免费文献传递   相关文献

Constraint-based algorithms for genome scale metabolic model-a review

基因组规模代谢网络模型的约束算法及其应用



全 文 :!10
"!

#
2012
$
11
%
A
 
–
 
á
 
Ö
 
u
 
â
ChineseJournalofBioprocessEngineering
Vol.10No.6
Nov.2012
doi:10.3969/j.issn.1672-3678.2012.06.015
STUM
:2012-10-20
OGV!

ÿbdó)*MoûimTãäèéêë
(NCET100456);
ìíîT6¬$çèéêë
(BK2012002);
U˜dnê¬$åæûi
mTãäèéêë
WX.Y

[XC
(1976—),
ø

PeP`û

üý

ÿ!

£¤"ö

ÓA–n{†v
,Email:mingl@jiangnan.edu.cn;
[
 
¹
(1988—),
q

ìí°Pû

hý£¤A

£¤"ö

ÓA–n{†v

OÒù0©’“øù©Õ‰12uy|àç´
µãä
1,2,
µ
 
å
1,2,
æ
 
ç
1,2
(1.
4*./ È?³/>Š‹YF@ABCD

èé
214122;
2.
4*./ 1-78Š‹êëì@ABCD

èé
214122)
7
 
i

l®QkÂpQkÂ[ÃÇÄ;

þQkÂ[Ã:žrQkÂÇk&¯úpbKQkÂ[Ã:ž•éÇ
hi

ÚÞèðÅÆ./ÇïÄðÉÇè4vǾÈÉÁ¾ãp%ÊǾ8ËÌ

ÍÎSïÄl®QkÂkŸ
SúÇ;g–Ï

èHâÐÑè4vǾÈÉÁ¾ã¾mÇè78

ÒÅÓÔÌèðÅÆ./ÇïÄðÉǏ
Ÿ

þÐS¯Á5Õ

ªbKQkÂ[Ã:ž•éŒÃÌÖ5Çè7

jkl

è4vǾÈÉÁ¾ã

èðÅÆÇðÉ

l®QkÂ
mnopq
:Q9399    
6rsFt
:A    
6u?q
:1672-3678(2012)06-0070-08
Constraintbasedalgorithmsforgenomescalemetabolicmodelareview
LIULiming1,2,LIUTing1,2,ZOUWei1,2
(1.StateKeyLaboratoryofFoodScienceandTechnology,JiangnanUniversity,Wuxi214122,China;
2.KeyLaboratoryofIndustrialBiotechnology,MinistryofEducation,JiangnanUniversity,Wuxi214122,China)
Abstract:Inordertofurtherincreasetheeficiencyofmicrobialmanufacturingprocess,akeystepwasto
improvethemicrobialphenotype.Combinedwiththeconstraintbasedalgorithms,agenomescalemetabol
icmodelprovidedaglobalplatformforcomprehensiveunderstanding,manipulationandoptimizationofthe
industrialstrainphysiologicalfunctions.Inthispaper,thereconstructionprocessofgenomescalemetabol
icmodelwasfirstlydescribed.Andthentheprinciple,theclassification,andtheapplicationofthecon
straintbasedalgorithmsforthegenomescalemetabolicmodelwereoutlined.Furthermore,theprospective
andthetendencyofalgorithmsweregiven.
Keywords:genomescalemetabolicmodel;constraintbasedalgorithms;industrialstrain
  
