免费文献传递   相关文献

Responses of Hydraulic Transport Efficiency and Safety of Current year Stems in Pinus tabulaeformis Seedlings to Nutrient Addition and Irrigation

油松幼苗水分传输效率及安全性对养分和水分添加的响应



全 文 :书!"#$%&
,2016,36(6):1199-1205
犃犮狋犪犅狅狋.犅狅狉犲犪犾.犗犮犮犻犱犲狀狋.犛犻狀.
  !"#$:10004025(2016)06119907               犱狅犻:10.7606/j.issn.10004025.2016.06.1199
%&(
:20160111;)*&%+(:20160612
,-./

()*+%,-
(41530854,41371507)
0123

./0
(1990-),1,2345678,9:;<#$=>8?8@ABC67。Email:1169848066@qq.com
DEFG:HII,67J,9:;<#$8?8@67。Email:yyli@ms.iswc.ac.cn
456789:;<=>?@AB
C9D89EFGHI
!"#
1,
$%%
2,3
(1!"KL+MN% L%O,P!QR712100;2!"KL+MN% =STU67V,P!QR712100;3W+%O=XY
=STU67V .SZ[S\]^_`aKb(cdefg

P!QR712100)
J K:hijk=>lmnopqrstu>p=>vwCxyz{|}~ysC,。€f‚ƒ„…†C
‡ˆ‰MŠ

‹2Œ8jkŽŒ8‘’“,f”•t–(CK,—˜™、)*š=)、›œu>vw(F,žŒ
120kg/hm2 ŸNp60kg/hm2 ŸP= vw NpP¡,)*š=)¢u>p=>£¤vw(FI,žŒ120kg/
hm2 ŸNp60kg/hm2 ŸP= vwN¡pP¡,¥¦=100mm)3§¨?,67©jkŽ=>lmnopª
«¬­st›œu>p=>vwCxy

®¯°±
:(1)_CK²³,›œu>vw(F)´ w©jkŽaµ、¶·
pa¸Y8$¹

ºt³»=o
(犓s)、³¼»=o(犔犛犆)、Huber½、¾¿ª«ÀÁ(P50)¢=>lmqr½ÃÄ
x—N
。(2)›œp=>£¤vw¨?(FI)Caµ、ÅZ、¶·pa¸Y8$¹ÆÇZÈCKpF¨?,}犓s、犔犛犆
p Huber½_CK¢F¨?²³ÉÊÆÇËÌ,ºP50³CKpF¨?´w0.2MPaÍÎ,¥=>lmqr½²
tÏÐ

67°±

u>vwtjkŽŒ8C=>lmnopqrsÄx—N

=>vwt=>lmno
ÑÊÆÇÄx

ºšÒ©=>lmCqrs

[Ó9:_ÔÕÖ×´w¢ÔÕØ¿ÙÚÛÁܚÝÞ

LMN

jkŽ

=>u>vw

=>lmno

ª«¬­s
OP9Q$
:Q945.79 !RSTU:A
犚犲狊狆狅狀狊犲狊狅犳犎狔犱狉犪狌犾犻犮犜狉犪狀狊狆狅狉狋犈犳犳犻犮犻犲狀犮狔犪狀犱犛犪犳犲狋狔狅犳
犆狌狉狉犲狀狋狔犲犪狉犛狋犲犿狊犻狀犘犻狀狌狊狋犪犫狌犾犪犲犳狅狉犿犻狊犛犲犲犱犾犻狀犵狊
狋狅犖狌狋狉犻犲狀狋犃犱犱犻狋犻狅狀犪狀犱犐狉狉犻犵犪狋犻狅狀
HUANGShaolin1,LIYangyang2,3
(1ColegeofForestry,NorthwestA&FUniversity,Yangling,Shaanxi712100,China;2InstituteofSoilandWaterConserva
tion,NorthwestA&FUniversity,Yangling,Shaanxi712100,China;3StateKeyLaboratoryofSoilErosionandDrylandFarm
ingontheLoessPlateau,InstituteofSoilandWaterConservation,ChineseAcademyofSciencesandMinistryofWaterRe
sources,Yangling,Shaanxi712100,China)
犃犫狊狋狉犪犮狋:Theresponsesofhydraulictransportefficiencyandsafetytonutrientsandwateradditionarethe
foundationforprobingthemechanismsofextensiveacclimationin犘犻狀狌狊狋犪犫狌犾犪犲犳狅狉犿犻狊.Usingthenewly
developedcentrifugemethodandtakingthreetreatmentsascontrol(CK,nofertilization,naturalprecipi
tation),NandPaddition(F,fertilizerswereappliedwiththeapplicationrateas120kg/hm2pureNand
60kg/hm2purePperyear,naturalprecipitation),NandPadditionplusirrigation(FI,fertilizerswere
appliedwiththeapplicationrateas120kg/hm2pureNand60kg/hm2purePperyear,100mmwaterwas
irrigatedexcludinglocalprecipitation),westudiedtheresponsesoftransportefficiencyandvulnerabilityto
embolismofcurrentyearstemsinChinesepineseedlingstonutrientsandwateraddition.Theresultsindi
catedthat:(1)NandPadditionraisedbasaldiameter,canopysizeandabovegroundbiomass,buthadno
effectonspecifichydraulicconductivity(犓s),leafspecificconductivity(犔犛犆),Hubervalue,embolism
resistance(P50)andsafetymargincomparingtothecontrol.(2)ConcurrentadditionofN,Pandwaterin
creasedplantheight,basaldiameter,canopysizeandabovegroundbiomass,nodifferencebetweentreat
mentswasfoundfor犓s,犔犛犆andHubervalue,butP50ofFItreatmentincreasedby0.2MPaandsafety
marginalsonarrowed.Theseresultssuggestthatnutrientadditionhadnoobviouseffectontransporteffi
ciencyandsafety;wateradditiondidnotaffecttransportefficiencybutincreasedthevulnerabilitytoem
bolism.ThereasonwasmainlyrelatedwithlongertracheidlengthandlowerimplosionresistanceinFItreatment.
犓犲狔狑狅狉犱狊:犘犻狀狌狊狋犪犫狌犾犪犲犳狅狉犿犻狊seedlings;nutrientsandwateraddition;transportefficiency;vulnerability
toembolism
  #$Ö߇=>lmàáâãä#$¼Cåæ
çp=>Xƒ

