辖市
Societal metabolism analysis of China忆s four municipalities based on MSIASM
theory and carbon emissions from energy consumption
DAI Gang1, YAN Lijiao1,*, GUO Huiwen1, ZHANG Ge2
1 Institute of Ecology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
2 Center for Geographic Information Systems, Georgia Institute of Technology, Georgia 30308, America
Abstract: The Multi鄄Scale Integrated Assessment of Societal Metabolism method has been widely used to comprehensively
evaluate levels of social development and sustainability. It can also be regarded as the basis of urban development policy
creation for urban managers and decision鄄makers. However, although there is an increasing amount of research about
variables and scales of the method, very little focuses on the ecological aspect and the impacts of scale on the variables. This
study evaluates the societal metabolism and comprehensive development situation of China忆s four municipalities between
2004 and 2010 by adopting the method of Multi鄄Scale Integrated Assessment of Societal Metabolism (MSIASM). This
method includes indicators of Exosomatic Metabolic Rate and Energy Intensity at different organizational scales, as well as
Bio鄄economic Pressure. The carbon emissions from energy consumption was first introduced into MSIASM to assess the
ecological aspect of urban development and to assess the impacts of different organizational scales on the indicators The
results demonstrates that overall development of China忆s four municipalities忆 societal metabolism is in good condition with a
steady increase in Exosomatic Metabolic Rate and Bio鄄economic Pressure and a ceaseless decrease in energy intensity and
http: / / www.ecologica.cn
carbon emissions per unit of energy consumption. In terms of the integrated performance of social economic systems, each
municipality reflected its own unique developmental characteristics. In the case of Shanghai, the gradual downsizing of the
agricultural industry and the high鄄level development of the manufacturing industry, reflected the typical characteristics of
the late鄄industrialization city in China. The development of Beijing showed a close relationship with the city忆s preparation for
the Olympic Games. This included strict limitations on energy investment and industrial pollution as well as vigorous
development on the construction of transportation infrastructure. Tianjin忆s development presented the status of the booming
manufacturing industry and the relatively lagging service industry, which are the features of a rapidly industrializing city in
general. The overall level of development level in Chongqing was lower than the other three cities, embodying the city忆s
traits during the transformation of industry structure from agriculture to industrialization. Additionally, the indicators were
affected by scale and show different characteristics, especially for the Exosomatic Metabolic Rate, Energy Intensity and
Economic Labor Productivity under the industry scale. The prominent role of controlling the energy consumption of the
manufacturing industry and the transportation department on rising energy efficiency of production. The development of low
energy consumption and high economic productivity industry such as the financial industry and the computer industry are