ÓA–†v#/oþ6{4\1

f[ÖgÓ
A–Ž@5-A6

á֎†%ûGñ¾Yn{

01

ô{

ÖgNF{AYÖguâ

åq

â†
‡YNFáÖuâ²~

ÓA–†vë7kê-

①6{ÁGÉ $&íœgYA–3XW@,’
“ÓA–†vY6{ÁGÉ
。②A6Ž~• 
\1PNŽ

6{ä³

A6γAF²¬­Ð™
1Q~•
。③ÓA–A6BÝ ÖgÓA–k¾
|iÏЌGÛÜW@YRz

eئÝ

n
Ûܓ–Y9¶G/P§Ø¦lmA k6g~
žŸ

Ø4ožŸ[]†Þ™ÓA–†vuâ
Y5V

Ê."ê

ÓA–eؘ½å/Ìf˜
F½åY€(ç^

4|w

lm/MNÖgÓA
–A6G¡óYq8

]ÕKoùJ


Y˜F½åâ_YÖgA6ñX– 

” ‡A–
Fî³5V¡gÖgA–u⍏YŸŽ

#°.
}¡gÓA–†vu⍎YF²

ؘÙÚÛÜÑÒÚÝ
(genomescalemeta
bolicmodel,GSMM)
tu`3ؘF

)2˜F

>?˜FA˜F½å

ñX$Ø >?H

@

A
NÇZF–˜XYΌÓA–ÛÜÑÒ

#”ež
ÙÚ9¥‚ž†/g

ŒölmÖgÓA–AÊ
ڏY],&
[1]。
O˜þ9

¥é&ÞßY
vwà“
(constraintbasedmodeling,CBM)
Oãà;
9Ú[üA– ‡/|wÛÜ~

®¯Û܈v
ŸŽ

MN3XW@A"ê

ؘÖgÓA–ÛÜ
ÑÒò˜jMY5V
[2-3]。
¤OzŒؘÙÚ
ÛÜÑÒÚݨñ/Z[Yþ9

eê×љ
&ÞßYvwà“Y\Ê

ÁG/ÎÈ

D[Wè
Œ™ÌOÖgA–¬­"êYZ[

1 
OÒù0©’“øù©Õ]s%ç´
]^

ñO

ؘÙÚÛÜÑÒÚݨñu
âÚE
:①ؘ,÷⮎ÚÝYNò;②¨ñ
Ç®ÛÜÑÒÚÝ
;③½FÚÝYP8;④†¥â
ésÛܑê
;⑤Ú[âZ[Auâ。O¨ñuâ
¾,ؘ

>?H

Ûܖ

ÛÜW@/)2Ê_
A½åð/E
Matlab、Ilustrator
/
CelDesigner
AM
D
[4]。
åq

.pgdz
GSMM
k¾±e)2Ê_
½åð:[)2¹³Y"³ny5ÇZ

pqÇ
Z

V8ÇZ

®¯˜vA°|ûÖ,÷
[5]。
$&
A–F_†O€(yó/ƒ¾U

Õ.pΌÓ

GSMM
Y¨ñr#€(`3/Ç4Yuâ

]
Escherichiacoli
Y
GSMM
Ð\™

Ñ<±/ðV
[6]。
n
1 
OÒù0©’“øù©Õ‰]s
Fig.1 Reconstructionofgenomescalemetabolicmodel
  
˜ë74–

–ÐdX™¹A

\¯/¯A
–AÓA–YeؘÛÜÑÒÚݖ#u
80
p
(htp://systemsbiology.ucsd.edu/InSilicoOrganisms)。
ÌUϐ],YÖgÓA–]
E.coli,Saccharomyces
cerevisiae,Bacilussubtilis,Aspergilussp,Corynebacteri
umglutamicum,Pichiapastoris
A

ؘÙÚÛÜ
ÑÒÚÝZ[
(^ 2)
ÏÐ
[7-8]:①èŒØÝ/
BÝYF 

®¯€t^dCD¾BlYØ


ÛÜYÇZ/W@Y`N
;②1’ÛÜÖâ/Bhˆ
v
,´
ÍÛÜ6–YA6[/®¯ÛÜ%%Yë
È
;③`3gtJ˜F½å,GSMM¡™.pSØ
NY&`3/vwP§˜

Ûܘ

>?H˜A˜
F2
;④vwÛÜÑÒÎG,ÏÐLŒÚÝUYù
CW

vwÛܖY9UG

3OW@/W@ìá
A
;⑤£¤Bh°N,vw–ÁVY°NF /£¤
ØڏYt¸GA

$&n®¯ežÛÜYóí

ؘÙÚÛÜÑÒÚÝ®¯:Gg

n0–¤
)

Øîz

3OA‚Ú³

µZG°NA"ꮯ
Y*Xڎ4
70%~90%[9]。
2 
O×12‰©ÕoŠuy|àop
KÛÜÑÒÚÝP8XNFãJïð:f&
ãà;°|½åÉÊ

#Z[à“|wؘÙÚ
ÛÜÑÒÚÝY7¡
(^ 3)。
OHJœë/E`£
ñòYþ9

ÛÜÑÒYÅJvÔ["â
:S·v=0
BO
。S(m×n)
BOãJFïð

ÌU

ÛBÇ
ZÑÒUYÛܖ½J
,n
ÛBANÇZ½J

Øq
ãJFïðYD.kÛB.pÇZ

qD.|ÛB
17 
!

# [XCA

ؘÙÚÛÜÑÒÚÝYÞßà“EÌZ[
n2 
OÒù0©’“øù©ÕÇJ¡zƃóm‰ç´
Fig.2 ApplicationofGSMM onconstructionofindustrialmicrobes
n
3 
O×12‰oŠuy‰&›
Fig.3 Theprincipleofconstraintbasedalgorithms
.pΌÇZ–ODpÇZUYãJF1½

ã
JFïðǛ™
GSMM
U¼pÇZ–/EÇZ-
VYF 

öJ

xBOÚÝUDpÇZYÅJ

.
Un

°|3¿

3hYº8Þß
(vmin≤v≤vmax)%
27
A
 
–
 
á
 
Ö
 
u
 
â
  
!
10
"
 
