[目的] 基质组成与外源激素应用是影响扦插生根的重要因子。云锦杜鹃扦插生根困难,本研究旨在探讨不同基质、IBA浓度及其交互效应对该物种扦插生根的影响,筛选出最佳扦插基质与IBA浓度组合,为引种驯化与产业化开发提供理论依据。[方法] 以云锦杜鹃当年生带芽苞的木质化顶枝为材料,采用纯河沙、泥炭+珍珠岩(4:1,体积比)、珍珠岩+森林土(4:1)、蛭石+森林土(4:1)、河沙+森林土(1:1)、纯森林土6种扦插基质与100, 200,400,800 mg·L-1 4个IBA浓度的两因素完全随机区组设计,研究不同基质与IBA浓度处理组合对云锦杜鹃插穗愈伤组织诱导率、腐烂率、生根率、老叶留存率及总根数、不定根数、最长不定根长、根幅等生根指标的影响,并运用隶属函数法对各处理组合的生根效果进行综合评价。[结果] 扦插基质、IBA浓度对所有测试指标均有极显著的(P < 0.01)影响,且基质的影响大于IBA浓度; 两者交互效应仅对总根数、不定根数、最长不定根长及根幅4个根系发育指标有极显著的影响。6种基质中,纯河沙除最长不定根长、根幅表现较差外,其他指标表现极佳; 泥炭+珍珠岩(4:1)在愈伤率、最长不定根长及根幅上表现最佳,其他指标仅次于纯河沙; 其他4种基质的生根效果随着森林土配比增加而下降,纯森林土在所有指标上表现最差。4个IBA浓度上,愈伤率、腐烂率以100 mg·L-1处理最佳,随着IBA浓度升高愈伤率显著降低、腐烂率升高; 生根率、老叶率以200 mg·L-1处理最佳,随着IBA浓度进一步升高而逐渐降低; 总根数、不定根数、 最长不定根长及根幅在100, 200,400 mg·L-1浓度间无显著差异,但均显著优于800 mg·L-1处理。隶属函数评价表明,24个处理组合中纯河沙与200 mg·L-1 IBA组合为云锦杜鹃扦插生根的最佳组合,其腐烂率、生根率、老叶率、总根数及不定根数在所有组合中表现最佳; 泥炭+珍珠岩(4:1)与100 mg·L-1 IBA组合愈伤率最高(100%),其他指标也表现良好,综合生根效果其次; 纯森林土与800 mg·L-1 IBA组合生根效果最差。[结论] 云锦杜鹃扦插生根受基质、IBA浓度及其交互效应的显著影响,纯河沙、泥炭+珍珠岩(4:1)生根效果优于其他4种基质,为其扦插生根的首选基质,纯森林土不适合扦插育苗; 200,100 mg·L-1 IBA处理有利于插穗愈伤组织诱导和不定根形成,而800 mg·L-1 处理引发插穗腐烂,不利于生根和根系发育; 不同基质扦插生根的最适IBA浓度存在差异,纯河沙与200 mg·L-1 IBA及泥炭+珍珠岩(4:1)与100 mg·L-1 IBA 2个处理组合被推荐用于云锦杜鹃产业化育苗。
[Objective] Medium composition and application of exogenous hormones are important factors that influence the rooting of cuttings. As it is hard to root for cutting propagation of Rhododendron fortunei, this study was aimed at investigating different media, indole-3-butyric acid (IBA) concentrations and their interactions on the rooting of cuttings of this species, and to select the optimum combination of rooting medium and IBA concentration, then to provide a theoretical basis for its introduction and domestication, and industrialization. [Method] Using the lignified new terminal branches with leaf buds of R. fortunei as propagating material, and adopting a completely randomized factorial design with two factors, i.e., six types of rooting media: pure river sand, peat + perlite (4:1 by volume), perlite + forest soil (4:1), vermiculite + forest soil (4:1), river sand + forest soil (1:1) and pure forest soil, and four IBA concentrations:100, 200, 400, 800 mg·L-1, we investigated the effects of different combinations of rooting medium and IBA concentration on rooting parameters of R. fortunei, i.e. percentages of callus formation, rotting rate, rooting rate, and retaining rate of old leaves, number of total roots and number of adventitious roots, length of longest adventitious root, width of root system. And then we comprehensively evaluated the effects on rooting of each treatment combination by subordinate function analysis. [Result] The results showed that the effects of rooting medium and IBA concentration were highly significant (P<0.01) for all measured parameters, and the influencing intensity of rooting medium was stronger than that of IBA concentration. The interaction of rooting medium and IBA concentration was highly significant only for four root development parameters including the number of total roots, number of adventitious roots, length of the longest adventitious root and root width. Among the six types of rooting media, the pure river sand medium produced extremely positive effects on most parameters except on length of the longest adventitious root and root width. The peat + perlite (4:1) medium produced the highest callusing percentage, length of the longest adventitious root and root width, with less effect of other parameters than those of pure river sand medium. The rooting effects of the other four media decreased as the proportion of forest soil increased, and the pure forest soil medium showed the worst effect for all parameters. As to the four IBA concentrations, the best callusing and rotting percentages were observed at 100 mg·L-1 treatment, and with increase of IBA concentration, callusing percentage decreased significantly and rotting percentage increased. Rooting rate and retaining rate of old leaves were the highest at 200 mg·L-1 treatment, and decreased gradually as IBA concentration became higher. The number of total roots and adventitious roots, length of longest adventitious root and root width showed no significant difference among 100, 200 and 400 mg·L-1 treatments and all these were better than those at 800 mg·L-1 treatment. Subordinate function analysis showed that, among the 24 treatment combinations, the combination of pure river sand medium with 200 mg·L-1 IBA was the optimal treatment for rooting of R. fortunei, which produced the highest values of rooting rate and retaining rate of old leaves, number of total roots, number of adventitious roots, as well as the lowest rotting percentage in all combinations, followed by the combination of peat + perlite (4:1) medium with 100 mg·L-1 IBA with the highest callusing percentage and good effects on other parameters. The combination of pure forest soil medium with 800 mg·L-1 IBA had the worst rooting effects.[Conclusion] Rooting medium, IBA concentration and their interaction had significant effects on cutting propagation of R. fortunei. The media of pure river sand and peat + perlite (4:1) had better rooting effects than the other four types of media, and they were the preferred medium for cutting propagation of R. fortunei. The pure forest soil medium was not suitable for cutting propagation of the species. The treatment of 200 and 100 mg·L-1 IBA promoted the development of calluses and adventitious roots. And the treatment of 800 mg·L-1 IBA caused rotting of cuttings and it was not good for rooting and the development of root system. The optimum IBA concentration varied in different rooting media. The treatment combinations of pure river sand with 200 mg·L-1 IBA and peat + perlite (4:1) with 100 mg·L-1 IBA were recommended for industrialized propagation of R. fortunei.