also very important to take into consideration. In conclusion, this study introduces ecological indicators and dynamic working
time data into the classic MSIASM method for a more comprehensive evaluation of the city忆s sustainability and firstly applies
the model down to the industry scale. It can detect the composite effects of number of employee and average working hour. It
provides a new perspective for environmental impact assessment of energy use and a new tool to guide future urban planning
and development. Based on the result that EMR and BER show different characteristics under different scales, this method
should be carefully used when face to evaluate the level of regional social development.
Key Words: multi鄄scale integrated assessment of societal metabolism; exosomatic metabolism; carbon emission; China忆s
four municipalities
社会代谢多尺度综合评估(Multi鄄Scale Integrated Assessment of Societal Metabolism, MSIASM)方法是 20世
纪 90年代由意大利学者 Mario Giampietro和日本学者 Kozo Mayumi共同提出的[1鄄3]。 该方法根据“人类活动冶
资源、“体外能流冶资源和“增加值流冶三者在社会经济系统中的叠合关系,并行地利用不同学科(能量分析学、
生态学、生物物理学、经济学和社会学等)的各种参量(得自不同组成分的不同层面以及不同的信息源),综合
评估社会发展水平与可持续性[3鄄6]。 相对于社会代谢理论中单一指标的传统能量流分析,在能量对象上
MSIASM聚焦于 Georgescu鄄Roegen提出的“体外能冶 [7],在方法实现上 MSIASM 强调方法论上的多元性、多学
科的交叉性和尺度应用上的多样性。 自提出以来,该方法已在国家、地区、社区等多个尺度,社会整体、农业、
能源生产等多个系统广泛应用[8鄄14];就我国而言,全国、区域、省级行政区和开发区尺度都已有相应研究[15鄄19],
刘晔等以沈阳为例,基于 MSIASM,以人类活动时间为主要切入点,分析城市社会经济的发展状况[20],为完善
该方法在中国的应用提供了重要依据。 该方法较少整合生态指标的问题也引起了相关学者的注意[16,21]。
利用社会代谢多尺度综合评估方法对四大直辖市的社会代谢及其发展状况进行评估,有针对性的选取适
宜于大城市特点的数据源,通过多组织尺度、多年度的多种复合参量分析,主要从能量代谢角度对四大直辖市
的社会代谢可持续发展水平进行了评价,进而为城市管理者与决策者制定可持续政策提供科学依据。 文中引
入了能源消费碳排放量并将其深入结合 MSIASM提出了碳排放代谢率指标,完善了该方法的生态评估作用,
给予能源环境影响评估以新的视角。 此外,研究还识别出了 MSIASM 部分指标城市尺度下的特异性,并对其
产生原因进行了探讨。
1摇 研究方法
1.1摇 数据来源
摇 摇 本研究所指体外能是指非人类自身新陈代谢的社会经济系统所需能源总称,化石能源时代主要由商品能
5812摇 7期 摇 摇 摇 戴刚摇 等:基于 MSIASM和能源消费碳排放的中国四大直辖市社会代谢分析 摇
http: / / www.ecologica.cn
源构成。 体外能消费量是指根据我国能源统计中能源消费总量换算的发热量,基础数据来源于各直辖市统计
年鉴内能源平衡表(标准量),统计年份为 2004至 2010 年。 其中,按照能源消费的途径将能源加工转换部门
的能源归入工业部门,损失量归入交通运输部门,最终能源消费按照国民经济行业分类归口。 计算碳排放能
源数据来源于各年《中国能源统计年鉴》内能源平衡表(实物量),各种能源实物消耗量参照《中国能源统计年
鉴 2010》及上海统计局印制的《能源统计报表制度》折算为标准煤当量,并将终端消费量内“其他冶项目并入
第三产业。 人类活动时间涉及各行业从业人口以及平均工作强度:人口数据来自各直辖市统计年鉴,针对直
辖市外来人口占比高和城镇化水平较高的特点,总人口选取包含半年以上外来人口在内的年末常住人口;各
行业平均工作强度基础数据来自各年《中国劳动统计年鉴》内“城镇就业人员调查周平均工作时间冶,根据四
大直辖市各年从业人员行业分布加权计算后归并为三大产业年平均工作时间。 增加值相关数据从各直辖市
统计年鉴获取,依照沈利生等[22]的 GDP 平减指数计算方法,参考《中国统计年鉴 2011》计算出以 2000年为基
年的 2004至 2010年社会总体和各产业 GDP 平减指数,据此统一进行了四大直辖市增加值数据归一化处理。
1.2摇 社会代谢多尺度综合评估(MSIASM)指标体系
MSIASM创新性地应用了许多社会、经济和环境参量,其方法论上的多元性决定了 MSIASM 的指标体系
包含多种不同参量和叠合关系式,并通过多方面的结果展现城市发展的因素多样性。 在国内应用时根据国民
经济行业分类将整个社会经济系统划分为四个部门:家政部门(HH)、第一产业、第二产业和第三产业。 本文
应用的 MSIASM主要参量、关系式及其含义如下[3鄄6]:
(1)体外能投入量(ET)指社会经济系统每年代谢的体外能数量(J / a),包括社会体外能投入总量和部门
体外能投入量。 其中社会体外能投入总量(TET)指整个社会经济系统全年代谢的体外能源总量。 部门体外
能投入量(ET)指社会经济系统各组成部门的体外能消费量,分别用 ETHH、ET1、ET2、ET3表示家政部门、第一、
第二、第三产业的体外能代谢数量,其总和等于社会体外能投入总量,即 TET = ETHH+ ET1+ ET2+ ET3。
(2)人类活动时间量(HA)指社会经济系统中人类活动的时间量,单位 h a-1。 它包括社会人类活动时间
总量和部门人类活动时间量。 其中社会人类活动时间总量(THA)指整个社会经济系统全部人类活动时间量
(包含睡眠和休息),THA = Population size伊8760。 部门人类活动时间量(HA)指社会经济系统各组成部门的
人类活动时间量,家政部门、第一、第二、第三产业活动时间分别用 HAHH、HA1、HA2和 HA3表示。
(3)体外能代谢率(EMR)即单位人类活动时间所消费的体外能数量(J / h)。 该指标反映了各种经济活动
的技术系数组合和资本化水平,也反映社会人均生产和消费的商品和服务水平,随着社会的发展不断提高。
社会体外能代谢率由社会总体平均、第一、第二、第三产业以及家政部门的体外能代谢率组成,EMRSA = TET /
THA,各部门 EMRi = ETi / HAi。
(4)能源密度(EI)相当于传统的单位 GDP 能耗,是指社会总的体外能投入量与增加值的比值(J /元)。