4n@îNÄYðŒ

/9YA³/€A³ÅŒ
™.pS|YÅJvԑV

nMNžŸæ|ï…S
NòOΌÚ[CD¾ëQ½Y3M|/®¯
`WYÅJvÔ

ÛB˜CD¾®¯YAʨ£

$
&
GSMM
#$6ŠpØ

©\CÛÜÇZ/ÛÜ
–˜XY±hÑÒ

ÙÚh
、`


ؘRڳ
(EFMs)
/´ðW@vw
(EPs)
"“AÛÜW@vw
"“…/[&
GSMM
vw

q$m†`J

ÞßC
D/ëQ½

p,f˜X
[10]
Y&ÞßYÚÝv
wà“#˜ë74–ò.[&
GSMM
vwY"
“

m†`J4ò‚Y±TÚ[CD

.U1„…
n…Xv
(C
¸
、N
¸
、P¸
A

/
O2C×MŽA。Þ
ßCDxv4
[2]:
¡YÊNÞß

‘VŽ½¾FÞ
ß

WXCDÞß/ÛÜ

lmÞß

qëQ½#
¾|iYMNžŸ

ÏÐ

A–J3XÇZ

6–3X

、ATP
Ž
NADH
3XMŽA

&ÞßYvw
à“KåÌ\Ê

v4

EGÙäà“
(linearpro
gramming)、
uÑÙäà“
(quadraticprogramming)、
23`½Ùäà“
(mixedintegerlinearprogramming)
/°Nà“
(evolutionaryprogramming)。
F&
CBM
à“Yó®vG/ðŒk&B

U

3 
O×12‰©ÕoŠuy‰ç´
3.1 
J¡¬««›®Z‰šŠ
ÖgÓA–AÊÎG|w+,”Øڏ/
ÛÜÅJ

p˜Ñ9V2

OØڏ˜ê9

$
GapFind/GapFil
˜XYÑÒÇ4vwà“#|w
ÓA–AÊڏY],à“-.
。GapFind
઼
—˜ÛÜÑÒUYÛÜ
gap(
…l:A6ŽRS
Õ÷ðÛܖYÇZ
),
O˜þ9
,GapFil
”A
N½åð

]
KEGG)
U¡¢SK˜
gap
9ç˜`W
ÑÒUYANÇZ
[19]。
p[
GapFind/GapFil
n
Tourlopsisglabrata(
‡ø«ÖgA6Bh

YÚÝ
iNX804
°|vw5^
,T.glabrata
ƒ¾hJ‡ø«
Y.Á],;†#í·êb<§8

ô«
、¯
f
/A–fAFAf3XW@UF²@YØ

qo

ÁFAf#‡ø«ÛÜW@UF²@Yeئ

f[
GSMM
ϐYØ/AN2

‘3Ìf_£
½å

]
BIOLOG,
“%Ø

°5^ڏ,÷€
±:ŽíÉڏ,÷YØ

&o.\Ê

5

optimalmetabolicnetworkidentification(OM
NI)[27]
/
GrowMatch[22]2
Áà“

7¥[Y#Û
ÜŽå

q[Y#ئ¾G½å

n&
¦¾ØY,÷

:[
Fluxbalanceanalysis(FBA)
QØîz¬­K÷îzØñ1âYÇZÅJ
ò4õ

x®¯€A‚

xüØ4¦¾Ø

$
˜ò˜Y¦¾ØÅ3#¨ñ0ö®¯Y],±
å

]:[QØîz¬­5^
Schefersomycessti
pitis
/ˆ‰44

¸§
130
pØ4¦¾Ø

D
²~™€t

¸

Š4/ˆ‰4

CD¾Y¦¾
ؘ3

”q5^™¯ó¦¾Ø
[38]。
4°.}£
¤¦¾Øn®¯A‚Yrs

&
FBA
5VY
parsimoniousenzymeusageFBA(pFBA)
K¦¾Ø
v4

G

Dâ>?HBl½å°|‘3

°.}|
w™¦¾ØYڏ
[31]。
OÛÜŘê9

+,:[ÛÜÅJvw/Û
ÜÅÝvw

ÛÜÅJvw#$Z[&ÖgÓ
A–YA‚BÝÚ[/ÛÜG|w
。FBA
%4
3X÷YÛÜÅvw"“
[14],
O[`£CD¾p[
EGÙäãàëQ"â3M§®¯ÅJ3Ov
ﬣ

Ú[®¯ñ:ÛÜ L

èCÓA–A
ÊÛÜ;†

&
FBA
Ú[‘œ

nFAf

A6
BhÚÝ
iWZ663
U¯ÛÜړ°|vw

5^Ì
í·¯ÛÜYF²@
(EC1.8.4.8),
“¥Ì€”
ø3XHù½«
(Cys)
/e¯½«
(Met)。Cys
#3
Xe@

/5ùN»
(GSH)
Y7W–H

e@

#3X®¯˜vY],–H

q
GSH
xO®Búž
ŸN¼½"ê5•¡F²%[

ؘ¯ÛÜڏ
Yí·’“
Ketogulonicigeniumvulgare
®¯˜XX
v3X¶
、ATP
3XŽ}•

A‚F”
[39]。
Û
ÜÅÝvwà“#$Z[&®¯ëQÛÜ6–
Y3hÊgòŽ

|w†ÞÛÜÅ3hųÅöë
Q6–YF²~

3MW@|wA"ê

O
FBA
þ9¨`6Y
FVA(fluxvariabilityanalysis)[17]、
FCA(fluxcouplinganalysis)[15]、FSA(fluxsensitivity
analysis)[16]
Aà“v¥”ÅJS`Y¶·
、2