全 文 :第 51 卷 第 9 期
2 0 1 5 年 9 月
林 业 科 学
SCIENTIA SILVAE SINICAE
Vol. 51,No. 9
Sep.,2 0 1 5
doi:10.11707 / j.1001-7488.20150921
收稿日期: 2014 - 07 - 07; 修回日期: 2014 - 11 - 04。
基金项 目: 国 家 国 际 科 技 合 作 项 目 ( 2014DFA31720; 2007DFA31410) ; “十 二 五”国 家 科 技 支 撑 计 划 课 题 ( 2011BAC13B01;
2011BAC13B04) ; “赣鄱英才 555 工程”领军人才培养计划项目; 江西省学科带头人培养计划项目(2010DD00500)。
* 张乐华为通讯作者。
基质和 IBA浓度对云锦杜鹃扦插生根的影响*
王书胜 单 文 张乐华 杜有新 李晓花 王凯红
(江西省、中国科学院庐山植物园 庐山 332900)
摘 要: 【目的】基质组成与外源激素应用是影响扦插生根的重要因子。云锦杜鹃扦插生根困难,本研究旨在探
讨不同基质、IBA 浓度及其交互效应对该物种扦插生根的影响,筛选出最佳扦插基质与 IBA 浓度组合,为引种驯化
与产业化开发提供理论依据。【方法】以云锦杜鹃当年生带芽苞的木质化顶枝为材料,采用纯河沙、泥炭 +珍珠岩
(4∶ 1,体积比)、珍珠岩 +森林土(4∶ 1)、蛭石 +森林土(4∶ 1)、河沙 + 森林土(1 ∶ 1)、纯森林土 6 种扦插基质与 100,
200,400,800 mg·L - 1 4 个 IBA 浓度的两因素完全随机区组设计,研究不同基质与 IBA 浓度处理组合对云锦杜鹃插
穗愈伤组织诱导率、腐烂率、生根率、老叶留存率及总根数、不定根数、最长不定根长、根幅等生根指标的影响,并运
用隶属函数法对各处理组合的生根效果进行综合评价。【结果】扦插基质、IBA 浓度对所有测试指标均有极显著的
(P < 0. 01)影响,且基质的影响大于 IBA 浓度; 两者交互效应仅对总根数、不定根数、最长不定根长及根幅 4 个根
系发育指标有极显著的影响。6 种基质中,纯河沙除最长不定根长、根幅表现较差外,其他指标表现极佳; 泥炭 +
珍珠岩(4∶ 1)在愈伤率、最长不定根长及根幅上表现最佳,其他指标仅次于纯河沙; 其他 4 种基质的生根效果随着
森林土配比增加而下降,纯森林土在所有指标上表现最差。4 个 IBA 浓度上,愈伤率、腐烂率以 100 mg·L - 1处理最
佳,随着 IBA 浓度升高愈伤率显著降低、腐烂率升高; 生根率、老叶率以 200 mg·L - 1处理最佳,随着 IBA 浓度进一
步升高而逐渐降低; 总根数、不定根数、最长不定根长及根幅在 100,200,400 mg·L - 1浓度间无显著差异,但均显著优
于 800 mg·L - 1处理。隶属函数评价表明,24 个处理组合中纯河沙与 200 mg·L - 1 IBA 组合为云锦杜鹃扦插生根的最佳
组合,其腐烂率、生根率、老叶率、总根数及不定根数在所有组合中表现最佳; 泥炭 +珍珠岩(4∶ 1)与 100 mg·L - 1 IBA
组合愈伤率最高(100% ),其他指标也表现良好,综合生根效果其次; 纯森林土与 800 mg·L - 1 IBA 组合生根效果最
差。【结论】云锦杜鹃扦插生根受基质、IBA 浓度及其交互效应的显著影响,纯河沙、泥炭 +珍珠岩(4∶ 1)生根效果
优于其他 4 种基质,为其扦插生根的首选基质,纯森林土不适合扦插育苗; 200,100 mg·L - 1 IBA 处理有利于插穗愈
伤组织诱导和不定根形成,而 800 mg·L - 1处理引发插穗腐烂,不利于生根和根系发育; 不同基质扦插生根的最适
IBA 浓度存在差异,纯河沙与 200 mg·L - 1 IBA 及泥炭 +珍珠岩(4∶ 1)与 100 mg·L - 1 IBA 2 个处理组合被推荐用于云
锦杜鹃产业化育苗。
关键词: 云锦杜鹃; 扦插繁殖; 基质; IBA 浓度; 生根能力; 根系发育
中图分类号: S723. 1 + 3 文献标识码: A 文章编号: 1001 - 7488(2015)09 - 0165 - 08
Effects of Media and IBA Concentrations on Rooting of
Rhododendron fortunei for Cutting Propagation
Wang Shusheng Shan Wen Zhang Lehua Du Youxin Li Xiaohua Wang Kaihong
( Lushan Botanical Garden,Jiangxi Province and Chinese Academy of Sciences Lushan 332900)
Abstract: 【Objective】Medium composition and application of exogenous hormones are important factors that influence
the rooting of cuttings. As it is hard to root for cutting propagation of Rhododendron fortunei,this study was aimed at
investigating different media,indole-3-butyric acid ( IBA) concentrations and their interactions on the rooting of cuttings
of this species,and to select the optimum combination of rooting medium and IBA concentration,then to provide a
theoretical basis for its introduction and domestication,and industrialization. 【Method】Using the lignified new terminal
branches with leaf buds of R. fortunei as propagating material,and adopting a completely randomized factorial design with
two factors,i. e.,six types of rooting media: pure river sand,peat + perlite (4 ∶ 1 by volume),perlite + forest soil
(4∶ 1),vermiculite + forest soil ( 4 ∶ 1 ), river sand + forest soil ( 1 ∶ 1 ) and pure forest soil, and four IBA
林 业 科 学 51 卷
concentrations:100,200,400,800 mg·L - 1,we investigated the effects of different combinations of rooting medium and
IBA concentration on rooting parameters of R. fortunei,i. e. percentages of callus formation,rotting rate,rooting rate,
and retaining rate of old leaves,number of total roots and number of adventitious roots,length of longest adventitious root,
width of root system. And then we comprehensively evaluated the effects on rooting of each treatment combination by
subordinate function analysis. 【Result】The results showed that the effects of rooting medium and IBA concentration were