EI表示了单位 GDP 的环境压力,随着社会发展不断降低。 EISA = TET / GDP,各部门 EIi = ETi / GDP i。
(5)生物鄄经济压力(BEP)是指由“整个社会代谢的体外能总量冶除以“物质能量生产部门的工作时间冶得
到的比率(J / h) 。 它是由社会消费模式的特征强制于生产部门的每单位劳动时间的体外能投入量,是一个极
好的代表社会经济发展的生物物理指标,反映了社会发展带来的物质生活水平及其环境压力水平。 BEP =
TET / (HA1+ HA2)。
1.3摇 能源消费碳排放及碳排放代谢率(CE & CEMR)
人类使用化石燃料排放二氧化碳等温室气体的增温效益被视为是全球气候变暖的主要原因[23]。 城市作
为人类活动最为频繁的聚居区域,2010年其消耗了世界约 75%的能源,排放的温室气体占全球人类活动温室
气体排放的 80%[24]。 Zhu Liu等[25]对于四大直辖市的温室气体排放特征、轨迹和驱动力进行了较为全面的
研究,而本文根据国内现状,基于 MSIASM,以碳排放为切入点计算能源消费,主要参考赵敏等对上海市能源
消费碳排放分析的方法[26]进行核算,以能源平衡表内能源终端消费量计算碳排放。 考虑到四大直辖市热力
和电力有外源输入的情况,这两者碳排放按照火力发电和供热投入的能源计算,并按照国民经济各部门的能
6812 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
源消费占总消费量的比例归入第一、第二、第三产业及家政部门(生活消费)的碳排放量中。
MSIASM与生态环境问题联系较弱是其缺点之一,虽然理论框架中提及环境承载力指标[2],近期也有研
究加入了全社会尺度的 CO2排放强度等作为参考[27],但未将生态指标整合入评估方法,也未深入到产业层面
进行过定量分析。 本文以社会代谢系统的排放端为出发点,进一步评估能源消费产生的环境作用,基于化石
能源主要以碳氧化物为主,将体外能代谢的产物以碳排放量进行核算,并结合 MSIASM 框架内的人类活动时
间参量,综合提出了碳排放代谢率(CEMR(kg / h))。 该指标代表社会经济系统单位活动时间产生的碳排放
量,反映了人类活动的环境影响力,由社会总体碳排放代谢率、第一、第二、第三产业以及家政部门的碳排放代
谢率组成。 CEMRSA = TCE / THA,各部门 CEMRi = CE i / HAi。
整体数据采用考虑全期累计发展水平的代数平均法[28]计算各部门的平均发展速度,相关数值大于 100%
表明在研究时段内该数据的平均发展变化总体为增长,小于 100%则为降低。
2摇 结果与分析
2.1摇 四大直辖市社会及各部门体外能代谢率分析
四大直辖市 2004至 2010年的社会总体和各部门体外能代谢率如表 1所示。 结果显示, EMRSA均值方面
上海、北京、天津三市的代谢水平高于 1999 年世界平均的 7. 82 MJ / h,低于同年 AUSCAN ( Australian /
Canadian,澳大利亚、美国和加拿大)的 38.77 MJ / h,和其他 OECD(Organization for Economic Cooperation and
Development)国家(不包含 AUSCAN)的 15.68 MJ / h大致处在同一水平[29],重庆则尚未达到 1999年的世界平
表 1摇 四大直辖市各部门体外能代谢率
Table 1摇 Exosomatic Metabolic Rate (EMR) of each department of China忆s four municipalities
体外能代谢率 Exosomatic Metabolic Rate ((EMR) / (MJ / h)
2004 2005 2006 2007 2008 2009 2010 平均值Average value
代数平均发展速度
Algebraic average
development speed / %
EMRSA 上海 13.50 14.71 15.27 15.84 16.12 15.69 16.22 15.34 104.22
北京 11.52 12.01 12.49 12.88 12.49 12.53 11.86 12.25 102.05
天津 12.08 13.20 14.08 14.84 15.26 16.00 17.63 14.73 106.54
重庆 3.52 5.21 5.63 6.20 7.63 8.23 9.11 6.50 120.06
EMR1 上海 21.15 20.74 18.83 21.01 23.15 19.37 23.25 21.07 99.87
北京 18.28 18.24 20.59 23.36 23.05 23.86 22.17 21.37 105.16
天津 9.83 11.77 12.67 15.05 15.24 16.19 16.46 13.89 111.34
重庆 3.06 3.99 4.51 5.12 5.47 5.46 5.73 4.76 114.51
EMR2 上海 125.80 141.20 148.50 158.84 167.42 165.17 168.23 153.60 106.59
北京 134.28 128.07 135.88 138.39 142.55 145.01 151.79 139.42 101.25
天津 132.59 135.22 150.02 152.62 166.43 173.09 191.30 157.33 105.66
重庆 94.05 124.56 130.47 145.40 185.77 192.94 195.22 152.63 115.85
EMR3 上海 60.67 60.39 63.23 72.23 75.62 75.78 77.44 69.34 104.42
北京 41.20 42.63 44.96 49.71 49.76 51.17 50.70 47.16 104.47
天津 47.72 45.92 45.85 44.26 41.82 42.23 41.79 44.23 97.46
重庆 9.82 14.67 17.22 20.17 22.50 21.70 24.20 18.61 120.86
EMRHH 上海 1.25 1.36 1.46 1.54 1.67 1.65 1.68 1.52 106.27
北京 1.98 2.11 2.28 2.43 2.49 2.61 2.44 2.33 105.39
天津 1.61 1.78 1.80 1.88 2.01 2.26 2.20 1.93 106.00
重庆 0.37 0.65 0.74 0.73 0.82 0.90 0.94 0.74 122.43
摇 摇 EMRSA:社会总体平均体外能代谢率;EMR:第一产业体外能代谢率;EMR:第二产业体外能代谢率;EMR:第三产业体外能代谢率;EMRHH:
家政部门体外能代谢率
7812摇 7期 摇 摇 摇 戴刚摇 等:基于 MSIASM和能源消费碳排放的中国四大直辖市社会代谢分析 摇
http: / / www.ecologica.cn
均值;但在 EMRSA发展速度方面,纵使剔除 2004年数据(重庆 2004 年数据推测为当量值折算导致了偏低)后
重庆 2005—2010年间的平均发展速度也有 111.71%,远高于其它三市。 从部门体外能代谢率来看,四大直辖
市 EMRHH的增长都较为迅速,接近或超过了各自 EMRSA的发展速度,其中重庆市的增长速度最快,与 Yong
Geng等[19]结果相似,但由于数据处理过程不一致,结果并不完全相同。 EMRHH的快速增长体现了四大直辖