z#$èc:C8?éêëì
[1]。
³»=o
(犓s)ptí`î»Cª«¬­sz#$2
§ïc:C=Áðñ

òGzóôY=>lmno
C×¹

õGö÷©óôY=>lmCqrs

—
£#$犓sptª«C¬­s(øùƒ»=oúû
50%VtyCóôYüýP50þÿ¹,}½!ü,#
$¾¿ª«"#CÀÁ$%

Ë&N

()*’+
,C 犓s -²Ë100.[2],—£#$C P50-;
-0.2MPaÏ/0-14MPa[3]。1$,CËÌ2,
#$óôY犓spª«¬­s345678,ð&z
=>pu>9C:;Äx

{|}t=>pu>vw
CxyÝ<È{|#$t—£86C~y‰=

>?ÞÈ=>pu>t#$=>lmnopq
rs@ÝìA67

(t167§$,C67°±:B
¼CD#$E犓s FšG¹HIJ´w,ºùKC
D#$pL¼+,C犓sp=>ÝnsCMN—O
P
[34];
QR86WC#$Sí`86WC#$ùù
TÝÒC¿ª«ÀÁ
[3,57],
º2Q+pìAUD#
$¸VW—£=>86#$¿ª«ÀÁÉÊÆÇË
Ì
[710];
˜›´w©Q+犓s,º¿ª«ÀÁÆǚ
Ò
[7,1114],
œXu-´wQ+C¿ª«ÀÁ
[11];
2Y
!WYZ+[[8ÖC+ó¸VW

›vw´w©
\]7犓s,ºN^_`aܼ³»=o(犔犛犆)p
ó’PךÒ

›vwb¿ª«ÀÁÆÇ´w

vw
œ¡õ5,+,Wc1,CP50ÝÆǚÒ[15]。œ
vw-‹ÆÇdZefgph4í`ij¤1kC
»=oúûl>_
[16];
›pœ£¤˜ƒ´w©mn
o6,pqr+,W2,+óC犓s p犔犛犆,ºš
Ò©}W1,+óC犓s p犔犛犆,}s3,+óÊ
öy
[17];
˜™»tuvk¶wx*»×p犔犛犆Ü
š©50%,n¿ª«ÀÁ´w50%[18]。¸y`a


—£67W=>pu>vwõt=>lmn
opqrsCÄxÓ+,

8Ö78

=>{u>¨
?A|9JÌ

¥N^_67}W2=>{~§u
>CÄx¸

€£ì+,t=>pu>xyC:
;67

È‚

ƒ„…ã©›

œp=>vwÜj
kŽŒ8C¬­s†‡

=>lmqr½
¢óôYˆ‰®Š9ðñ

‹{|jkŽE=>
lmnopqrst=>pu>Cxy

;J‘j
kC+%‹Œd?Ž

1 ’“pA|
1.1 VWXYZ[
fa‘ÈP!’“”•QR–—˜™òš
›

€aa¨P!ÞW [WY

œžrNŸs
 ¡¢QRx£

Gq£¤

¥ š=¹¦rŒš
=¹C70%ÍÎ。Œ Ãxž12.9℃,裡(1
¨

 Ãxž-1.1 ℃,ïq¨(7¨) Ãxž
25.8℃,Œ©]ïÒxž-19.4℃,Œ©]ïZx
ž42℃。Œ≥0℃ªž‘4903℃,U«¬_‘
309d,Ê­¤221d,Œ ÃšG¹651mm。
1.2 VW\]
f‹Pבž A4ÅC2Œ8jkŽ‘
67t®

S\‘¯S

f”3§¨?:1)t–
(CK),°vwN、P™,)*šG¹Ü8Ö;2)u>
vw
(F),žŒ120kg/hm2 ŸNp60kg/hm2 ŸP
= £¤vw±¡pc露³

)*šG¹Ü8
Ö
;3)u>p=>£¤vw(FI),žŒ120kg/hm2
ŸNp60kg/hm2 ŸP= vw±¡pc露
³

¥2aŒšG¹,¸¦=100mm。˜™p
¦=¨?;2014Œ3¨´µ¶e˜,˜™‘ž·1
¨®;šG{¸¹I¹¦=†º»˜

†º¸¹
¦=¤t–Ж¼¦½£¾=¹

¦=¨?9:2
3~7¨†º,ž¨1¿,¦=¹Ã‘20mm(=°À
=
)。
ž§¨?”3§Ð–,ЖBª‘50m2,F‰
0021 ! " # $ % &                   36Á
ÂÃ

¨?¤ÄÅ
(2014Œ3¨02015Œ7¨)š
G¹‘961mm,_^Œ£¤ÄšG¹,Æìt,}
ǑùÈÔ?