highly significant (P < 0. 01) for all measured parameters,and the influencing intensity of rooting medium was stronger
than that of IBA concentration. The interaction of rooting medium and IBA concentration was highly significant only for
four root development parameters including the number of total roots,number of adventitious roots,length of the longest
adventitious root and root width. Among the six types of rooting media,the pure river sand medium produced extremely
positive effects on most parameters except on length of the longest adventitious root and root width. The peat + perlite
(4∶ 1) medium produced the highest callusing percentage,length of the longest adventitious root and root width,with less
effect of other parameters than those of pure river sand medium. The rooting effects of the other four media decreased as
the proportion of forest soil increased,and the pure forest soil medium showed the worst effect for all parameters. As to the
four IBA concentrations,the best callusing and rotting percentages were observed at 100 mg·L - 1 treatment,and with
increase of IBA concentration,callusing percentage decreased significantly and rotting percentage increased. Rooting rate
and retaining rate of old leaves were the highest at 200 mg·L - 1 treatment,and decreased gradually as IBA concentration
became higher. The number of total roots and adventitious roots,length of longest adventitious root and root width showed
no significant difference among 100,200 and 400 mg·L - 1 treatments and all these were better than those at 800 mg·L - 1
treatment. Subordinate function analysis showed that,among the 24 treatment combinations,the combination of pure river
sand medium with 200 mg·L - 1 IBA was the optimal treatment for rooting of R. fortunei,which produced the highest values
of rooting rate and retaining rate of old leaves,number of total roots,number of adventitious roots,as well as the lowest
rotting percentage in all combinations,followed by the combination of peat + perlite (4 ∶ 1) medium with 100 mg·L - 1
IBA with the highest callusing percentage and good effects on other parameters. The combination of pure forest soil
medium with 800 mg·L - 1 IBA had the worst rooting effects.【Conclusion】Rooting medium,IBA concentration and their
interaction had significant effects on cutting propagation of R. fortunei. The media of pure river sand and peat + perlite
(4 ∶ 1) had better rooting effects than the other four types of media,and they were the preferred medium for cutting
propagation of R. fortunei. The pure forest soil medium was not suitable for cutting propagation of the species. The
treatment of 200 and 100 mg·L - 1 IBA promoted the development of calluses and adventitious roots. And the treatment of
800 mg·L - 1 IBA caused rotting of cuttings and it was not good for rooting and the development of root system. The
optimum IBA concentration varied in different rooting media. The treatment combinations of pure river sand with 200 mg·
L - 1 IBA and peat + perlite (4∶ 1) with 100 mg·L - 1 IBA were recommended for industrialized propagation of R. fortunei.
Key words: Rhododendron fortunei; cutting propagation; media; IBA concentrations; rooting capacity; root
development
云锦杜鹃(Rhododendron fortunei)隶属杜鹃花属
( Rhododendron ) 常 绿 杜 鹃 亚 属 ( Subgen.
Hymenanthes),为中国特有种,广布于长江流域海拔
600 ~ 2 000 m 的山脊阳处或林下(Wu et al.,2005)。
该物种为常绿灌木至小乔木,分枝多、株型紧凑,叶
片大、深绿色,顶生花序硕大、有花 6 ~ 12 朵,花粉红
色、具芳香,为一种花、叶及株形具佳并具芳香的优
良木本花卉,且栽培适应性较强,产业化前景广阔。
扦插繁殖是木本植物最经济、简单和快捷的育
苗方法(Mehri et al.,2013; zenc et al.,2007),也是
小叶类杜鹃产业化育苗的常用方法,但原产中高山
山地的常绿杜鹃亚属生根困难 ( Ferriani et al.,
2006; Strzelecka,2007; 张长芹等,2004),严重制