ZÅJ-VYF–/ÇZÅJ`NnëQ"âY
rsA

p"꣤ÛÜÅvÔ

]:[
FVA
v
w€t<Ÿ{¾
P.pastoris
Bl^¸>?
HAS、
hSOD
Y6J§5^

O.Œ<Ÿ¶·
,^
¸>?
Bl{s ¡<Ÿ}•q¡g

”q1’™_Y
A6uâU<Ÿm†ŸŽ
[40]。Phenotypephase
plane(PhPPs)
à“ª9Y#

p1½`J

]ˆ‰
4C×/
O2RSMŽ)nëQ"âYrs
[32],
]f
[
PhPP
vw™€tAÊÛܨ£¾ˆ‰4/Ÿš
C×MŽn
S.cerevisiae
A‚Yrs

°qI‘™Ú
37 
!

# [XCA

ؘÙÚÛÜÑÒÚÝYÞßà“EÌZ[
ÝU€tÛÜW@Yf[Ž
[41]。FBAwithmem
braneeconomics(FBAME)
x£¤™®B®¯˜X
XvnAÊ/ÛÜYrs
[12]。
z9Œ/ÛÜÇZ
4¯óYãà"“^

k:”¦¾Ûܖî³65
Y
fluxsum
à“

Ì\Ê#tuãàUVÛܖY
PNŽ

…ÎŒÛܖYAX/RSMŽ-/Y
1/2,
ª9ÓA–YÛÜγ

]tu²~€t

¸CD¾
P.pastoris
½«
fluxsum
%

5^ç‚8
/N*SNò~g
fluxsum
%qX4A6^¸>?
Y3O0–
[18]。
¡
1 
12uy‰op%ç´34
Table1 Classificationanddescriptionofthealgorithms
"“pË ÚvG ðŒ )2
EMILiO
ÖâBòã
U_û°âA‚Íû–Y6–A6YÇZÅ3/®¯ÇZÅJ
¶·x_^Êg3h6J
[11]
FBAME
ÅJÝvw £¤®B®¯I˜X]ÕrsÌAÊ/ÛÜ
[12]
FBAwMC
ÅJÝvw
f[®¯H‘Vh¿%4ü^YņÚ[¯hv¦n®¯AÊ
Yrs
[13]
FBA
ÅJÝvw ®¯ëQ½3MN§YÅJvÔ
[14]
FCA
ÅJÝvw
tu5^ønÇZÅ3èCؘÙÚÛÜ ‡Y½¾F3G/
ÅJ9tG
[15]
FSA
ÅJÝvw N¼ëQ½ÅJ%nÌfÅJ%`NYsZ
[16]
FVA
ÅJÝvw ®¯OòŒYëQ½CD¾ÛÜÇZÅJY9¾Å%
[17]
Fluxsum
ÅJÝvw tu®¯ÛܖPNŽÚ[®¯AÊ`N
[18]
GapFind/GapFil
ÛÜýêés 5^ÛÜýêDtuò‚ÇZ4ScŽ—áóYÇZésýê
[19]
GeneForce
ÛÜlm ²—3ЙY"³ˆ`lmÙx¥ÚÝ®¯â_£)¯ÍÆ
[20]
GDLS
ÖâBòã ¥[
MILP
jMãàÐuXYYØ<=YÛÜÑÒ
[21]
GrowMatch
ÛÜýêés <±ÇZŽA–J˜X¥ÚÝ®¯â®¯BÝ.“
[22]
IOMA)
˜F2ņ `3>?˜F/ÛܘF½å®¯ÅJvÔ
[23]
MOMA


ÇZƒL ®¯ØþzïóYÅJvÔ
[24]
OptForce
ÖâBòã U__^ëY6{uJA6¦¾Y3ЙYÛÜÅJ%%
[25]
OptGene
ÖâBòã f[á†à“®¯ØþzëÈ
[26]
OMNI
ÛÜýêés
U__^ÚÝ®¯ÅJâ_£N¯ÅJÍ.“§¾<±YÛÜ
ÇZ
[27]
OptKnock
ÖâBò㠑3š.6–YMNA6®¯ÇZþzëÈ
[28]
OptReg
ÖâBòã ®¯ØþzëÈ/ÇZlmëÈ
[29]
OptStrain
ÖâBòã tu—á^¸ÛÜW@òãA6âA‚û–YÛÜ6–
[30]
pFBA
ÅJÝvw
O3MA‚CD¾[&{EGÙäæ|:@F–YÇZY3¿
ÅJ
[31]
PhPP
ÅJÝvw
/

pÛÜÇZÅJ4`JtuEGÙäãàëQ½3M|
‘V
[32]
PROM
ÛÜlm ×ÑðŒب£/Ø P§Ø¦Íª%[F YSG
[33]
rFBA
ÛÜlm `3P§lm2YÅJÝvw
[34]
ROOM