…ã22015Œ8¨†º,2ÉЖ
WYF‰Êjk3Ë,…¹ÅZpaµ,*õÌ͂
¾ƒÈjk=ÁsôC…ã

ïõÎÏ8$¹

1.3 ^_./`ab
1.3.1 cd、XeDfghi aµƒÐÑÒӆ
º…¹

ÅZƒÁӆº…ã

E=Ásô…ãÔ#
õ…¹Õ§a¸Y8$¹

ž§¨?օã9Å。
1.3.2 jkl8m žÐ–F‰Ê2Åjk,žÅ
珌8L¼2×,2ج13:00Í΃ýÁg
(1000ÙýÁg,ÚPMSÛÜ)…ã}¼=Ý,Ö
…ã3¿,…ã¤Ä9:25~7¨。‹3¿¼=Ý
…ãïÒ½F‘8Ö ïÒ¼=Ý
(ψmin)。
1.3.3 noApq、r8=D 犎狌犫犲狉s Xƒ…
†CCochard‡ˆ‰|[1920]…ãjkŒ8C¬
­s†‡

ÞÈk+#$)*ß@ÜCª«Ò

wëàýáâ-Àãbä*åC«5(torusmargo)
®Šæ‘

^67GÃàáç—áçC[‘í†
º¬­s†‡…ã
[2122]。
Æ67VWjk)*ß@
ÜCª«ê×ÒÈ2%,èàჰáçC[‘í
†º¬­s†‡…ã

ž¨?…ã9§EÄ。
é±òƒêëàá;,YëÜjkŽ

ì
íîï“ðWrñefg

2efgW=Üçjk
9E¸Œ8EÄ

=Ü^¿êëò]Éóôò]
C+õ

bïöEÖ÷27.4cm,*õ•È‡ˆ‰
(AlegraX22Ù,ÚBeckmanCoulterÛÜ)W,
DéÀ=‡ˆ‰øùþ"#ÞÒ0ZCýÁú×

žìýÁÜûIüã5minõƒ20mmol/LKCl
+1mmol/LCaCl2 ýþ…ã»=o,»=oúû
ûI290%‹¸¤¬­s†‡…ã®ÿ。»=o
úûl>_
(犘犔犆,%)=100×(犓max- 犓h)/犓max,
}W犓h ‘~ýÁÜC»=o,犓max‘-0.2MPa
ÜtyC»=o

ïN»=o
)。PLC_«
"#CýÁë!CÞN"‘¬­s†‡


Weibul#_t¬­s†‡†º$%:
犘犔犆/100=1-exp[-(-狓/犫)^犮]
}W
,犫‘»=oúû63.2%¤VtyCóôY
ýÁC&t½
,犮‘†‡2-犫¤C×,€½!N,
†‡!

$%†‡ƒþÏ(»=oúû12%、50%
p88%VtyCóôYüýP12、P50pP88。
¬­s†‡…ãW)0犓max_EóôYBª
ë³"‘³»=o
(犓s,kg·MPa-1·m-1·s-1),
犓max_€Eĸ*+CVݼBªë³"‘¼³»
=o
(犔犛犆,kg·MPa-1·m-1·s-1),Eĸóô
YBª_¼Bªë³"‘ Huber½。
1.3.4 tuvwxyz{|}~ ç…ãÔ¬­
s†‡C9§E,2EÄWY,-./,1%01ý
þ23õ

45=áâ

*õ•È6Ý7jC+8/
¸2ìN400.CÆ9:Ü;–,ž§E<=B2
!·120°C3§—£–>;?ˆ@2A«;–,V
)–/ƒimageJB8>CÔÕ Ãàµ(犱mean,D
ãÔÕ<=B‘E"
)、
ÔÕBª¦<=BªC³F
(%)pÔÕP× (G‘óôYBª¸CÔÕ§_),
 Ã=Áàµ
(犱h)–ÛH∑犱5犻/∑犱4犻 Ï([23]。
2#tÔÕ

»Ô=ÁàµIÈ犱h±2μmÅ)¸ £
¤…¹.@CÔÕØJ×
(狋)¢ÔÕŵKß(犫1),
L‚Ï(
(狋/犫1)h2 þ°ñÔÕØC¿ÙÚÛÁ[24]。
ž§E‘3§—£–>C Ã½。
1.3.5 €‚ ç…ãÔ¬­s†‡C9§E,
2EÄWYçÖ÷3cmEM,*õô1Nõp?,
•È80%OP²p30%éQ/R–1∶1³FS
#CT;þW60℃ÜéU[25]。B/õC¾V24
5=áâõ