约了其资源的保育与利用。不定根形成是一个复杂
的生理、生态及解剖学过程,受植物遗传因子、生理
年龄、插穗木质化程度、扦插季节、生根环境及外源
激素等综合影响 (Mehri et al.,2013; Rana et al.,
2012; 周艳等,2012),而扦插基质与激素应用则是
影响插穗生根及根系质量的 2 个重要外部因子
(zenc et al.,2007; Laubscher et al.,2008)。为探
讨常绿杜鹃亚属扦插难以生根的机制及育苗方法,
近年 Strzelecka(2007)观察了 R. ponticum 的生根解
剖学机制,Nawrocka-Grzes'kowiak(2004)、Ferriani 等
(2006)、周艳等(2012)及司国臣等(2012)研究了不
661
第 9 期 王书胜等: 基质和 IBA 浓度对云锦杜鹃扦插生根的影响
同激素种类、浓度或扦插基质对该亚属部分种扦插
生根的影响,发现: 该亚属杜鹃不定根形成受其解
剖学结构的影响; 生根能力主要取决于物种; 外源
激素应用是难以生根种扦插生根的必要条件,但最
佳生根浓度因种而异; 通气性好的草炭 + 蛭石
(1∶ 1)基质生根效果优于纯草炭。但已有报道多限
于激素浓度或基质间的单因素结果比较,缺乏对激
素浓度与基质交互影响的系统认识,而市场前景广
阔的云锦杜鹃仅见组培快繁技术的研究(高航洋
等,2011),未见扦插繁殖的报道。本研究的目的是
探讨扦插基质、IBA 浓度及其交互效应对云锦杜鹃
扦插生根及根系发育的影响,筛选出最佳基质与
IBA 浓度组合,服务于其引种驯化与产业化开发。
1 材料与方法
1. 1 试验材料 云锦杜鹃插穗取自江西省、中国科
学院庐山植物园杜鹃园,为树龄 30 年左右、生长健
壮的 栽 培 成 年 株。泥 炭 来 自 德 国 Klasmann-
Deilmann 公司,珍珠岩、蛭石购自广州三力园艺有
限公司,森林土为庐山林下表层土,河沙为鄱阳湖粗
沙、直径 1 ~ 5 mm; IBA 购自北京索莱宝科技有限
公司。
1. 2 试验方法 1) 插穗采集与制作 2010 年 10
月 24 日上午室外采集母株冠层当年生木质化枝条
并及时运回实验室喷水保湿,下午选取大小一致、带
芽苞的顶枝,剪成长 11 ~ 14 cm 插穗。去除基部叶
片,保留顶芽和顶部叶 3 片,再剪去叶片的 2 /3,以
减少水分蒸发。
2) 试验设计 采用扦插基质(M)和 IBA 浓度
(C)两因素试验。扦插基质设 6 种配比: 纯河沙
(M1)、泥炭 + 珍珠岩(4 ∶ 1,V /V,下同) (M2 )、珍珠
岩 +森林土 ( 4 ∶ 1 ) (M3 )、蛭石 + 森林土 ( 4 ∶ 1 )
(M4)、河沙 +森林土(1∶ 1) (M5 )及纯森林土(M6 )。
预备试验发现,云锦杜鹃在无激素处理时生根率极
低,为探讨 IBA 浓度对其扦插生根的影响,IBA 浓度
设 4 个水平: 100 mg·L - 1 (C1 ),200 mg·L
- 1 (C2 ),
400 mg·L - 1(C3 ),800 mg·L
- 1 (C4 ),其中 C1,C2,C3
处理为插穗基部(1. 5 ~ 2. 0 cm)浸泡 16 h,C4 为基
部浸泡 2 h。按 6 × 4 两因素完全随机区组设计,共
24 个处理,每处理 3 次重复,每重复 20 个插穗,共
计1 440个插穗。
3) 苗床及试验条件的设置 试验于庐山植物
园杜鹃花繁殖温室内进行。苗床铺设及试验条件设
置参见张乐华等(2014)报道。主要技术措施为: 苗
床底部加热,地温设定 20 ℃ ; 苗床上层加设弧形塑
料棚,棚内安装自动间歇喷雾设施补水增湿 (白天
2 min /2 h,晚上 2 min /4 h); 棚外架设可移动的遮
阳网,通过大棚两端通风及棚外遮阳网分别调节棚
内温度和光照强度。及时清除苗床落叶并每隔 14
天喷 500 倍的 50%多菌灵 1 次,以减少病害发生。
1. 3 指标调查与数据分析 2011 年 4 月上旬用花
铲取出插穗。先将生根插穗连同基质置于测量台
上,保持根系呈自然生长状态,用直尺测量根幅宽度
(徐琨等,2012) (因其根系分布不均匀,取“十字
形”2 个方向的平均值); 然后将插穗放入水中冲
洗,去除粘附于根系的基质; 晾干,参照 Paes 等
(2003)的指标判定标准与统计方法,将根长≥1 mm
定义为生根,计算插穗愈伤组织诱导率、腐烂率、生
根率、老叶留存率及不定根数、总根数、最长不定根
长,其中不定根数指插穗愈伤组织所发生的一级须
根数,总根数为不定根数及其分枝根数之和,最长不
定根长为最长 3 个不定根长度的平均值。总根数
(不定根数,最长不定根长,根幅) = 每个重复的总
根数(不定根数,最长不定根长,根幅)之和 ÷ 每个
重复的生根插穗数(Abu-Zahra et al.,2012)。
运用 SPSS17. 0 软件对所有指标进行方差分析
和 Duncan 多重比较,Excel 2003 制图。方差分析
前,参照 Bashir 等(2009)的方法对所有百分率指标
进行反正弦转换( sin - 1槡P),而总根数等数量指标在
处理间的变幅较大,作对数转换[lg ( x + 1)],以满
足正态分布假设。
隶属函数计算公式为: U ( Xj ) = ( Xj - Xmin ) /
(Xmax - Xmin ),式中: Xj为某一处理的某一指标值,
Xmin,Xmax分别为所有处理在该指标中的最小值和最
大值。腐烂率与生根效果呈负相关,其公式为:
U(Xj) = 1 - ( Xj - Xmin ) /( Xmax - Xmin )。将各处理
不同指标的隶属值进行累加求其平均值,平均值越
大生根效果越好(张乐华等,2014)。
2 结果与分析
2. 1 基质、IBA 浓度及其交互效应的方差分析 8
个生根指标的方差分析结果(表 1)表明,扦插基质、
IBA 浓度对所有测试指标均有极显著的影响 (P <
0. 01); 而基质与 IBA 浓度(C × M)的交互效应仅对
总根数、不定根数、最长不定根长及根幅 4 个根系发
育指标有极显著的影响。F 值分析可见,2 个主效
应因素中基质对云锦杜鹃扦插生根的影响大于 IBA
浓度。
761
林 业 科 学 51 卷
表 1 基质、IBA 浓度及其交互效应对云锦杜鹃扦插生根指标影响的方差分析①
Tab. 1 Variance analysis of the effects of medium,IBA concentration and their interaction on rooting
parameters of R. fortunei cuttings
变异
来源
Source of
variation
自
由
度
df
愈伤率
Callusing
percentage
腐烂率
Rotting
percentage
生根率
Rooting
percentage
老叶率
Percentage
of old leaves
总根数
Number of
total roots
不定根数
Number of
adventitious
roots
最长不定根长
Length of
longest
adventitious root
根幅
Root width
F P F P F P F P F P F P F P F P
M 5 66. 98** 0. 000 16. 03** 0. 000 21. 52** 0. 000 19. 57** 0. 000 28. 21** 0. 000 21. 86** 0. 000 12. 32** 0. 000 12. 33** 0. 000
C 3 27. 84** 0. 000 8. 36** 0. 000 8. 35** 0. 000 7. 77** 0. 000 5. 59** 0. 002 4. 44** 0. 008 4. 31** 0. 009 4. 51** 0. 007
M × C 15 1. 14 0. 346 0. 72 0. 749 0. 96 0. 512 0. 81 0. 665 2. 58** 0. 007 2. 53** 0. 008 3. 19** 0. 001 3. 18** 0. 001
① M: 基质; C: IBA 浓度。**表示 0. 01 水平差异显著。M: Medium; C: IBA concentration. ** means significant difference at 0. 01 level.