市人民生活水平的持续改善,但这种提高是建立在绝对数值较低的基础之上的,国家尺度的研究中 1995 年西
班牙的 EMRHH为 3 MJ / h,1999年 OECD国家的 EMRHH平均值为 6 MJ / h,美国可以达到 10 MJ / h以上[29鄄30]。
在国民经济各部门体外能代谢率上,各城市反映出了不同的状况。 上海市 EMR2具有三大产业中最快的
增长速度,EMR3则保持了与 EMRSA相似的增长速度,其均值为四市中最高,EMR1整体略有降低,这是农业部
门能源投入的缩减幅度大于劳动时间减少幅度的结果,一方面反映了社会经济发展过程中农业部门逐渐缩减
的普遍规律[8],另一方面在机械化农耕时代这种较快的萎缩会制约农业生产效率的提升。 北京市 EMR1、
EMR3拥有高于其 EMRSA的增长速度,而 EMR2仅有略微增长,且其均值为四市最低,这与北京在 07 年后对
ET2的严格控制有一定关系。 天津市 EMR1拥有高达 111.34%的平均发展速度,EMR2保持了与 EMRSA相似的
增长速度,EMR3则出现了负增长,显示出天津市产业结构尚待完善。 重庆市在剔除了 2004 年数据后的
2005—2010年 EMRSA、EMR1、EMR2、EMR3和 EMRHH代数平均发展速度分别为 111.71%、109.32%、110.55%、
112.46%和 108.00%,整体来看重庆市三大产业的 EMR保持了相似的增长速度,但 EMR1、EMR3均值都大幅低
于其它三市。
本研究进一步将尺度深入到了行业层面,按照国民经济统计口径将第二产业细分为工业和建筑业,由于
数据获取限制,仅以天津市为例研究其 2004 至 2010 年的体外能代谢率变化。 如图 1 所示,结果显示两者 7
年间总体增长,代数平均发展速度分别为 106.79%和 116.28%,相较建筑业的波动中升高,工业部门 EMR 表
现为稳步持续增长,且其值大幅高于同年度的 EMR1、EMR3,反映出工业仍然是天津能源投入的主要部门。
图 1摇 2004—2010年天津市工业和建筑业体外能代谢率
摇 Fig. 1 摇 Exosomatic Metabolic Rate ( EMR ) of Industry and
Construction of Tianjin in 2004—2010
2.2摇 四大直辖市社会及各部门能源密度分析
四大直辖市社会总体和各部门 7a间能源密度的变
化如表 2。 从社会整体来看,四大直辖市 EISA总体降低
(重庆在剔除 2004年数据后 2005—2010年的 EISA平均
发展速度为 98.15%),反映了循环经济和节能减排的政
策导向起到了积极的作用。 从部门能源密度来看,各直
辖市反映出了不同的状况。 上海市 EI1降速四市中最
快,EI2和 EI3变化幅度较小。 北京市 EI1略有增长,EI2
和 EI3皆有降低,其中 EI2的降速为四市最快。 天津市
EI1仍有较大幅度增长,EI2和 EI3皆有降低,其中 EI3的
降速为四市最快。 重庆市在剔除了 2004 年数据后的
2005—2010年 EI1、EI2、EI3代数平均发展速度分别为 106.39%、91.67%、103.89%,显示出 EI1和 EI3较快增长,
EI2大幅降低的发展特点。 值得注意的是,EI 的倒数表示经济生产的能源效率,这一指标反映了单位能源消
耗量产生的增加值[12],即 EI值越低,单位能耗的经济产值越高。 第三产业是典型的高附加值低能耗部门,经
济生产的能源效率高。 而从结果来看,上海、天津、重庆第二产业的经济生产能源效率皆长期不如第一产业,
这一反常现象要引起有关职能部门的高度重视。
进一步从行业尺度剖析,因为数据获取限制仅涵盖了部分城市和年份。 图 2 反映了 2005—2010 年北京
市国民经济各行业能源密度变化。 从绝对值来看,“金融业冶和“信息传输、计算机服务和软件业冶享有最低的
EI,换言之拥有最高的经济生产能源效率,“交通运输、仓储和邮政业冶和“工业冶则拥有最高的行业 EI;从发展
变化来看,代数平均发展速度最高的前三行业依次为“交通运输、仓储和邮政业冶 (113.02%)、“水利、环境和
公共设施管理业冶(107.01%)和“信息传输、计算机服务和软件业冶(104.89%),总体 17个行业中 12个行业 EI
8812 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
在 6a间有所降低。 结合以上情况分析,控制交通运输部门的 EI增长应是今后北京市能源管理工作的重点。
表 2摇 四大直辖市各部门能源密度
Table 2摇 Energy Intensity(EI) of each department of China忆s four municipalities
能源密度 Energy Intensity(EI) / (MJ /元)
2004 2005 2006 2007 2008 2009 2010 平均值Average value
代数平均发展速度
Algebraic average
development speed / %
EISA 上海 3.03 3.11 3.08 3.07 3.11 2.83 2.84 3.01 99.81
北京 2.81 2.72 2.59 2.45 2.35 2.22 2.15 2.47 95.64
天津 3.92 3.82 3.71 3.61 3.30 3.21 3.25 3.54 96.60
重庆 3.64 4.87 4.81 4.85 4.61 4.42 4.34 4.51 107.07
EI1 上海 4.73 3.87 3.06 3.19 3.24 2.62 2.92 3.38 88.48
北京 3.57 3.53 3.85 4.05 4.08 3.99 4.24 3.90 102.94
天津 2.15 2.36 2.74 3.03 3.01 3.02 3.23 2.79 108.66
重庆 1.41 1.61 1.94 2.01 1.96 1.82 2.01 1.82 108.49
EI2 上海 3.66 3.83 3.75 3.69 3.72 3.70 3.54 3.70 100.32
北京 4.32 4.28 4.23 3.92 3.67 3.21 3.10 3.82 95.85
天津 4.49 4.39 4.27 4.29 3.97 3.87 4.08 4.20 97.71
重庆 5.74 8.21 7.55 7.05 6.09 5.77 5.39 6.54 104.35
EI3 上海 1.82 1.87 1.91 1.94 1.97 1.71 1.76 1.85 100.67
北京 1.46 1.45 1.39 1.35 1.36 1.35 1.30 1.38 98.21
天津 2.10 2.01 1.90 1.70 1.43 1.34 1.27 1.68 92.43
重庆 1.20 1.59 1.70 1.91 1.86 1.66 1.78 1.67 110.90
摇 摇 EISA:社会总体平均能源密度;EI:第一产业能源密度;EI:第二产业能源密度;EI:第三产业能源密度
图 2摇 2005—2010年北京市国民经济各行业能源密度
Fig.2摇 Energy Intensity(EI) of national economic industries of Beijing in 2005—2010
2.3摇 四大直辖市生物鄄经济压力分析
生物鄄经济压力指标反映了人类活动导致的环境压力。 经过包含世界 90%以上人口的 107 个国家的该指
标研究,比较了 24个传统物质生活和经济发展指标和 BEP 之间的关系,证明其与人类生理健康、经济发展水