ƒWXYZýþ233~5min,*õ
•ÈìÝ7jC+8/¸

2ìN40.Æ9:܅
¹ÔÕÖ×

ž§EÄûI…ã50§ÔÕ。
1.3.6 xƒ„‚ 2…ãÔ¬­s†‡CEÄW
Y

ç2cmÖCEM,ô1+õp?ˆ,*õ24
5=W[\÷1N,ƒÂ=|2]>ë쬠¸…
ã}èª

‚õ¾V280℃Ü^í48h,_}íc,
íc_èªë³"‘ó’P×
[26]。
ó’Pׅã
c`9¿。
1.4 …]9†
VÝ_Lƒ Ã½Ñab°|

—£¨?!8
Ö

=Ápˆ‰sôë!CË̃GÓ¡AË>C

GÓ¡AË>Cc0ÆÇõ

ƒDuncan|†º
^c³S

VÝÎÏ>CƒSPSS11.5B8†º。
2 ®¯_>C
2.1 C9D89EFB45gG‡H
u>vw
(F)õ,jkÅZ_t–²³ÊÆÇË
Ì

ºaµ

¶·pa¸Y8$¹ÃÝÆÇ´w

u
>p=>£¤vw
(FI)bÅZ、aµ、¶·pa¸Y
8$¹ÆÇZÈt–
(CK)pF¨?(°1)。F¨
?jkCÅZ



¶·pa¸Y8$¹>&³
CK´w10.18%、15.79%、29.50%p36.16%;FI
¨?jkCÅZ



¶·pa¸Y8$¹>&³
F¨?´w21.75%、20.0%、39.14%p47.17%,
10216¤          ./0,9:jkŽ=>lmno¢qrstu>p=>vwCxy
°±u>Gdvw{u>=>£¤vwÃ-e†j
kC8Ö

¥‹u>=>£¤vwe†8ÖCFƒ
ïN

=>vwõe†8ÖCnyNÈu>vwõ
e†8ÖCny

2.2 C9D89EFB45t89:;<=G
‡H
  f1Æ|,3§¨?jkEC³»=o(犓s)g
È1.27~1.37kg·MPa-1·m-1·s-1ë!, Ã
‘1.32kg·MPa-1·m-1·s-1;¼³»=o
(犔犛犆)gÈ2.50×10-4~2.68×10-4kg·MPa-1
·m-1·s-1ë!, Ã‘2.57×10-4kg·MPa-1
·m-1·s-1;Huber½gÈ1.87~1.93×10-4cm2
·cm-2ë!, Ã‘1.90×10-4cm2·cm-2。—£
¨?ë!C犓s、犔犛犆p Huber½ÃÊÆÇËÌ,°
±u>p=>vwtjkŽE=>lmnopt
¼=ÀÁÄx—N

2.3 C9D89EFB45t89:;?@AG
‡H
  2jkEóôY=ݑ-2.4MPaëò,—£
¨?!»=oúûl>_
(犘犔犆)Ë̗N,ºó
ôY=ÝÒÈ-2.4MPa¤,犘犔犆´wh,=
Ýc0-3.5 MPa¤,ɨ?C 犘犔犆 Ã@ái
100%(f2)。ƒ Weibul#_t¬­s†‡†º$
%

$%®¯j°2。}W—£¨?C犫½(»=o
úû63.2%¤VtyCóôY=ÝC&t½)gÈ
2.74~2.98ë!,CKpF¨?C犫½Ë̗N,º
FI¨?C犫½ÆÇÐÈ}Ç2§¨?;—£¨?C
犮½(óôY=ݑ-犫¤†‡Cko)gÈ15.44
~17.44ë!,º¨?ë!Ë̗ÆÇ。
Xƒ$%C Weibul†‡l)©ž7E2»=
oúû12%、50%p88%¤tyCEóôY=Ý
P12、P50pP88,}WP12m°©n»/µ¶op¤C
óôY=Ý
,P50‘V8qrs=Áûs¤tyCó
ôY=Ý
,P88‘Ôr=Áûs¤tyCóôY=
Ý
[27]。3§¨?CP12gÈ-2.43~-2.58MPa
ë!