ÇZƒL ®¯ØþzïóYÅJvÔ
[35]
SRFBA
ÛÜlm [
MILP
žŸðŒÔGÿ!¨ñYlm;†
[36]
TMFA
…ÄF —áEG…ÄFņ®¯…ÄFS|YÅJ¶·
[37]
47
A
 
–
 
á
 
Ö
 
u
 
â
  
!
10
"
 
3.2 
J¡¬««›®Z‰ÏÐ`ƒó
$&h§½Ög6{l:gYA–3XW
@

’“ë7ÓA–†vY6{ÁG~É

ˆ`o
.^¨Y

C],W@#OؘÙÚ9snGn
òãÓA–ÛÜÑÒ

¥éÛÜÖ⟎

tuî
zŒW@

xè^¸W@A"³ˆ`ÛÜÅ"ö
EÌtJh¿

/3XóYÛÜ6–/¡g6J

]üãÎ
[42]
On
S.cerevisiae
ÚÝ
iND750
3Xº
«YÛÜÑÒ°|
FBA
ãà

N򺍫Y3O3
XW@/Pp"³

:[îz
FUM1


uJBl
PYC
ØAŸŽ_^™01-.ƒ„
5.64g/L
º
«

n&°|Û܈vïY5`Bh

ÌA‚.
UD€Ã¡3M"ö°|

’“
FBA
®¯Y3MÅ
JvԎ¦¾ØY½J\\â_Y‹O¤P

4™LMo.€Ã

£¤ûÌ5V™
minimizationof
metabolicadjustment(MOMA)
/
regulatoryonof
minimization(ROOM)
à“

ÌstÈO&ñŒBh
ÐuÛ܈vïsv63¿!™YlË/FTA
‹

€tÈ#
MOMA
¥[uÑÙäãà3¿"6/
ò!™
[24],
q
ROOM
xf[23`½EGÙäK
ÛÜÅJ5Aˆ`YÇZ½ëm†O3É
[35]。
ÛÜÖâˆv#ë7Nòg6BhY:T
-

j$&ÓA–ÛÜÑҋ:YXYG

žd+
)YQpØîzÐÐx…l˜ÛÜÖâˆvY
ëY

q§]í#hY¨ñO_Y%%uâU…³
~h

4™¡gÛÜÖâˆvY:G

¥é
GSMM,OptKnock
KëQÛÜ6–AX/®¯A‚
²–4

pëQ½

:[&{MN
(bilevelop
timization)
à“

ãàNò¥u*ò˜¡gY
ØîzŸŽ

žŸ¡gÛÜÖâˆvYŽ
。2003
$
Burgard
A
[28]
p[
OptKnock
vw
E.coli
ÛÜÑ
ÒÚÝ

¡6™¡gg«

jk«/
1,3
‡u86
JYØîzŸŽ

˜^
,OptKnock
kXÚZ[&
E.coli
gA6‡½«

&½«

Ê$½«/5½«
YÛÜÖâˆvU
[43]。
O
OptKnock
þ9

—5
V™. k”€tî³ÊGˆvÖgBhYÚ[
à“
。OptGene
Z[á†à“”Éãà;n½åY
ÉʧV
[26];OptForce
[&®¯l˜ëQA‚BÝ
§°|l`Y3¿ÇZÅ3
[25];Geneticdesign
throughlocalsearch(GDLS)
:[.Á%áYCWà
“xLŒO1ŒØîz½ë/3M|½ëYC
D¾Û܈vY"“
[21];Enhancingmetabolismwith
iterativelinearoptimization(EMILiO)
p[9UYE
GMN"“LŒ¾,`LYÛÜÇZÅ3/û°
âA‚û–YÛܖ6JY¡g

kS®¯3hò
Ž§YÅJS`¶·
[11]。
¥éÛÜÖ⟎K^¸؎ÛÜW@’
è˜&+BU

€S/ðVÌ0–«

kSáá
ÌA6ëQÛÜ6–YÁG

4™1’o.ÛÜ
ÖâˆvŸŽ
,OptStrain
” ‡{®¯óèY
^¸ÛÜÇZ

W@nëQÛÜ6{A6Yrs

ˆÝZ[_ã#O
E.coli
A6‹ÓfU
,OptStrain
ãàò˜™¥‹Óf6Jl˜3hÊg%§Y3
¿^¸ÇZ½ë
[30]。
4™®¯ØBl{nÛ
ÜÅJ`NYrs
,OptReg
tu²~í#ÝBh/
mAÝBh€tÛÜW@9ÅJ%Y`N