平和人民生活水平具有良好正相关[9]。 本研究显示,四大直辖市 2004 到 2010 年 BEP 皆有较快增长(图 3),
代数平均发展速度上海、北京、天津、重庆分别为 109. 14%、107. 01%、106. 33%、122. 32%。 均值上北京以
271郾 77 MJ / h在四市中最高,上海、天津、重庆依次为 240.41 MJ / h、184.89 MJv 和 76.40 MJ / h。 与上述主要国
家 1995年左右 BEP 数据的直接对比显示,上海、北京 2010 年的 BEP 介于 15 年前希腊和澳大利亚的水平之
间,天津与波兰的 BEP 较为接近,重庆的 BEP 则与哥伦比亚、马来西亚该数据相当。
9812摇 7期 摇 摇 摇 戴刚摇 等:基于 MSIASM和能源消费碳排放的中国四大直辖市社会代谢分析 摇
http: / / www.ecologica.cn
图 3摇 2004—2010年四大直辖市生物鄄经济压力
摇 Fig. 3 摇 Bio鄄economic Pressure ( BEP ) of China忆 s four
municipalities in 2004—2010
2.4摇 四大直辖市能源消费碳排放代谢分析
2.4.1摇 碳排放量
能源消费碳排放表征了社会体外能代谢系统的输
出流,一方面可以对能源消费产生的环境影响进行评
估,另一方面与体外能流量相结合能分析出能源结构的
清洁化趋势,是对以等值热量评估社会体外能代谢体系
的很好补充和完善。 表 3 显示了四大直辖市社会整体
和各部门能源消费碳排放的变化。 从社会总体来看,四
大直辖市 CESA在 7a间皆为正增长,均值方面上海市明
显高于其它三市,但各市 CESA平均发展速度皆低于
TET的发展速度,显示了单位能耗产生的碳排放正在减
少,这与我国低碳经济改革的发展方向相一致。 从各个
部门的能源消费碳排放来看,CEHH方面四市在发展速度上差距微小,均值呈现上海和北京接近,天津略低,重
庆差距较大的格局。 国民经济各部门中,CE1均值方面重庆大幅高于其它三市,发展速度上重庆仍然居高,四
市中惟有上海在该指标上显示出较高的降速;CE2均值方面上海最高,北京最低,发展速度上只有北京存在明
显的降低;CE3均值方面呈现上海、北京、天津、重庆梯度下降的局面,发展速度上各市皆维持增高趋势,天津
的增长略慢。 各市 CE1、CE2、CE3和 CEHH的平均发展速度都低于对应的 ET发展速度,说明国民经济各部门和
生活消费的能源结构都在朝低碳转型。
表 3摇 四大直辖市各部门能源消费碳排放量
Table 3摇 Carbon Emission(CE) from Energy Consumption of each department of China忆s four municipalities
碳排放量 Carbon Emission(CE) / (104 t)
2004 2005 2006 2007 2008 2009 2010 平均值Average value
代数平均发展速度
Algebraic average
development speed / %
CESA 上海 4638.66 5027.63 5399.63 5747.41 5881.29 5972.03 6523.38 5598.58 106.21
北京 2819.04 2961.54 3055.32 3251.71 3022.60 3103.66 3226.82 3062.95 102.75
天津 2550.14 2769.21 2949.46 3209.76 3475.93 3823.22 4385.62 3309.05 108.58
重庆 1909.54 2294.71 2513.57 2587.54 3599.12 3779.95 3931.25 2945.10 114.20
CE1 上海 66.82 58.45 44.78 44.11 35.96 35.80 35.75 45.95 87.17
北京 46.70 46.03 47.90 49.50 48.87 46.14 44.66 47.12 100.30
天津 43.07 50.27 49.38 49.73 48.20 49.61 56.97 49.60 104.67
重庆 130.18 154.13 169.85 168.55 175.85 168.07 192.26 165.56 107.93
CE2 上海 2943.85 3197.55 3398.68 3492.40 3525.00 3477.99 3879.01 3416.35 104.92
北京 1537.57 1549.78 1502.09 1527.10 1218.58 1240.82 1327.01 1414.71 97.21
天津 1712.26 1875.54 2053.18 2249.78 2500.97 2741.75 3152.32 2326.55 110.08
重庆 1320.33 1636.70 1740.12 1720.55 2677.38 2819.94 2863.47 2111.21 115.37
CE3 上海 1255.56 1371.04 1529.47 1758.24 1837.80 1948.23 2068.17 1681.22 109.60
北京 838.08 945.97 1038.87 1167.13 1232.41 1259.60 1279.84 1108.84 109.21
天津 489.13 509.30 513.00 552.73 533.35 577.06 666.06 548.66 103.81
重庆 226.58 270.83 326.34 402.83 439.86 459.67 535.89 380.29 116.93
CEHH 上海 372.43 400.60 426.69 452.66 482.53 510.00 540.46 455.05 106.62
北京 396.69 419.76 466.46 507.97 522.74 557.10 575.30 492.29 107.12
天津 305.68 334.10 333.90 357.52 393.40 454.80 510.27 384.24 107.54
重庆 232.45 233.05 277.27 295.60 306.02 332.26 339.63 288.04 107.08
摇 摇 CESA:社会总体能源消费碳排放量;CE:第一产业碳排放量;CE:第二产业碳排放量;CE:第三产业碳排放量;CEHH:家政部门碳排放量
本研究进一步从能源消费结构上分析了四大直辖市的能源消费碳排放发展特点(表 4)。 从整体能源结
构上来说,煤炭类能源产生的碳排放仍然是四大直辖市碳排放的主要来源,均值占 CESA的比值上海、北京、天
0912 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
津、重庆分别为 56.18%、57.49%、76.95%和 81.76%,且占比最高的天津、重庆两市同时拥有前两的平均发展速
度,北京在煤炭类能源碳排放的整体降低主要是由于 2007—2008年的大幅降低,而在石油类和天然气方面则
未出现此类拐点,说明从能源结构上北京为筹办奥运会限制的主要是煤炭类能源的增长;石油类能源碳排放
方面,四市在 7a间都表现为较高速的持续增长,其中上海、北京两市的增长速度超过煤炭类相关数据;天然气
能源碳排放方面,均值在四市 CESA占比都较低,发展速度方面上海、北京、天津三市显示出迅猛的增长势头,
天然气拥有相较于煤炭和石油更低的碳排放系数,上述三市在这一清洁能源的使用上都加大了推广力度,重
庆在相关工作上有所迟滞。
表 4摇 四大直辖市各类能源消费碳排放量