—£¨?ë!Ë̗N

f3);3§¨?CP50
gÈ-2.68~-2.91MPaë!,CKpF¨?C
P50Ë̗ÆÇ,ºòGÃÒÈFI¨?÷0.2MPa
ÍÎ

¥ËÌc0ÆÇ= 

f3);3§¨?CP88g
È-2.86~-3.14MPaë!,FI¨?CP88¼³
CKpF¨?>&Z0.22p0.28MPa,ËÌÃc
0ÆÇ= 

f3)。3§¨?(CK、FpFI)P12-P50
ˆ1 C9D89EF‰4567GgŠ[
Table1 ThegrowthstatusofChinesepineseedlingswithnutrientadditionandirrigation
¨?
Treatment ÅZ Height
/cm aµBasaldiameter/cm ¶·Canopysize/cm
a¸Yí8$¹
Abovegroundbiomass/g
CK 63.83±6.53b 1.90±0.07c 35.75±2.13c 172.34±29.30c
F 70.33±7.25b 2.20±0.04b 45.58±2.85b 234.65±30.00b
FI 85.63±6.31a 2.64±0.06a 63.42±3.12a 345.33±23.63a
t
:CK‘t–,F‘u>vw¨?,FI‘u>=>£¤vw¨?;—£uv°|¨?!20.05= c0ÆÇ。Ü£
CKisthecontrol,FisNandPadditiontreatment,FIisNandPadditionplusirrigationtreatment(n=9);Differentlettersindicatedsig
nificantdifferencebetweentreatmentsat0.05level;Thesameasbelow
f1 jkŽ3§¨?C³»=o、³¼»=op Huber½(n=9)
Fig.1 Thespecifichydraulicconductivity,leafspecificconductivityandHubervalueforthreetreatments
ofChinesepineseedlings(n=9)
2021 ! " # $ % &                   36Á
f2 —£¨?CwÙ¬­s†‡
Fig.2 Thetypicalvulnerabilitycurvesfor
differenttreatments
ˆ2 ‹ŒŽnoApqG}‘
Table2 ThemodeledWeibulfunctionparametersof
vulnerabilitycurvesfordifferenttreatments
¨? Treatment 犫/MPa 犮
CK 2.93±0.06a 17.25±2.29
F 2.98±0.08a 15.44±1.71
FI 2.74±0.05b 17.44±1.01
f3 nL$% Weibul#_Ï(CP12、P50pP88
Fig.3 ThecalculatedP12,P50andP88ofdifferent
treatmentsbasedonmodeledWeibulfunction
>&‘0.30、0.33p0.26MPa,P50-P88>&‘0.22、
0.24p0.18MPa,°±jkŽ;n»/µ¶op
0V8N¹ª«

;V8N¹ª«0Ôrª«C=
ÝxyÃz

¥‹FI¨?Cïz。
  =>lmqr½(8Ö ïÒ=Ýψmin_P50
{P88ë˽)°ñ©=>lmCqrs,}Wψmin
-P50¹/©#$=Á{|CT}s,}½!Ð,#
$~-ÀøN¹ª«

;Jh4€2C=Áûs
i
[28],
Jψmin-P88°ñ©+óß©]í`‚ƒ¤
Cqrs
[29]。CK、FpFI¨?W„¤CïÒ=Ý
>&‘-1.55、-1.64p-1.48MPa,‹ψmin-P50
Ï(C=>lmqr½>&‘1.31、1.27p1.2
MPa,‹ψmin-P88Ï(C=>lmqr½>&‘
1.53、1.50p1.38MPa,FI¨?C=>lmqrÂ
½:ÐÈCKpF÷0.1MPa,°±}=>lmC
qrs²tšÒ

2.4 C9D89EFB45txyz{|}~G
‡H
  °3Æ|,¨ ?F_CK²³,Ɉ‰®Š_
pó’P×ÊÆÇËÌ
;¨
?FICÔÕàµpÔÕ
Bª¦<=BªC³F°W…NÈ}Ç2§¨?C
†Ý

}ÔÕP×pó’P×°W…ÐÈ}Ç2§
¨?C†Ý

º‡,ËÌɗc0ÆÇ

£¤
,FI
¨?CÔÕÖ×ÆÇNÈCKpF¨?,}ÔÕØ
J_Kßë³C A¼°W…£¾C†Ý

°±FI
¨?P50´w9:_ÔÕÖ×´wpÔÕØ¿ÙÚ
ÛÁšÒÝÞ

3 i Ž
3.1 4567G8’“”
Æ67W

jkŽ3§¨?CïÒ¼=ݑ
-1.48~-1.64MPa,MartínezVilalta9[30]67C
ˆ3 ‹ŒŽ4567Gt{|}~
Table3 TheanatomicalstructureofstemsinChinesepineseedlingswithdifferenttreatments
ˆ‰®Špó’P×
Anatomicaltraitsandwooddensity CK F FI
ÔÕàµTracheiddiameter/μm 13.92±0.93 13.1±0.23 14.94±0.66
ÔÕP×Tracheiddensity/(No·mm-2) 1961±175 2317±223 1896±111
ÔÕBª¦<=BªC³FTracheidareaproportion/% 25.77±6.58 31.42±2.08 33.03±1.80
=ÁൠHydraulicweighteddiameter/μm 17.61±1.31 15.73±0.64 17.27±0.68
ÔÕØ¿ÙÚÛÁImplosionresistance(狋/犫1)h2 0.23±0.04a 0.21±0.03a 0.16±0.03b
ÔÕÖ×Tracheidlength/mm 1.11±0.05b 1.10±0.07b 1.28±0.04a
ó’P× Wooddensity/(g·cm-3) 0.38±0.07 0.33±0.05 0.27±0.01
30216¤          ./0,9:jkŽ=>lmno¢qrstu>p=>vwCxy
11,#ˆk+#$ïÒ¼=ݑ-1.5~-2.6
MPa,z±jkŽCïÒ¼=ÝZÈ}Ç#ˆk
+#$

k+#$\]7C犓s 쉑0.15~
0.50kg·MPa-1·m-1·s-1,犔犛犆‘0.43~4.98
×10-4kg·MPa-1·m-1·s-1,Huber½‘2.71
~9.15×10-4cm2·cm-2,P50‘-2.65~-5.55
MPa[28,3031],Æ67WjkŽEC犓s ‘1.27~
1.32kg·MPa-1·m-1·s-1,犔犛犆‘2.50~2.68
×10-4kg·MPa-1·m-1·s-1,Huber½‘1.87
~1.93×10-4cm2·cm-2,P50‘-2.68~-2.91
MPa,_ò¸67²³,Æ67WjkŽC犓sï
Z
;犔犛犆pP50ÃB2²y…ãxy,ºP50‘È…
ãxyÅZ½]
;Huber½ÒÈ}Çk+#$,‡A
=ÁðsCËÌ-À_ƒ„67WƒCzjkŽ
CŒ8ÝÞ