L¥6
ÛÜlmYÅM@

Of[
E.coli
A678Yuâ
U
,OptReg
5^¾lˆ‰4“«`@ØBl{
Yt§

îzŸšC×/‡ø«e«o|@YÍF
ØS¥786Žl˜3hÊgòŽY
99.8%[29]。
3.3 
’“56`’“މ܆
‘
GSMM
#$Z[Y~-.#&Þß
Yvwà“Nòx§3M|

jO(§Y3M|
‘V…/:n®¯®¯_Ûܨ©

L
&ÓA–®¯_ÛÜYXYG

Q.ÞßCDY
ÅJvwà“]
FBA、PhPP
…/:nǛÓA–
YAÊÛÜÎÈ

¾,`3§"êYÞßCD]˜
F½åÞß
(rFBA,SRFBA,GeneForce,PROM,IO
MA)、
…ÄFÞß
(TMFA)、
®¯A‚WXÞß
(FBAwMC)
A

/”Én®¯ÛÜÚ[S6AY
¤P

OÓA–®¯hJYÛÜW@¶˜§ÁØf
lm

4™¡gQ.ÛÜÑÒÚÝn®¯BÝ®¯
Y:G

O
FBA
Yþ9

5V™&ÔGÿ!
(AND,OR
/
NOT)
ðŒØP§lm;†Y
Regu
latoryFBA(rFBA)
à“

/®¯OÛÜ P§`3Y
ؘÙÚÑÒUØBlÚ³nÅJvÔYr
s
[34]。Shlomi
A
[36]
O
rFBA
þ9Ú[`£CD
¾ØBlâÛÜÅJYÍFG

ŒX™
steady
stateregulatoryFBA(SRFBA)
à“

üà“:[u
°†Y

/

v¥ðŒØYP§¨£

k†ŽB
l

ë7

oÁ`3P§˜FYà“–XÚZ[&
E.coli
/
S.cerevisiae,
tu²~ØYBl{â
ÚÝY®¯‘œ/ï±ÚÝ/èŒlm;†
[44-45]。
åq¥[ÔGÿ!ðŒØP§lm;†‹O.
ŒYžÅG

ã]ØP§¨£Á:k†/Blr
57 
!

# [XCA

ؘÙÚÛÜÑÒÚÝYÞßà“EÌZ[
Á,
ûÖvèÔGÿ!Ùx¾¼)hJ)2


ñò2€eê

4›œ9Œí#
,2010
$25
™
GeneForce
/
PROM
óÝà“

ÌU
GeneForce
S[&yL*±ÛÜ P§ÚÝU‹OY¢³lm
Ùx/Ø >? ÇZF–
(geneproteinreaction
relationships,GPRs)。
KåBÝå:Y_£‘œn
E.coli`
3ÚÝ°|
GeneForce
vw