Table 4摇 Carbon Emission(CE) from different types of Energy Consumption of China忆s four municipalities
能源种类 Types of energy / (104 t)
2004 2005 2006 2007 2008 2009 2010 平均值Average value
代数平均发展速度
Algebraic average
development speed / %
煤炭类 上海 2942.92 3054.53 2977.34 3124.58 3255.85 3209.54 3453.37 3145.45 102.21
Coal 北京 1860.57 1887.35 1876.53 1914.72 1574.10 1594.37 1619.64 1761.04 98.16
天津 1957.13 2156.79 2322.79 2520.26 2689.31 2982.23 3194.55 2546.15 108.67
重庆 1513.79 1846.84 2013.72 2196.00 2971.99 3132.62 3179.45 2407.77 115.19
石油类 上海 1654.90 1893.16 2297.48 2482.58 2478.37 2594.68 2841.33 2320.36 111.10
Petroleum 北京 812.63 901.02 958.48 1079.98 1113.77 1133.59 1196.14 1027.94 107.75
天津 548.54 561.79 563.51 586.43 691.87 738.91 1060.42 678.78 107.03
重庆 219.26 241.02 270.75 318.12 348.04 361.19 424.19 311.80 111.56
天然气 上海 40.84 79.94 124.81 140.25 147.06 167.81 228.69 132.77 138.44
Natural gas 北京 145.84 173.17 220.30 257.01 334.74 375.70 411.04 273.97 120.58
天津 44.46 50.63 63.16 103.07 94.74 102.08 130.65 84.11 120.81
重庆 176.49 206.84 229.10 73.42 279.09 286.14 327.60 225.53 108.08
2.4.2摇 碳排放代谢率
碳排放代谢率表示单位活动时间的能源消费碳排放量,显示了社会总体和各部门单位时间的环境影响,
是对 MSIASM体系在生态环境评价方面的扩展。 表 5 为四大直辖市社会总体和各部门 2004 至 2010 年的碳
排放代谢率变化情况。 结果表明,CEMRSA均值方面天津最高,重庆最低,发展速度方面北京市表现出了负增
长,而重庆的增长最为迅速,各市平均发展速度低于 EMRSA的发展速度,同样显示了能源消费低碳化的良好势
头。 各部门的碳排放代谢率来看,CEMRHH皆展现了稳步的增长,均值上北方两大直辖市推测由于冬季集中
供暖的原因,在均值上高于上海、重庆两市;CEMR1方面,上海市拥有最高的均值和最快的降低速度,重庆则反
之拥有最低的均值和最快的发展速度;各市的 CEMR2显著高于其它部门显示了第二产业高能耗高环境影响
的产业特点,发展速度上显示出与 CEMRSA类似的特点; CEMR3方面,上海市拥有最高的均值,天津是四市中
唯一展现降低趋势的城市,重庆依然拥有最低的均值和最快的发展速度。
四大直辖市的横向对比上,展现了与碳排放量分析较为不同的情况。 均值方面,不同于在 CESA、CE2、CE3
上海都大幅领先其它三市的状况,天津在 CEMRSA和 CEMR2上都超过了上海跃居第一,重庆虽然在 CE1的均
值和发展速度上都为最高,但其 CEMR1均值则远低于其它三市,侧面反映出其农业耕作方式较为传统,农具
机械化程度尚有较大差距;平均发展速度方面,不同于 CESA的小幅增长,北京在 CEMRSA上整体有所降低,天
津在 CEMR3上的总体降低趋势也是在 CE3上所不具备的。 总体来看,四大直辖市各部门在 CEMR 上的发展
速度都要低于 CE上的相应指标,显示出城市劳动力规模和活动时间的扩张对碳排放评定指标的重要影响。
3摇 结论与讨论
(1)通过对四大直辖市 2004至 2010年社会整体、产业、行业不同尺度的体外能代谢率和能源密度分析,
1912摇 7期 摇 摇 摇 戴刚摇 等:基于 MSIASM和能源消费碳排放的中国四大直辖市社会代谢分析 摇
http: / / www.ecologica.cn
证实该方法可以对城市体外能代谢状况做出合理评价。 研究发现,四大直辖市总体来说 EMRSA不断升高,
EISA不断降低,社会代谢发展良好;四大直辖市 EMRHH的增长都较为迅速,接近或超过了各自 EMRSA的发展
速度。
表 5摇 四大直辖市各部门碳排放代谢率
Table 5摇 Carbon Emission Metabolic Rate(CEMR) of each department of China忆s four municipalities
碳排放代谢率 Carbon Emission Metabolic Rate(CEMR) / (kg / h)
2004 2005 2006 2007 2008 2009 2010 平均值Average value
代数平均发展速度
Algebraic average
development speed / %
CEMRSA 上海 0.2886 0.3036 0.3138 0.3179 0.3136 0.3084 0.3234 0.3099 102.37
北京 0.2156 0.2198 0.2206 0.2273 0.2036 0.2019 0.1878 0.2109 99.27
天津 0.2844 0.3031 0.3132 0.3286 0.3374 0.3554 0.3853 0.3296 104.88
重庆 0.0780 0.0936 0.1022 0.1049 0.1447 0.1509 0.1556 0.1186 113.71
CEMR1 上海 0.4452 0.4294 0.3715 0.4135 0.3724 0.3773 0.4467 0.4080 97.08
北京 0.3402 0.3318 0.3646 0.4092 0.3968 0.3794 0.3371 0.3656 102.39
天津 0.2331 0.2755 0.2794 0.3252 0.3231 0.3352 0.3575 0.3041 108.76
重庆 0.0829 0.1019 0.1173 0.1289 0.1379 0.1347 0.1434 0.1210 112.42
CEMR2 上海 2.8263 3.0472 3.2190 3.3504 3.4711 3.3975 3.5549 3.2666 104.79
北京 2.8041 2.6336 2.6436 2.7183 2.4612 2.5790 2.6687 2.6441 98.04
天津 3.2608 3.2400 3.4811 3.5029 3.8545 4.0421 4.2502 3.6616 103.84
重庆 1.9938 2.2699 2.4070 2.3762 3.6463 3.5925 3.3085 2.7991 111.15
CEMR3 上海 1.1629 1.1288 1.1760 1.3458 1.3514 1.4050 1.4280 1.2854 103.32