Š2VW

jkŽŒ8¬­
s†‡

}P50-P88½‘0.17~0.24MPa,JN
^_#ˆk+#$P50-P88Ã21~3MPaë![28],
°±jkŽóôY=Ýì‹KéV8ª«CŒg
½

h~ãV8N¹—-ª«J»t‚ƒ

k+#$x*ì‰2-2~-3MPa¼=ÝÜ
Ôrގ
[32],
J}P50‘-2.65~-5.55MPa[28,30]
°±k+#$-ÀDéx*þšÒª«C
i

Æ67W

jkŽC=>lmqr½
(ψmin
-P50)‘1.3MPaÍÎ,Zȑg¸70%+óC=
>lmqr½
(1MPa)[28],ö÷©jkŽDé
x*’U©=>lmC²tqrs

3.2 C9D89EFB4567t89:;<=
>?@AG‡H
  “Ôu>e†©jkŽC8Ö,}aµ、¶·
p8$¹ÃÝÆÇ´w

ºu>t犓s、犔犛犆p Hu
ber½CÄx—N。k+#$¼_”’Bª³(Hu
ber½C•_)t56Ï/ÝZC-ïs[8],ºÆ
67W Huber½tu>öyɗ–—。u>vw
õjktª«C¬­s
(P12、P50pP88)Ï/—N,
=>lmCqrs
(ψmin-P50{P88)¼ÊÆǗ£,
z±jkEª«¬­stu>vwöy—–—

u
>vw˜´C8Ö´w-À_=ÁsôC…ÏÞN
—N

J-À9:âãÈí$ô>SC…Ï

Æ67W

=>vwt=>lmno
(犓s {
犔犛犆)Äx—N,º=>¨?»tP50´w0.2MPa,
‡_™ò2N^_67W)0C®¯ìt
[3,57]。
ˆ‰®ŠC…㼚e©‡d

=>vwõÔÕà
µpÔÕP×ÃÝìãê×´w

ºÃ°c0ÆÇ


nL HagenPoiseuileÛH,»=o_»Ô{
ÔÕàµC›¿Ap»ÔP×#à³

ÓJ=>l
mnoË̗N

“Ô=>vwõ»ÔÖ×´w

º-Àt»=oCÄxɗN

2…ãCˆ‰®Š
_W
,FI¨?CÔÕÖ×pÔÕØ¿ÙÚÛÁÆ
Ç´w

°±FI¨?P50CšÒ-À9:_‡ò§
Ó¡ÝÞ

ÔÕÖ×!Ö

ä*V¦Bª!N

ÓJ
´w©ä*å¸N*œV¦o

;J»tÔ՞
ŸV8n»/
[33]。
#$¾¿ª«ÀÁp»ÔØ¿
ÙÚÛÁ à²Þ
[24],
ÒCÔÕØ¿ÙÚÛÁ»t
FI¨?tª«ž–—。
3.3 89:;<=`•–—˜’™šGL›
óÆ#$=>lmnop¿ª«ÀÁë!ùù
¡2¢ÿÞN
[3435],
"=>lmno!Z