5^<±ïY
ÚÝn
E.coli
í#ÝBhA‚BÝY®¯:G¡
g˜™
80%[20]。
q
PROM
x¢çLM™ûÖñX
P§ÙxY™+

de:[yLNY"³ñXØ
P§¨£/ØP§Ø¦Vͪ%[F 
[33]。
z
™&P§˜½åYMNà“^

kÏÐ`3>?
H˜F/Ûܖ˜F½åY
integrativeomicsmeta
bolicanalysis(IOMA)
à“

ü“S/®¯‘£CD
¾ÛÜÅJYvÔ

][&Ú[
E.coli
O€tØ
ƒLCD¾YÛÜ­©
[23]。
OHJœëYþ9nANÇZ—áEGY
…ÄFÞß

tuDpÇZUÛܖ,Ô>y$
Yãà

:΂ZYScG

þzùCW

#
ther
modynamicsbasedmetabolicfluxanalysis(TMFA)
Y

[37]。
o.à“–XÚp[&
E.coli
. k]
,ÛÜÎÈY£¤

]ˆ‰4A‚MN

L¥[O
YlmÇZ

],ÛܖY䳲㮯AA
[46]。
O:ÅY®¯‘VîNΌÇZY@\âÌf
@Œ0–

qoÁŒ%[srsÇZMŽ
,FBA
withmolecularcrowding(FBAwMC)
tunΌÇZ
ÅJYÞßxǛ®¯d‘VYņ%[

f
[—á
FBAwMC
Y
FBA
vw
E.coliMG1655
O€t
„…9YA‚MŽ/0–f[­©°|Ú[

Ì
‘œâ_£½åYT™g³.“
[13]。
4 
G
 
7
&
CBM
à“YؘÙÚÛÜÑÒÚÝ4
 ‡{|wÖgÓA–AÊڏ

ˆvA6G


MNA6BÝ¡™.p:Y&

(§X
ÚZ[_ãBC
CBM
à“–X4£¤ÖgÓA–
AÊÛÜڏ/¡gÓA–†vu⍎Y:Ä
Ö[

j$&íœP§lm/@LÄFAÍF½
å

ë7
GSMM
vwà“r#&ÑÒ½¾‘¨Y
‘£vw“

̌GÄÎjŒJvw:G:÷
°.}¡g

ؘ

à“Y5V+ðO&

O¨ñ
yáeê/:YؘÙÚÛÜÑÒÚÝY
þ9
,`
3P§˜/ZP’ÚÝ
,¨
ñL£Ye
®¯ÛÜÑÒÚÝ

t§25gãàLÄF1
½YóÝà“

yá:nðŒÓA–®¯YA¥
 L

”qgn¡gÓA–†vŽ

Q·6r

[1] OteroJM,NielsenJ.Industrialsystemsbiology[J].Biotechnol
Bioeng,2010,105(3):439460.
[2] PriceND,ReedJL,PalssonBO.Genomescalemodelsofmicro
bialcels:evaluatingtheconsequencesofconstraints[J].Nat
RevMicrobiol,2004,2(11):886897.
[3] ZenglerK,PalssonBO.Aroadmapforthedevelopmentofcom
munitysystems(CoSy)biology[J].NatRevMicrobiol,2012,10
(5):366372.
[4] HenryCS,DeJonghM,BestAA,etal.Highthroughputgenera
tion,optimizationandanalysisofgenomescalemetabolicmodels
[J].NatBiotechnol,2010,28(9):977982.
[5] ThieleI,PalssonBO.Aprotocolforgeneratingahighqualityge
nomescalemetabolicreconstruction[J].NatProtoc,2010,5(1):
93121.
[6] OrthJD,ConradTM,NaJ,etal.Acomprehensivegenomescale
reconstructionofEscherichiacolimetabolism2011[J].MolSyst
Biol,2011,7:535.
[7] FeistAM,PalssonBO.Thegrowingscopeofapplicationsofge
nomescalemetabolicreconstructionsusingEscherichiacoli[J].
NatBiotechnol,2008,26(6):659667.
[8] OberhardtMA,PalssonBO,PapinJA.Applicationsofgenome
scalemetabolicreconstructions[J].MolSystBiol,2009,5:320.
[9] PriceND,PapinJA,SchilingCH,etal.Genomescalemicrobi
alinsilicomodels:theconstraintsbasedapproach[J].Trends
Biotechnol,2003,21(4):162169.
[10] ParkJM,KimTY,LeeSY.Constraintsbasedgenomescale
metabolicsimulationforsystemsmetabolicengineering[J].Bio
technolAdv,2009,27(6):979988.
[11] YangL,CluetWR,MahadevanR.EMILiO:Afastalgorithmfor
genomescalestraindesign[J].MetabEng,2011,13(3):
272281.
[12] ZhuangK,VemuriGN,MahadevanR.Economicsofmembrane
occupancyandrespirofermentation[J].MolSystBiol,2011,
7:500.
[13] BegQK,VazquezA,ErnstJ,etal.Intracelularcrowdingdefines
themodeandsequenceofsubstrateuptakebyEscherichiacoliand
constrainsitsmetabolicactivity[J].ProcNatlAcadSciUSA,
2007,104(31):1266312668.
[14] OrthJD,ThieleI,PalssonBO.Whatisfluxbalanceanalysis
[J].NatBiotechnol,2010,28(3):245248.
[15] BurgardAP,NikolaevEV,SchilingCH,etal.Fluxcouplinga
nalysisofgenomescalemetabolicnetworkreconstructions[J].
GenomeRes,2004,14(2):301312.
[16] DelgadoJ,LiaoJC.Inversefluxanalysisforreductionofacetate
excretioninEscherichiacoli[J].BiotechnolProg,1997,13(4):
67
A
 
–
 
á
 
Ö
 
u
 
â
  
!
10
"
 