北京 0.6583 0.6713 0.7026 0.7823 0.7601 0.7521 0.7262 0.7218 103.06
天津 0.9562 0.8898 0.8578 0.8456 0.7626 0.7717 0.7979 0.8402 95.66
重庆 0.1989 0.2182 0.2578 0.3206 0.3463 0.3527 0.3906 0.2979 113.25
CEMRHH 上海 0.0270 0.0283 0.0290 0.0290 0.0296 0.0303 0.0308 0.0291 102.54
北京 0.0357 0.0370 0.0400 0.0419 0.0415 0.0425 0.0389 0.0396 103.48
天津 0.0395 0.0428 0.0415 0.0430 0.0447 0.0495 0.0529 0.0448 104.22
重庆 0.0110 0.0111 0.0131 0.0138 0.0142 0.0153 0.0157 0.0135 106.59
摇 摇 CEMRSA:社会总体能源消费碳排放代谢率;CEMR:第一产业碳排放代谢率;CEMR:第二产业碳排放代谢率;CEMR:第三产业碳排放代谢
率;CEMRHH:家政部门碳排放代谢率
在国民经济各部门体外能代谢上,研究识别出了各城市的发展特点。 上海市 EMR2具有自身三大产业中
最高的部门 EMR均值 153.60 MJ / h和最快的平均发展速度 106.59%,通过能源密度分析显示其第二产业经济
生产能源效率长期低于其他产业,结合上海市六大产业基地(微电子、汽车、石化、精品钢材、装备、船舶)多为
高能耗重工业的现状,上海应重视第二产业能源消费结构和经济增长方式的转型,并强化重点耗能工业企业
的节能责任。 北京市 EMR2仅有平均发展速度 101.25%的略微增长,其均值 139.42 MJ / h为四市最低且 EI2的
降速为四市最快(平均发展速度 95.85%),这与北京在 2007 年后对 ET2的严格控制有一定关系,说明了北京
奥运会对北京产业转型的积极影响。 天津市 EMR1和 EI1拥有高达 111.34%和 107.16%的平均发展速度,
EMR3则出现了负增长且 EI3的降速为四市最快(平均发展速度 92.43%),显示出天津市产业结构尚待完善,第
一产业需大幅提高能源利用效率,第三产业则可适当加强能源投入量。 重庆市三大产业的 EMR 保持了相似
的较高增长速度,EMR1、EMR3均值 4.76 MJ / h、18.61 MJ / h都大幅低于其它三市相应值,EI1和 EI3仍有较快增
长,反映出重庆需在大力加强第一、第三产业能源投入的同时高度重视节能问题。
在行业尺度层面,本研究识别出控制交通运输部门的 EI增长对于今后北京市能源管理工作的重要性,同
时建议北京应继续加大金融和计算机行业的发展力度。
(2)针对国内应用中该分析法基础参量———“年平均工作时间冶多为基于 20 世纪 90 年代单一年份静态
数据的问题,本研究首次将 2004至 2010年逐年变动的动态工作时间数据引入了社会代谢多尺度综合评估方
2912 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
法,使得人类活动时间这一参量的纵向变动体现了从业人数与平均工作时间的复合效应,并将模型的应用尺
度部分下推至行业层面,更为全面精确的研究了城市可持续发展的各项状况。
本研究进一步将 EMRSA、EMRHH和 BEP 这 3 个可以代表社会生产和消费水平的指标与国内外已有研究
成果进行了比较,直接对比显示,纵使是上海和北京两市,2010 年 EMRSA和 BEP 也仅大体相当于 10—15a 前
中等发达国家的整体水平,EMRHH尚大幅落后。 不过 Ramos鄄Martin等对 1990至 2005年西班牙经济发达的加
泰罗尼亚自治区的研究显示了与上海、北京、天津接近的 EMRSA和 EMRHH[12],其 EMRHH大幅低于西班牙国家
尺度的相应指标值。 中国区域尺度的研究显示了东北、华北等能源生产片区的 EMRSA和 EMRHH高于东部沿
海经济发达地区的状况[15],且下推到省级尺度后内蒙古等地区的 EMR 优势还在不断扩大[31]。 BEP 的结果
对比中,大连市 2007年 BEP 值(421 MJ / h) [21]显著高于社会发展水平更高的上海市(249 MJ / h)、北京市(270
MJ / h)同年度数据。 进一步分析这几个指标一系列差异主要是由地区能源生产和消费结构不同导致的。 比
如大连所在的辽宁省 2009年仅原煤的一次能源生产量有 6.62 伊 107 t,上海同年的数据为 0,这种地区层级的
能源产业结构差异将显著影响 EMR和 BEP 的数值高低。
综上所述,应用于城市尺度上的 EMR和 BEP 具有其尺度特异性,需结合能源生产和消费结构综合分析,
而不能直接对比数值来表征不同区域社会发展水平的高低。 此外,国内相关研究选取的劳动时间多为 1995
年全国范围的数据,缺乏时代性和对目标区域从业人员行业分布、工作强度年际变化的考虑,一定程度上低估
了劳动时间并带来 EMR和 BEP 值的过高估值。
(3)本研究中能源消费碳排放的加入较好补充了社会代谢多尺度综合评估方法在生态评估方面的弱势。
综合分析四大直辖市 2004至 2010年能源消费碳排放产业结构,第二产业的碳排放量占比最高,单位能耗碳
排放最高(重庆是例外,其第一产业单位能耗碳排放更高),碳排放代谢率最高且增长较快,显示出提升第二
产业能源利用效率、优化能源结构、提升低碳能源使用比例的迫切性,并应逐步引导产业结构由高耗能重工企
业转向高附加值低碳排放的电子、机械制造等行业;第三产业碳排放量增加迅速(除天津外其余三市皆为最
快)且在上海、北京其能源低碳化速度不及其它部门,提示四大直辖市需提高交通部门的能源利用效率并大
力发展公共交通系统,将由交通运输部门主导的第三产业结构向金融、计算机服务等低碳行业倾斜,同时推动
电子商务、信息产业等生产性服务业的发展以降低第二产业中间环节的成本,间接改善第二产业的能源效率;
家政部门碳排放量和碳排放代谢率平稳增长,一方面是快速城市化进程和人民物质生活水平提升的体现,另
一方面建议各市尽早规划民用制冷、取暖设施的集约化管理,并推广节能建筑来控制能源消耗和碳排放影响。
致谢:卢立峰、赵海艳等同学帮助撰写论文,特此致谢。
参考文献(References):
[ 1 ]摇 Giampietro M, Bukkens S. Sustainable development鄄scientific and ethical assessments. Journal of Agricultural and Environmental Ethics, 1992, 5
(1): 27鄄57.
[ 2 ] 摇 Giampietro M, Mayumi K. A dynamic model of socioeconomic systems based on hierarchy theory and its application to sustainability. Structural
Change and Economic Dynamics, 1997, 8(4): 453鄄469.
[ 3 ] 摇 Giampietro M, Mayumi K. Multiple鄄scale integrated assessment of societal metabolism: Introducing the approach. Population and Environment,
2000, 22(2): 109鄄153.