#$¿
ª«ÀÁ$­

Æ67VW3§¨?C=>lmn
oÉÊÆÇËÌ

ºP50¡2ËÌ,°±=>lmn
opqrsë!É° W…¢ÿÞN

?Ž¸

=
>lmno9:4»Ôàµ

Ö×pP×CÄx

J
¿ª«ÀÁ9:_»Ô¸ä*BªÝÞ

»ÔÖ×


ä*p]ØÛÁ!Ð

»=o!N

º²yä
*V¦Bª´w

ª«¬­sÑã´w
[33],
Æ67
WÔÕÖ×´wtP50CÄx-À:NÈt»=o
Äx

‚2
,FI¨?ÔÕØ¿ÙÚÛÁCšÒ»t
P50´w,º-ÀÉ°˜´}»=oC…Ï,;J»
tFI¨?P50šÒº»=op}Ǩ?ë!ÉÊÆ
ÇËÌ

b—£¨?=>lmno_¿ª«ÀÁë
!€¢ÿÞN

œ!R

[1] ZIMMERMANN M H.XylemStructureandtheAscentof
Sap[M].Berlin:Springer,1983.
[2] SPERRYJS,HACKE U G,PITTERMANNJ.Sizeand
functioninconifertracheidsandangiospermvessels[J].犃
犿犲狉犻犮犪狀犑狅狌狉狀犪犾狅犳犅狅狋犪狀狔,2006,93(10):14901500.
[3] MAHERALIH,POCKMANWT,JACKSONRB.Adaptive
variationinthevulnerabilityofwoodyplantstoxylemcavita
tion[J].犈犮狅犾狅犵狔,2004,85(8):21842199.
[4] CREESEC,BENSCOTA M,MAHERALIH.Xylemfunc
tionandclimateadaptationin犘犻狀狌狊[J].犃犿犲狉犮犻犪狀犑狅狌狉狀犪犾狅犳
犅狅狋犪狀狔,2011,98(9):14371445.
[5] POCKMAN W T,SPERRYJS.Vulnerabilitytocavitation
andthedistributionofSonorandesertvegetation[J].犃犿犲狉犻
犮犪狀犑狅狌狉狀犪犾狅犳犅狅狋犪狀狔,2000,87(9):12871299.
[6] AWADH,BARIGAHT,BADELE,犲狋犪犾.Poplarvulnera
4021 ! " # $ % &                   36Á
bilitytoxylemcavitationacclimatestodriersoilconditions
[J].犘犺狔狊犻狅犾狅犵犻犪犘犾犪狀狋犪狉狌犿,2010,139(3):280288.
[7] PLAVCOV? L,HACKEU G.Phenotypicanddevelopmental
plasticityofxyleminhybridpoplarsaplingssubjectedtoexperi
mentaldrought,nitrogenfertilization,andshading[J].犑狅狌狉狀犪犾
狅犳犈狓狆犲狉犻犿犲狀狋犪犾犅狅狋犪狀狔,2012,63(18):64816491.
[8] DELUCIAEH,MAHERALIH,CAREYEV.Climatedriv
enchangesinbiomassalocationinpines[J].犌犾狅犫犪犾犆犺犪狀犵犲
犅犻狅犾狅犵狔,2000,6(5):587593.
[9] MART?NEZVILALTAJ,PIOLJ.Droughtinducedmor
talityandhydraulicarchitectureinpinepopulationsoftheNE
IberianPeninsula[J].犉狅狉犲狊狋犈犮狅犾狅犵狔犪狀犱 犕犪狀犪犵犲犿犲狀狋,
2002,161(13):247256.
[10] STOUTDL,SALAA.Xylemvulnerabilitytocavitationin
犘狊犲狌犱狅狋狊狌犵犪犿犲狀狕犻犲狊犻犻and犘犻狀狌狊狆狅狀犱犲狉狅狊犪fromcontrasting
habitats[J].犜狉犲犲犘犺狔狊犻狅犾狅犵狔,2003,23(1):4350.
[11] HARVEYHP,VANDENDRIESSCHER.Nutrition,xy
lemcavitationanddroughtresistanceinhybridpoplar[J].
犜狉犲犲犘犺狔狊犻狅犾狅犵狔,1997,17(10):647654.
[12] HARVEYHP,VANDENDRIESSCHER.Nitrogenand
potassiumeffectsonxylemcavitationandwateruseefficiency
onpoplar[J].犜狉犲犲犘犺狔狊犻狅犾狅犵狔,1999,19(14):943950.
[13] HACKEU G,PLAVCOV?L,ALMEIDARODRIGUEZ
A,犲狋犪犾.Influenceofnitrogenfertilizationonxylemtraits
andaquaporinexpressioninstemsofhybridpoplar[J].犜狉犲犲
犘犺狔狊犻狅犾狅犵狔,2010,30:10161025.
[14] PLAVCOV?L,HACKEUG,ALMEIDARODRIGUEZA
M,犲狋犪犾.Geneexpressionpatternsunderlyingchangesinxy
lemstructureandfunctioninresponsetoincreasednitrogen
availabilityinhybridpoplar[J].犘犾犪狀狋犆犲犾犾犪狀犱犈狀狏犻狉狅狀
犿犲狀狋,2013,36(1):186199.
[15] BUCCISJ,SCHOLZFG,犲狋犪犾.Nutrientavailabilityconstrains
thehydraulicarchitectureandwaterrelationsofsavannahtrees
[J].犘犾犪狀狋犆犲犾犾犪狀犱犈狀狏犻狉狅狀犿犲狀狋,2006,29(12):21532167.
[16] .£¤,¥ ¦,9.—£=>78Üò§+,óôYª«t
P¡vwCxy[J].#$8@%&,2008,32(1):183188.
HUANGJY,CAIJ,犲狋犪犾.Responseofxylemembolismto
phosphorusadditionunderdiferentwaterregimesintwotree
species[J].犑狅狌狉狀犪犾狅犳犘犾犪狀狋犈犮狅犾狅犵狔,2008,32(1):183188.
[17] VILLAGRAM,CAMPANELLOPI,犲狋犪犾.Removalofnutri
entlimitationsinforestgapsenhancesgrowthrateandresistance
tocavitationinsubtropicalcanopytreespeciesdiferinginshade
tolerance[J].犜狉犲犲犘犺狔狊犻狅犾狅犵狔,2013,33(3):285296.