361367.
[17] MahadevanR,SchilingCH.Theefectsofalternateoptimalsolu
tionsinconstraintbasedgenomescalemetabolicmodels[J].
MetabEng,2003,5(4):264276.
[18] ChungBK,SelvarasuS,AndreaC,etal.Genomescalemetabolic
reconstructionandinsilicoanalysisofmethylotrophicyeastPichia
pastorisforstrainimprovement[J].MicrobCelFact,2010,9:50.
[19] KumarVS,DasikaMS,MaranasCD.Optimizationbasedauto
matedcurationofmetabolicreconstructions[J].BMCBioinforma
tics,2007,8:212.
[20] BaruaD,KimJ,ReedJL.Anautomatedphenotypedrivenap
proach(GeneForce)forrefiningmetabolicandregulatorymodels
[J].PloSComputBiol,2010,6(10):e1000970.
[21] LunDS,RockwelG,GuidoNJ,etal.Largescaleidentification
ofgeneticdesignstrategiesusinglocalsearch[J].MolSystBiol,
2009,5:296.
[22] KumarVS,MaranasCD.GrowMatch:anautomatedmethodfor
reconcilinginsilico/invivogrowthpredictions[J].PloSComput
Biol,2009,5(3):e1000308.
[23] YizhakK,BenyaminiT,LiebermeisterW,etal.Integratingquan
titativeproteomicsandmetabolomicswithagenomescalemeta
bolicnetworkmodel[J].Bioinformatics,2010,26(12):
i255260.
[24] SegreD,VitkupD,ChurchGM.Analysisofoptimalityinnatural
andperturbedmetabolicnetworks[J].ProcNatlAcadSciUSA,
2002,99(23):1511215117.
[25] RanganathanS,SuthersPF,MaranasCD.OptForce:anoptimi
zationprocedureforidentifyingalgeneticmanipulationsleading
totargetedoverproductions[J].PloSComputBiol,2010,6
(4):e1000744.
[26] PatilKR,RochaI,ForsterJ,etal.Evolutionaryprogrammingasa
platformforinsilicometabolicengineering[J].BMCBioinformat
ics,2005,6:308.
[27] HergardMJ,FongSS,PalssonBO.Identificationofgenome
scalemetabolicnetworkmodelsusingexperimentalymeasured
fluxprofiles[J].PlosComputBiol,2006,2(7):676686.
[28] BurgardAP,PharkyaP,MaranasCD.OptKnock:abilevelpro
grammingframeworkforidentifyinggeneknockoutstrategiesfor
microbialstrainoptimization[J].BiotechnolBioeng,2003,84
(6):647657.
[29] PharkyaP,MaranasCD.Anoptimizationframeworkforidentif
yingreactionactivation/inhibitionoreliminationcandidatesforo
verproductioninmicrobialsystems[J].MetabEng,2006,8(1):
113.
[30] PharkyaP,BurgardAP,MaranasCD.OptStrain:acomputation
alframeworkforredesignofmicrobialproductionsystems[J].Ge
nomeRes,2004,14(11):23672376.
[31] LewisNE,HixsonKK,ConradTM,etal.Omicdatafrom
evolvedE.coliareconsistentwithcomputedoptimalgrowthfrom
genomescalemodels[J].MolSystBiol,2010,6:390.
[32] EdwardsJS,IbaraRU,PalssonBO.Insilicopredictionsof
Escherichiacolimetaboliccapabilitiesareconsistentwithexperi
mentaldata[J].NatBiotechnol,2001,19(2):125130.
[33] ChandrasekaranS,PriceND.Probabilisticintegrativemodelingof
genomescalemetabolicandregulatorynetworksinEscherichiaco
liandMycobacteriumtuberculosis[J].ProcNatlAcadSciUSA,
2010,107(41):1784517850.
[34] CovertMW,SchilingCH,PalssonB.Regulationofgeneexpres
sioninfluxbalancemodelsofmetabolism[J].JTheorBiol,
2001,213(1):7388.
[35] ShlomiT,BerkmanO,RuppinE.Regulatoryon/ofminimization
ofmetabolicfluxchangesaftergeneticperturbations[J].Proc
NatlAcadSciUSA,2005,102(21):76957700.
[36] ShlomiT,EisenbergY,SharanR,etal.Agenomescalecomputa
tionalstudyoftheinterplaybetweentranscriptionalregulationand
metabolism[J].MolSystBiol,2007,3:101.
[37] KümmelA,PankeS,HeinemannM.Systematicassignmentof
thermodynamicconstraintsinmetabolicnetworkmodels[J].BMC
Bioinformatics,2006,7(1):512.
[38] LiuT,ZouW,LiuL,etal.AconstraintbasedmodelofScheferso
mycesstipitisforimprovedethanolproduction[J].BiotechnolBio
fuels,2012,5(1):72.
[39] ZouW,LiuL,ZhangJ,etal.Reconstructionandanalysisofage
nomescalemetabolicmodelofthevitaminCproducingindustrial
strainKetogulonicigeniumvulgareWSH001[J].JBiotechnol,
2012,161(1):4248.
[40] SohnSB,GrafAB,KimTY,etal.Genomescalemetabolic
modelofmethylotrophicyeastPichiapastorisanditsuseforinsil
icoanalysisofheterologousproteinproduction[J].BiotechnolJ,
2010,5(7):705715.
[41] DuarteNC,PalssonBO,FuP.Integratedanalysisofmetabolic
phenotypesinSaccharomycescerevisiae[J].BMCGenomics,
2004,5:63.
[42] 
üãÎ

ÛÜÖâˆv01-.A6.S¢«
[D].
ùú

ì
?hF
,2012.
[43] PharkyaP,BurgardAP,MaranasCD.Exploringtheoverproduc
tionofaminoacidsusingthebileveloptimizationframeworkOpt
Knock[J].BiotechnolBioeng,2003,84(7):887899.
[44] CovertM W,KnightEM,ReedJL,etal.Integratinghigh
throughputandcomputationaldataelucidatesbacterialnetworks
[J].Nature,2004,429:9296.
[45] HergardMJ,LeeBS,PortnoyV,etal.Integratedanalysisof
regulatoryandmetabolicnetworksrevealsnovelregulatorymecha
nismsinSaccharomycescerevisiae[J].GenomeRes,2006,16
(5):627635.
[46] HenryCS,BroadbeltLJ,HatzimanikatisV.Thermodynamics
basedmetabolicfluxanalysis[J].BiophysJ,2007,92(5):
17921805.
77 
!

# [XCA

ؘÙÚÛÜÑÒÚÝYÞßà“EÌZ[