2. 2 基质对云锦杜鹃扦插生根指标的影响 不同
基质间生根指标的 Duncan 多重比较表明,基质对云
锦杜鹃扦插的所有生根指标均有极显著影响。4 个
与扦插生根密切相关的百分率指标上(图 1),纯河
沙在腐烂率、生根率及老叶留存率指标上表现最佳,
除与泥炭 + 珍珠岩(4 ∶ 1)差异不显著外,极显著或
显著(P < 0. 05)优于其他基质; 其愈伤率显著低于
泥炭 + 珍珠岩(4 ∶ 1),但极显著或显著高于其他基
质。泥炭 +珍珠岩(4 ∶ 1)在愈伤率上表现最佳,显
著高于其他基质; 在腐烂率、生根率及老叶率上次
于纯河沙,但优于其他基质。珍珠岩 + 森林土
(4∶ 1)与蛭石 +森林土(4 ∶ 1)在 4 个百分率指标上
差异不显著,表现居中。河沙 + 森林土 (1 ∶ 1)在 4
个百分率指标上极显著或显著差于上述 4 种基质,
但其愈伤率极显著高于纯森林土; 纯森林土在所有
百分率指标上表现最差。4 个根系发育指标上(图
2,3),纯河沙在总根数、不定根数上表现最佳,除与
泥炭 + 珍珠岩(4 ∶ 1)差异不显著外,显著大于其他
基质; 但其最长不定根长及根幅表现较差,极显著
小于泥炭 + 珍珠岩(4 ∶ 1)。泥炭 + 珍珠岩(4 ∶ 1)的
最长不定根长、根幅在所有基质中表现最佳,极显著
大于纯河沙、纯森林土,显著大于河沙 + 森林土
(1∶ 1); 其总根数、不定根数虽然次于纯河沙,但总
根数极显著或显著优于其他 4 种基质,不定根数极
显著优于河沙 +森林土(1 ∶ 1)及纯森林土。珍珠岩
+森林土(4∶ 1)、蛭石 +森林土(4∶ 1)及河沙 +森林
土(1∶ 1)在 4 个根系发育指标上差异不显著,表现
居中; 纯森林土在 4 个根系发育指标上极显著差于
其他基质。可见,6 种基质中纯河沙有利于促进插
穗生根、增加生根数,泥炭 +珍珠岩(4 ∶ 1)则更适合
根长的生长,而纯森林土易引起插穗腐烂,不利于插
穗愈伤组织形成、生根和根系发育。
2. 3 IBA 浓度对云锦杜鹃扦插生根指标的影响
不同 IBA浓度间生根指标的多重比较表明,IBA 浓
度对所有指标也有极显著的影响。4 个百分率指标
上(图 4),愈伤率随着 IBA 浓度升高而降低,除 400
图 1 基质对云锦杜鹃扦插愈伤率、腐烂率、
生根率及老叶率的影响
Fig. 1 Effects of different media on percentages of callusing,
rotting,rooting and old leaves of R. fortunei cuttings
柱状图为平均值 ±标准误差。同一指标中,不同大、小写字母分别
表示 0. 01 和 0. 05 水平显著差异。M1 : 纯河沙; M2 : 泥炭 + 珍珠
岩(4∶ 1,V /V) ; M3 : 珍珠岩 + 森林土(4 ∶ 1) ; M4 : 蛭石 + 森林土
(4∶ 1) ; M5 : 河沙 +森林土(1∶ 1) ; M6 : 纯森林土。下同。Bars are
means ± SE ( standard error) . The capital letters and small letters in
the same parameter mean significant difference at 0. 01 and 0. 05
levels,respectively. M1 : River sand; M2 : Peat + perlite (4 ∶ 1,V /
V) ; M3 : Perlite + forest soil (4 ∶ 1) ; M4 : Vermiculite + forest soil
(4∶ 1) ; M5 : River sand + forest soil (1 ∶ 1) ; M6 : Forest soil. The
same below.
图 2 基质对云锦杜鹃扦插总根数及不定根数的影响
Fig. 2 Effects of different media on number of total roots and
adventitious roots of R. fortunei cuttings
861
第 9 期 王书胜等: 基质和 IBA 浓度对云锦杜鹃扦插生根的影响
图 3 基质对云锦杜鹃扦插最长不定根长及根幅的影响
Fig. 3 Effects of different media on length of longest
adventitious root and root width of R. fortunei cuttings
与 800 mg·L - 1间差异不显著外其他浓度间均达极
显著水平。腐烂率在 IBA 浓度间的变化趋势与愈
伤率相反,随着浓度升高而升高,400,800 mg·L - 1极
显著高于 100 mg·L - 1处理,并分别显著、极显著高
于 200 mg·L - 1处理。生根率是扦插育苗的重要指
标,4 个 IBA 浓度中以 200 mg·L - 1处理最高,随着其
浓度的进一步升高而逐渐降低,800 mg·L - 1处理极
显著低于其他 3 个浓度。老叶率在浓度间的变化趋
势与生根率相似,100 和 200 mg·L - 1显著高于 400
mg·L - 1处理,极显著高于 800 mg·L - 1处理。总根数
与不定根数(图 5)、最长不定根长与根幅(图 6)4 个
根系发育指标在 100,200,400 mg·L - 1浓度间无显
著差异,但均显著优于 800 mg·L - 1处理。可见,中、
低浓度(200,100 mg·L - 1 )的 IBA 处理有利于愈伤
组织诱导和不定根形成,而 800 mg·L - 1高浓度处理
则引发插穗腐烂,抑制插穗生根和根系发育。
图 4 IBA 浓度对云锦杜鹃扦插愈伤率、
腐烂率、生根率及老叶率的影响
Fig. 4 Effects of different IBA concentrations on percentages of
callusing,rotting,rooting and old leaves of R. fortunei cuttings
2. 4 各处理组合对云锦杜鹃扦插生根指标的影响
及隶属函数评价 从表 1 可见,扦插基质与 IBA 浓
图 5 IBA 浓度对云锦杜鹃扦插总根数及不定根数的影响
Fig. 5 Effects of different IBA concentrations on number of total
roots and adventitious roots of R. fortunei cuttings
图 6 IBA 浓度对云锦杜鹃扦插最长
不定根长及根幅的影响
Fig. 6 Effects of different IBA concentrations on length of
longest adventitious root and root width of R. fortunei cuttings
度交互效应对总根数、不定根数、最长不定根长及
根幅有极显著的影响,说明不同基质对 IBA 浓度
的生根响应存在差异,有必要对各处理组合的生
根指标进行比较。从表 2 可以看出,8 个生根指标
在处理组合间均有显著差异,但同一处理组合、不
同生根指标间其表现优劣不尽相同,故仅凭单个
或少数指标难以准确、全面地反映各处理组合的
生根效果。隶属函数法综合评价 (表 2 )表明,纯