[18] EWERSBE,ORENR,SPERRYJS.Influenceofnutrient
versuswatersupplyonhydraulicarchitectureandwaterbal
ancein犘犻狀狌狊狋犪犲犱犪[J].犘犾犪狀狋犆犲犾犾犪狀犱犈狀狏犻狉狅狀犿犲狀狋,2000,
23(10):10551066.
[19] COCHARDH,DAMOURG,犲狋犪犾.Evaluationofanewcentri
fugetechniqueforrapidgenerationofxylemvulnerabilitycurves
[J].犘犺狔狊犻狅犾狅犵犻犪犘犾犪狀狋犪狉狌犿,2005,124(4):410418.
[20] WANGYJ,BURLETTR,FENGF,犲狋犪犾.Improvedpreci
sionofhydraulicconductancemeasurementsusingaCochard
rotorintwodifferentcentrifuges[J].犑狅狌狉狀犪犾狅犳犘犾犪狀狋犎狔
犱狉犪狌犾犻犮狊,2014,1:e0007.
[21] LIYY,SPERRYJS,TANEDA H,犲狋犪犾.Evaluationof
centrifugalmethodsformeasuringxylemcavitationinconi
fers,diffuseandringporousangiosperms[J].犖犲狑犘犺狔狋狅犾
狅犵犻狊狋,2008,177(2):558568.
[22] CORCUERAL,COCHARDH,GILPELEGRINE,犲狋犪犾.
Phenotypicplasticityinmesicpopulationsof犘犻狀狌狊狆犻狀犪狊狋犲狉
improvesresistancetoxylemembolism (P50)undersevere
drought[J].犜狉犲犲狊,2011,25:10331042.
[23] SPERRYJS,NICHOLSKL,SULLIVANJE M,犲狋犪犾.
Xylemembolisminringporous,diffuseporous,andconifer
oustreesofnorthernUtahandinteriorAlaska[J].犈犮狅犾狅犵狔,
1994,75(6):17361752.
[24] HACKEUG,SPERRYJS,犲狋犪犾.Trendsinwooddensity
andstructurearelinkedtopreventionofxylemimplosionby
negativepressure[J].犗犲犮狅犾狅犵犻犪,2001,126(4):457461.
[25] MAUSETHJD,FUJIIT.Resincasting:amethodforin
vestigatingapoplasticspaces[J].犃犿犲狉犻犮犪狀犑狅狌狉狀犪犾狅犳犅狅狋犪
狀狔,1994,81(1):104110.
[26] HACKEUG,SPERRYJS,WHEELERJK,犲狋犪犾.Scaling
ofangiospermxylemstructurewithsafetyandefficiency[J].
犜狉犲犲犘犺狔狊犻狅犾狅犵狔,2006,26(6):689701.
[27] FICHOTR,BRIGNOLASF,犲狋犪犾.Vulnerabilitytodroughtin
ducedcavitationinpoplars:synthesisandfutureopportunities
[J].犘犾犪狀狋犆犲犾犾犪狀犱犈狀狏犻狉狅狀犿犲狀狋,2015,38(7):12331251.
[28] CHOATB,JANSENS,BRODRIBBTJ,犲狋犪犾.Globalcon
vergenceinthevulnerabilityofforeststodrought[J].犖犪
狋狌狉犲,2012,491(7426):752755.
[29] URLIM,PORT?A,COCHARDH,犲狋犪犾.Xylemembolism
thresholdforcatastrophichydraulicfailureinangiosperm
trees[J].犜狉犲犲犘犺狔狊犻狅犾狅犵狔,2013,33(7):672683.
[30] MART?NEZVILALTAJ,SALA A,PIOLJ.Thehy
draulicarchitectureofPinaceaeareview[J].犘犾犪狀狋犈犮狅犾狅
犵狔,2004,171(12):313.
[31] §„¨,©Nª,«¬%,9.—£áâþt­®Qpjk
7=Á»×p¾¿n»/ÀÁ…ã½CÄx
[J].#$8
@%&
,2009,33(1):150160.
XUXW,FANDY,XIEZQ,犲狋犪犾.Effectsofdifferent
flushsolutionsonvaluesofhydraulicconductanceandcavita
tionresistanceabilitiesoftreesof犘狅狆狌犾狌狊狋狅犿犲狀狋狅狊犪and犘犻
狀狌狊狋犪犫狌犾犪犲犳狅狉犿犻狊[J].犆犺犻狀犲狊犲犑狅狌狉狀犪犾狅犳犘犾犪狀狋犈犮狅犾狅犵狔,
2009,33(1):150160.
[32] RICHARDSONDM,RUNDELPW.Ecologyandbiogeog
raphyof犘犻狀狌狊:anIntroduction[M]//RichardsonD M.E
cologyandBiogeographyof犘犻狀狌狊.Cambridge University
Press,Cambridge,UK,1998,346.
[33] WHEELERJK,SPERRYJS,犲狋犪犾.Intervesselpittingand
cavitationinwoodyRosaceaeandothervesseledplants:aba
sisforasafetyversusefficiencytradeoffinxylemtransport
[J].犘犾犪狀狋犆犲犾犾犪狀犱犈狀狏犻狉狅狀犿犲狀狋,2005,28(6):800812.
[34] TYREEMT,DAVISSD,COCHARDH.Biophysicalper
spectiveofxylemevolution:isthereatradeoffofhydraulic
efficiencyforvulnerabilitytodysfunction?[J]犐犃犠犃犑狅狌狉
狀犪犾,1994,15:335360.
[35] HACKEUG,SPERRYJS,WHEELERJK,犲狋犪犾.Scaling
ofangiospermxylemstructurewithsafetyandefficiency[J].
犜狉犲犲犘犺狔狊犻狅犾狅犵狔,2006,26(6):689701.

!"

#$%
)  
50216¤          ./0,9:jkŽ=>lmno¢qrstu>p=>vwCxy