[ 4 ] 摇 Giampietro M, Mayumi K, Bukkens S G F. Multiple鄄scale integrated assessment of societal metabolism: an analytical tool to study development and
sustainability. Environment, Development and Sustainability, 2001, 3(4): 275鄄307.
[ 5 ] 摇 王天送. 社会代谢多尺度综合评估(MSIASM)的基本理论与实践. 地球科学进展, 2008, 23(1): 63鄄70.
[ 6 ] 摇 Giampietro M, Mayumi K, Ramos鄄Martin J. Multi鄄scale integrated analysis of societal and ecosystem metabolism ( MuSIASEM): Theoretical
concepts and basic rationale. Energy, 2009, 34(3): 313鄄322.
[ 7 ] 摇 Georges觭u鄄Roegen N. The Entropy Law and the Economic Process. Cambridge: Harvard University Press, 1971.
[ 8 ] 摇 Giampietro M. Socioeconomic pressure, demographic pressure, environmental loading and technological changes in agriculture. Agriculture,
3912摇 7期 摇 摇 摇 戴刚摇 等:基于 MSIASM和能源消费碳排放的中国四大直辖市社会代谢分析 摇
http: / / www.ecologica.cn
Ecosystems & Environment, 1997, 65(3): 201鄄229.
[ 9 ] 摇 Pastore G, Giampietro M, Mayumi K. Societal metabolism and multiple鄄scale integrated assessment: Empirical validation and examples of
application. Population and Environment, 2000, 22(2): 211鄄254.
[10] 摇 Falcon侏鄄Ben侏tez F. Integrated assessment of the recent economic history of Ecuador. Population and Environment, 2001, 22(3): 257鄄280.
[11] 摇 Gomiero T, Giampietro M. Multiple鄄scale integrated analysis of farming systems: The Thuong Lo Commune ( Vietnamese uplands) case study.
Population and Environment, 2001, 22(3): 315鄄352.
[12] 摇 Ramos鄄Mart侏n J, Ca觡ellas鄄Bolt伽 S, Giampietro M, Gamboa G. Catalonia忆s energy metabolism: Using the MuSIASEM approach at different scales.
Energy Policy, 2009, 37(11): 4658鄄4671.
[13] 摇 Sorman A H, Giampietro M. Generating better energy indicators: Addressing the existence of multiple scales and multiple dimensions. Ecological
Modelling, 2011, 223(1): 41鄄53.
[14] 摇 Iorgulescu R I, Polimeni J M. A multi鄄scale integrated analysis of the energy use in Romania, Bulgaria, Poland and Hungary. Energy, 2009, 34
(3): 341鄄347.
[15] 摇 刘晔, 耿涌, 赵恒心, 任婉侠, 薛冰. 基于 MSIASM方法的中国不同区域社会代谢分析. 生态环境学报, 2010, 19(4): 951鄄956.
[16] 摇 耿涌, 刘晓青, 张攀, 刘晔. 基于 MuSIASEM理论的大连经济技术开发区可持续发展评价. 应用生态学报, 2010, 21(10): 2615鄄2620.
[17] 摇 刘晔, 耿涌. 基于多尺度综合评估方法的中国社会代谢分析. 经济地理, 2010, 30(4): 547鄄552.
[18] 摇 王天送. 中国社会经济系统发展与可持续性的“社会代谢多尺度综合评估(MSIASM)冶 [D]. 兰州: 西北师范大学, 2008.
[19] 摇 Geng Y, Liu Y, Liu D, Zhao H X, Xue B. Regional societal and ecosystem metabolism analysis in China: a multi鄄scale integrated analysis of
societal metabolism (MSIASM) approach. Energy, 2011, 36(8): 4799鄄4808.
[20] 摇 刘晔, 耿涌, 董会娟, 刘晓青, 任婉侠, 薛冰. 基于 MSIASM方法的沈阳城市代谢研究. 生态科学, 2010, 29(3): 256鄄261.
[21] 摇 王珺. 基于 MSIASM的城市可持续性评价研究 [D]. 大连: 大连理工大学, 2009.
[22] 摇 沈利生, 王火根. GDP 数据修订对平减指数的影响. 数量经济技术经济研究, 2008, 25(5): 155鄄160.
[23] 摇 汪宏韬. 上海能源消费碳排放分解研究. 上海环境科学, 2011, 30(1): 23鄄27.
[24] 摇 顾朝林, 袁晓辉. 中国城市温室气体排放清单编制和方法概述. 城市环境与城市生态, 2011, 24(1): 1鄄4.
[25] 摇 Liu Z, Liang S, Geng Y, Xue B, Xi F M, Pan Y, Zhang T Z, Fujita T. Features, trajectories and driving forces for energy鄄related GHG emissions
from Chinese Mega cities: the case of Beijing, Tianjin, Shanghai and Chongqing. Energy, 2012, 37(1): 245鄄254.
[26] 摇 赵敏, 张卫国, 俞立中. 上海市能源消费碳排放分析. 环境科学研究, 2009, 22(8): 984鄄989.
[27] 摇 Giampietro M, Sorman A H, Gamboa G. Using the MuSIASEM approach to study metabolic patterns of modern societies / / Energy Options Impact
on Regional Security. Netherlands: Springer, 2010: 37鄄68.
[28] 摇 张荣山. 平均发展速度两种计算方法的比较. 统计与决策, 2007(19): 160—161.
[29] 摇 Ramos鄄Martin J, Giampietro M, Mayumi K. On China忆s exosomatic energy metabolism: An application of multi鄄scale integrated analysis of societal
metabolism (MSIASM). Ecological Economics, 2007, 63(1): 174鄄191.
[30] 摇 Giampietro M. Studying the “addiction to oil冶 of developed societies using the multi鄄scale integrated analysis of societal metabolism (MSIASM).
Sustainable Energy Production and Consumption: Benefits, Strategies and Environmental Costing. Netherlands: Springer, 2008: 87鄄138.
[31] 摇 刘晔, 耿涌, 赵恒心. 基于 MSIASM方法的中国省级行政区体外能代谢分析. 生态学报, 2011, 31(11): 3133鄄3142.
4912 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