河沙 与 200 mg·L - 1 IBA 组 合 的 隶 属 函 数 值
(0. 881 0) 最 大,其 生 根 率 ( 60. 00% )、老 叶 率
(68. 33% )、总 根 数 ( 123. 37 条 ) 及 不 定 根 数
(20. 31 条)在所有组合中最大,腐烂率(26. 67% )
最低,愈伤率也达 96. 67%,仅最长不定根长及根
幅表现一般; 泥炭 + 珍珠岩(4 ∶ 1)与 100 mg·L - 1
IBA 组合的隶属值(0. 859 1)其次,其愈伤率在所
有组合中最大,其他指标也均位列前 5 位。两者
为云锦杜鹃木质化插条扦插生根的最优组合。
961
林 业 科 学 51 卷
表 2 基质与 IBA 浓度组合对云锦杜鹃扦插生根指标的影响及隶属函数评价①
Tab. 2 Effects of medium and IBA concentration combinations on rooting parameters of R. fortunei
cuttings,and subordinate function evaluation
基质
Media
IBA 浓度
IBA
concentra-
tions /
(mg·L - 1)
愈伤率
Callusing
percentage
(% )
腐烂率
Rotting
percentage
(% )
生根率
Rooting
percentage
(% )
老叶率
Percentage
of old
leaves
(% )
总根数
Number of
total
roots per
cutting
不定根数
Number of
adventitious
roots per
cutting
最长不定根长
Length of
longest
adventitious
root / cm
根幅
Root
width /
cm
平均隶属函
数值 U(X)
Average value
of subordinate
function
M1
100 98. 33ab 30. 00gh 60. 00a 63. 33ab 112. 73ab 14. 57ab 4. 11abc 3. 11ab 0. 821 6
200 96. 67ab 26. 67h 60. 00a 68. 33a 123. 37a 20. 31a 4. 00abc 3. 18ab 0. 881 0
400 81. 67cdefg 38. 33fgh 56. 67ab 60. 00abc 101. 81abc 14. 55ab 2. 39cde 1. 78bcd 0. 703 3
800 55. 00hi 50. 00efgh 21. 67defg 45. 00abcde 117. 33ab 19. 33a 2. 89bcd 2. 47abc 0. 614 9
M2
100 100. 00a 31. 67gh 50. 00abc 61. 67abc 100. 07abc 16. 90ab 6. 12abc 4. 38ab 0. 859 1
200 88. 33bcd 46. 67efgh 43. 33abcde 55. 00abcd 70. 95abcd 15. 29ab 6. 63ab 4. 02abc 0. 750 8
400 86. 67bcde 60. 00cdefg 38. 33abcde 43. 33abcde 67. 63abcd 16. 88ab 7. 81a 5. 42a 0. 748 8
800 93. 33abc 45. 00efgh 45. 00abcd 51. 67abcde 42. 90abcd 14. 11ab 7. 87a 3. 97abc 0. 740 2
M3
100 85. 00bcde 46. 67efgh 41. 67abcde 46. 67abcde 24. 63cde 8. 75abc 4. 29abc 2. 54abc 0. 569 3
200 85. 00cdef 55. 00defgh 46. 67abcd 45. 00abcde 25. 83cde 9. 42abc 5. 14abc 2. 95abc 0. 589 7
400 65. 00fgh 73. 33bcde 26. 67cdefg 25. 00efg 47. 90abcd 12. 92ab 4. 92abc 4. 36ab 0. 523 2
800 65. 00fgh 71. 67bcde 26. 67cdefg 28. 33def 37. 14abcd 11. 49ab 5. 74abc 4. 17ab 0. 521 6
M4
100 83. 33cdef 51. 67defgh 35. 00abcdef 45. 00abcde 26. 75bcde 10. 70ab 6. 91ab 4. 17ab 0. 633 7
200 71. 67defgh 65. 00bcdef 30. 00bcdefg 33. 33cdef 23. 17de 9. 29abc 5. 34abc 3. 95abc 0. 519 7
400 58. 33ghi 60. 00cdefg 26. 67cdefg 38. 33bcdef 22. 40de 10. 57ab 4. 59abc 3. 38abc 0. 496 4
800 50. 00hij 71. 67bcde 21. 67cdefg 28. 33def 25. 92cde 10. 06ab 5. 73abc 3. 99abc 0. 467 4
M5
100 70. 00efgh 70. 00bcdef 16. 67efgh 28. 33def 34. 47abcd 13. 19ab 7. 69ab 5. 54a 0. 579 9
200 58. 33ghi 63. 33bcdef 26. 67cdefg 36. 67bcdef 35. 97abcd 10. 03abc 7. 26ab 4. 39ab 0. 562 9
400 28. 33jk 85. 00abc 11. 67fgh 15. 00fgh 23. 25de 10. 00abc 4. 97abc 3. 58abc 0. 344 7
800 31. 67ijk 88. 33ab 8. 33hi 10. 00gh 10. 60fg 3. 47de 1. 62ef 0. 99de 0. 161 9
M6
100 35. 00ijk 71. 67bcde 11. 67gh 15. 00fgh 3. 70fg 1. 37de 1. 23def 0. 78de 0. 181 7
200 20. 00kl 68. 33bcde 16. 67fgh 28. 33efg 13. 00ef 5. 27cd 3. 12cde 2. 23cd 0. 304 0
400 6. 67lm 81. 67abcd 10. 00gh 16. 67fgh 22. 50de 6. 83bc 5. 53abc 3. 25abc 0. 303 6
800 3. 33m 96. 67a 0. 00i 3. 33h 0. 00g 0. 00e 0. 00f 0. 00e 0. 000 0
①同列中不同小写字母表示 0. 05 水平差异显著。The different small letters in the same column mean significant difference at 0. 05 level.
3 结论与讨论
基质的组成与物理性状决定着生根环境,理想
的扦插基质应具有最佳空气孔隙度以满足氧气扩散
和气体交换 ( Amri et al.,2009; Akwatulira et al.,
2011),同时应具备足够的水分、养分储备以满足插
穗吸水生根及根系发育( I
·
sfendiyarogˇlu et al.,2009;
Ercisli et al.,2002); 良好的气 -水平衡有利于促进
不定根形成、增强根系活力(Mamba et al.,2010;
Mehri et al.,2013; Akwatulira et al.,2011)。本研究
结果表明,扦插基质、IBA 浓度对云锦杜鹃扦插的所
有生根指标均有极显著影响,且基质的影响强度大
于 IBA 浓度水平。6 种基质中,纯河沙除最长不定
根长及根幅表现较差外,其他指标均表现极佳; 泥
炭 +珍珠岩(4 ∶ 1)的愈伤率、最长不定根长及根幅
在所有基质中表现最佳,其他指标也仅次于纯河沙,
两者为云锦杜鹃扦插生根的理想基质。珍珠岩 +森
林土(4∶ 1)、蛭石 +森林土(4∶ 1)在所有指标中表现
相似,生根效果居中; 河沙 +森林土(1∶ 1)的生根效
果较差,而纯森林土在所有指标上表现最差。
Yeboah 等(2009)研究发现,通气好的基质有利于促
进乳油木( Vitellaria paradoxa)插穗的新陈代谢、增
加不定根形成; zenc 等(2007)发现,珍珠岩等无
机基质有利于美味猕猴桃 ( Actinidia deliciosa)插穗
生根,而泥炭等有机基质则更适合根生长,增加根长
和根面积。本研究中纯河沙显著降低腐烂率、增加
生根率和生根数,可能归因于其通气、排水性好,有
利于氧气扩散和不定根形成 ( Amri et al.,2009;
Ofodile et al.,2013); 而其根长指标表现较差则可
能是河沙缺乏营养,影响了根生长 (Mehri et al.,
2013; Mazre et al.,2007)。但也有研究发现纯河沙
不利于油橄榄(Olea europaea) ( I
·
sfendiyarogˇlu et al.,
2009 ) 和 非 洲 十 数 樟 ( Warburgia ugandensis )
(Akwatulira et al.,2011)生根,显著降低生根率及根
质量,并认为不同物种在基质间的生根差异是由种
间生态习性引起。云锦杜鹃为浅根系植物,性喜土
质疏松、排水良好的环境,该物种在河沙基质中生根
效果好与其生态习性相符。泥炭 + 珍珠岩(4 ∶ 1)也
有良好的生根表现,特别是显著促进根长的生长,可
能归因于泥炭具有丰富的营养和良好的保水性,且
堆积密度较小(zenc et al.,2007); 而珍珠岩具有
独特的毛细管作用,可提高基质的孔隙度,改善其通
071
第 9 期 王书胜等: 基质和 IBA 浓度对云锦杜鹃扦插生根的影响
气、排水性(Mazre et al.,2007; 司国臣等,2012)。
纯森林土在所有指标上表现最差,可能是其保水性
过强,在间歇喷雾条件下易引起苗床的积水,从而阻
隔气体交换、引发插穗缺氧腐烂 (平均腐烂率高达
79. 59% ),进而影响愈伤组织及不定根的形成
(Amri et al.,2009; Akwatulira et al.,2011); 而森林
土的低通气性和高渗透阻力也影响了其根系发育
(Mamba et al.,2010; Amri et al.,2009; Akwatulira et
al.,2011)。珍珠岩、蛭石、河沙与森林土的混合基
质生根效果显著优于纯森林土,且随着森林土配比
的减少效果增强,可能是珍珠岩等无机材料的孔隙
度较大,改善了森林土的结构及通气、排水性,从而
有利于插穗生根和根系发育 ( Amri et al.,2009;
Mamba et al.,2010; 周艳等,2012)。
IBA 被认为是扦插生根的最佳生根剂,已被广
泛应用于促进植物,特别是难以生根的木本植物生
根,改善根系质量(Amri,2011; Bashir et al.,2009;
Rana et al., 2012 ),但 不 同 物 种 ( Nawrocka-
Grzs'kowiak,2004; Sulusoglu et al.,2010)及同一物
种不同生根指标 ( Laubscher et al.,2008; zenc et
al.,2007)对 IBA 浓度的响应存在差异。本研究发
现,4 个 IBA 浓度中愈伤率、腐烂率以低浓度 (100
mg·L - 1)处理最佳,生根率、老叶率以 200 mg·L - 1处
理最高,4 个根系发育指标在 100,200,400 mg·L - 1
浓度间无显著差异,但均显著优于 800 mg·L - 1处
理。该结果与张乐华等 ( 2014 ) 在鹿角杜鹃 ( R.
latoucheae)、Laubscher 等 ( 2008 ) 在 Leucadendron
laxum 上的报道相似。Kochhar 等(2008)研究发现,
外源 IBA 可提高麻疯树( Jatropha curcas)生根区的
内源生长素含量和 IAA 氧化酶、过氧化物酶活性,
刺激其根原基的启动及不定根形成; Husen(2008)
则发现,IBA 可改变印度黄檀(Dalbergia sissoo)插穗
代谢活动,增加生根区可溶性总糖、淀粉、蛋白质含
量及过氧化物酶活性,提高其生根率、根数及根长。
本研究中 IBA 处理促进云锦杜鹃生根、改善根系质
量,也可能与外源 IBA 促进了其插穗组织的代谢活
动、诱导酶活性等有关; 800 mg·L - 1处理所有指标
显著下降,可能是高浓度的 IBA 对插穗组织造成了
伤害,从而引发伤口腐烂(平均腐烂率 70. 55% )、抑
制愈伤组织与不定根形成 (张乐华等,2014;
Laubscher et al.,2008; Galavi et al.,2013)。
有研究表明,基质、IBA 浓度不仅单独影响扦插
生根,且相互间有显著的交互效应 ( Galavi et al.,
2013; Mehri et al.,2013)。本研究发现,扦插基质与
IBA 浓度的交互效应对 4 个根系发育指标有极显著
的影响,可能是基质的组成影响了插穗吸水,间接影
响了 IBA 吸收 ( Ercisli et al.,2002; zenc et al.,
2007)。24 个处理组合、8 个生根指标的综合评价
表明,纯河沙与 200 mg·L - 1 IBA 组合的隶属值最大、
综合生根效果最佳; 河沙经济、环保且易于获得,该
结果对加快我国云锦杜鹃的产业化、降低成本具有
重要意义。泥炭 +珍珠岩(4 ∶ 1)与 100 mg·L - 1 IBA
组合也有良好的生根表现,但泥炭与珍珠岩的最佳
配比尚待进一步优化。
参 考 文 献
高航洋,张启香,胡恒康,等 . 2011. 天目杜鹃组培苗生根培养体系的
优化 .浙江农林大学学报,28(6) : 982 - 985.
(Gao H Y,Zhang Q X,Hu H K,et al. 2011. Optimization of a rooting
culture system for Rhododendron fortunei. Journal of Zhejiang A & F
University,28(6) : 982 - 985.[in Chinese])
司国臣,张延龙,顾 欣,等 . 2012.秦岭野生美容杜鹃扦插繁殖技术 .
北方园艺,(3) : 77 - 79.
( Si G C,Zhang Y L,Gu X,et al. 2012. Study on cutting propagation
technology of Qinling wild Rhododendron calophytum. Northern
Horticulture,(3) : 77 - 79.[in Chinese])
徐 琨,李芳兰,苟水燕,等 . 2012.岷江干旱河谷 25 种植物一年生植
株根系功能性状及相互关系 .生态学报,32(1) : 215 - 225.
(Xu K,Li F L,Gou S Y,et al. 2012. Root functional traits and trade-offs
in one-year-old plants of 25 species from the arid valley of Minjiang
River. Acta Ecologica Sinica,32(1) : 215 - 225.[in Chinese])
张长芹,高连明,薛润光,等 . 2004.中国杜鹃花的保育现状和展望 . 广
西科学,11(4) : 354 - 359,362.
(Zhang C Q,Gao L M,Xue R G,et al. 2004. A general review of the
research and conservation statue of Chinese Rhododendron. Guangxi
Sciences,11(4) : 354 - 359,362.[in Chinese])
张乐华,王书胜,单 文,等 . 2014.基质、激素种类及其浓度对鹿角杜
鹃扦插育苗的影响 .林业科学,50(3) : 45 - 54.
( Zhang L H,Wang S S,Shan W,et al. 2014. Influences of growth media,
and hormone types and concentrations on cutting propagation of
Rhododendron latoucheae. Scientia Silvae Sinicae,50(3) : 45 - 54.
[in Chinese])
周 艳,李朝蝉,周洪英,等 . 2012. 大白杜鹃扦插繁殖技术研究 . 种
子,31(4) : 123 - 126.
(Zhou Y,Li C C,Zhou H Y,et al. 2012. Study on the cutting propagation
of Rhododendron decorum Franch. Seed,31 ( 4 ) : 123 - 126.[in
Chinese])
Abu-Zahra T R,Hasan M K,Hasan H S. 2012. Effect of different auxin
concentrations on Virginia creeper ( Parthenocissus quinquefolia )
rooting. World Applied Sciences Journal,16(1) : 7 - 10.
Akwatulira F,Gwali S,Okullo J B L,et al. 2011. Influence of rooting
media and indole-3-butyric acid( IBA) concentration on rooting and
shoot formation of Warburgia ugandensis stem cuttings. African
Journal of Plant Science,5(8) : 421 - 429.
Amri E. 2011. The effect of auxins( IBA,NAA) on vegetative propagation
of medicinal plant Bobgunnia madagascariensis(Desv. ) J. H. Kirkbr
171
林 业 科 学 51 卷
& Wiersema. Tanzania Journal of Natural and Applied Sciences,
2(2) :359 - 366.
Amri E,Lyaruu H V M,Nyomora A S,et al. 2009. Evaluation of
provenances and rooting media for rooting ability of African
blackwood( Dalbergia melanoxylon Guill. & Perr. ) stem cuttings.
Research Journal of Agriculture and Biological Sciences,5 ( 4 ) :
524 - 532.
Bashir M A,Anjum M A,Chaudhry Z,et al. 2009. Response of Jojoba
(Simmondsia chinensis) cuttings to various concentrations of auxins.
Belgian Journal of Botany,41(6) : 2831 - 2840.
Ercisli S,Anapali ,Esitken A,et al. 2002. The effects of IBA,rooting
media and cutting collection time on rooting of kiwifruit.
Gartenbauwissenschaft,67(1) : 34 - 38.
Ferriani A P,Bortolini M F,Zuffellato-Ribas K C,et al. 2006. Vegetative
propagation by cuttings of azaléia tree ( Rhododendron thomsonii
Hook. f. ) . Semina: Ciências Agrárias(Londrina),27(1) : 35 - 42.
Galavi M,Karimian M A,Mousavi S R. 2013. Effects of different auxin
( IBA ) concentrations and planting-beds on rooting grape cuttings
(Vitis vinifera ) . Annual Review & Research in Biology,3 ( 4 ) :
517 - 523.
Husen A. 2008. Clonal propagation of Dalbergia sissoo Roxb. and
associated metabolic changes during adventitious root primordium
development. New Forests,36(1) : 13 - 27.
I
·
sfendiyarogˇlu M,zeker E,Ba爧er S. 2009. Rooting of‘Ayvalik’olive
cuttings in different media. Spanish Journal of Agricultural
Research,7(1) : 165 - 172.
Kochhar S,Singh S P,Kochhar V K. 2008. Effect of auxins and associated
biochemical changes during clonal propagation of the biofuel plant -
Jatropha curcas. Biomass and Bioenergy,32(12) : 1136 - 1143.
Laubscher C P,Ndakidemi P A. 2008. Rooting success using IBA auxin
on endangered Leucadendron laxum ( PROTEACEAE ) in different
rooting mediums. African Journal of Biotechnology,7 (19) : 3437 -
3442.
Mamba B,Wahome P K. 2010. Propagation of geranium ( Perlagonium
hortorum) using different rooting medium components. American-
Eurasian Journal of Agricultural & Environmental Science,7 ( 5 ) :
497 - 500.
Mazre G,Dumitras A,Zaharia D,et al. 2007. The obtaining of Picea
cultivars by cuttings. Bulletin of University of Agricultural Sciences
and Veterinary Medicine,Cluj-Napoca,64(1 /2) : 277 - 281.
Mehri H,Mhanna K,Soltane A,et al. 2013. Performance of olive cuttings
(Olea europaea L. ) of different cultivars growing in the agro-climatic
conditions of Al-Jouf ( Saudi Arabia ) . American Journal of Plant
Physiology,8(1) : 41 - 49.
Nawrocka-Grzes'kowiak U. 2004. Effect of growth substances on the rooting
of cuttings of Rhododendron species. Folia Horticulturae,16 ( 1 ) :
115 - 123.
Ofodile E A U,Chima U D,Udo E F. 2013. Effect of different growth
media on foliage production and root growth in Gongronema latifolia
Benth stem cuttings. Greener Journal of Agricultural Sciences,3(3) :
215 - 221.
zenc D B,zenc N. 2007. The effect of hazelnut husk compost and some
organic and inorganic media on root growth of kiwifruit ( Actinidia
deliciosa) . Journal of Agronomy,6(1) : 113 - 118.
Paes E G B,Zuffellato-Ribas K C,Biasi L A,et al. 2003. Rooting of
kiwifruit (Actinidia deliciosa Lang et Ferguson cv. Bruno) cutting in
the four seasons of the year. Scientia Agraria,4(1 /2) : 69 - 76.
Rana R S,Sood K K. 2012. Effect of cutting diameter and hormonal
application on the propagation of Ficus roxburghii Wall. through
branch cuttings. Annals of Forest Research,55(1) : 69 - 84.
Strzelecka K. 2007. Anatomical structure and adventitious root formation
in Rhododendron ponticum L. cuttings. Acta Scientiarum Polonorum,
6(2) : 15 - 22.
Sulusoglu M,Cavusoglu A. 2010. Vegetative propagation of Cherry laurel
(Prunus laurocerasus L. ) using semi-hardwood cuttings. African
Journal of Agricultural Research,5(23) : 3196 - 3202.
Wu Z Y,Peter H R,Hong D Y. 2005. Flora of China:Vol. 14. Beijing:
Science Press,260 - 455.
Yeboah J,Lowor S T,Amoah F M. 2009. The rooting performance of shea
tree(Vitellaria paradoxa C. F. Gaertn) cuttings leached in water and
application of rooting hormone in different media. Journal of Plant
Sciences,4(1) : 10 - 14.
(责任编辑 徐 红)
271