全 文 :蓟马诱导的鹅掌柴叶片虫瘿组织的生理生化响应*
杨明挚,张汉波**,李程晨,马双敏
(云南大学生命科学学院植物科学研究所,云南 昆明暋650091)
摘要:以蓟马诱导的鹅掌柴叶片管状虫瘿为材料,分析了虫瘿和非虫瘿组织的抗氧化活性及其它生理响应
以及营养物质的含量、分配等。结果发现虫瘿组织中许多生理指标如过氧化氢浓度、过氧化物酶和苯丙氨
酸解氨酶活性以及丙二醛含量都比非虫瘿组织低。虫瘿组织比非虫瘿组织光合速率下降而呼吸速率增强,
虫瘿组织转变为一个营养库能够富集较多的营养物质。仅仅使用植物激素和蓟马萃取物不能诱导虫瘿的形
成,但是,细胞分裂素类植物生长调节物可以引起类似蓟马诱导虫瘿的早期反应。
关键词:虫瘿诱导,鹅掌柴叶片虫瘿;生理生化响应
中图分类号:Q945暋暋暋暋暋暋文献标识码:A暋暋暋暋暋暋暋暋文章编号:0253灢2700(2010)04灢339灢08
PhysiologicalResponsesofGalTissuesonIvy
TreeLeavesInducedbyThrip
YANG Ming灢Zhi,ZHANGHan灢Bo** ,LIChen灢Cheng,MAShuang灢Min
(PlantScienceInstituteofLifeScienceSchool,YunnanUniversity,Kunming650091,China)
Abstract:Inthisresearch,tuber灢likegalswhichinducedbythriponivytreeleaveswerechosenasmaterials,
andthephysiologicalresponsesaswelaspartitioningofmineralnutrition,solubleproteinandsaccharide
contentsingaledandun灢galedtissueswereassayed.Resultsindicatedthatcomparedtotheun灢galedtis灢
sues,galingtissuesdecreasedinmanyphysiologicalindexesincludinghydrogenperoxideconcentration,Per灢
oxidaseandphenylnineamonialaseactivitiesandthecontentsofmalondialdehyde.Galingtissuesdecreasedin
photosyntheticratebutincreasedinrespiratoryrate.Galingtissuesactedasanutritivesinkthataccumulate
morenutritionthansurroundingun灢galedtissues.Phytohormonesandinsectsextractsalonecannotinduce
theformationofgals,butcytokininssuchaskinetin,6灢BAandZeatincaninduceresponseswhicharesimilar
totheearlierresponseofthripfeeding.
Keywords:Galinginduction;Leafygal;Plantcelphysiologicalresponse
Introduction
Galsarethespecialstructuresinducedbygal灢
ingmakersandcouldbeformedinplantleaves,
stemsandroots.Galingmakersincludebacterial,
fungi,mites,nematodesandinsects.Bacteria灢in灢
ducedgalssuchascrowngalsandrootnodulesare
paidmuchattentionandtheformationmechanisms
havebeendemonstrated (Stoyanovaand Ham灢
burge,2003;GeurtsandBisseling,2002;Lim灢
pensetal灡,2003).Insectgalsarethemost
commonphenomenonand manyspeciesofin灢
sectshaveprovedtobegalingmakers.Differ灢
entspeciesofgalinginsectsinducetheproduc灢
tionofdifferenttypesand morphologicalgals
云 南 植 物 研 究暋2010,32(4):339~346
ActaBotanicaYunnanica暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋DOI:10灡3724/SP灡J灡1143灡2010灡09252
*
**
Foundationitems:DepartmentofScienceandTechnologyofYunnanProvince,China(No.2007PY01灢24),thenationalscience
foundationofChina(No.30560033,No.30960077)
ZhangHan灢BoandYangMing灢Zhiareequalycontributedtothispaper
Receiveddate:2009灢12灢23,Accepteddate:2010灢04灢07
作者简介:杨明挚 (1970-)男,博士,副教授,主要从事植物生理与分子生物学方面的研究。E灢mail:mzh灢yang@163灡com
(Rohfritsch,1992;Stoneetal灡,2003;Dorchin
etal灡,2002).Asplantpests,biologyandge灢
neticsofgalinginsectswerereported(Abraha灢
msonetal灡,2003;Crespietal灡,1998;Fenton
etal灡,2000;Bjorkman,2000;Fayetal灡,1996),
andgalsareprovedtoaffecttherealocationof
nutrientsandgalsbecomevegetativesinkin
plants (Bagatto etal灡,1996;Rehil etal灡,
2003;Florentineetal灡,2005;Koyamaetal灡,
2002).However,littleistoknowaboutthefor灢
mation mechanism,thegalinginductionsub灢
stances,andtheresponsesofplanttogaling
process.Leafygalsonthegardenplantivytree
werefrequentlyseenalongstreetinKunming,
China.Galingthripscan easily,stably and
higherefficientlyinducetheproductionofgals,
bymeansoffeeding.Thetuber灢likegalscanbe
seenrapidlygrowwithinfewdays.Tostudythe
inductionmechanismofgalformation,experi灢
mentsofgalinduction,physiologicalresponses
andnutritionalocationingaledandun灢galed
tissueswereassayedinthispaper.
1暋Materialsandmethods
1灡1暋Materials
Ivytree(ScheffleraheptaphylaHarms)andgaling
thrip (Phlaeothripidaespp)werechosenasgalingfor灢
mationstudymodelinthisresearchformanyadvantages.
1)Ivytreeisacommongardenplantsandcanrapidly
propagatebyvegetablemethods;2)Tuber灢likegalsin灢
ducedbythripsonleavesbelongtotheopentypeofgal;
3)theactivityofthegalandgal makerareeasilyob灢
served;4)Galformationisstableandefficient.Bothivy
treeplantsandgal灢madeinsect(thrips)werecolected
fromgardensandstreetsinKunming,China.Plantmate灢
rialslistedbelow werecolectedduringJuly21-25thin
2007andusedintheexperiments:normalyoungleaves;
normalmatureleaves,normaloldleaves,younggaled
leafgaledtissues,younggaledleafun灢galedtissues,
maturegaledleafgaledtissues,maturegaledleafun灢
galedtissues,oldgaledleafgaledtissuesandoldgaled
leafun灢galedtissues.Eachsamplecolectedfromdiffer灢
entsitehad8-12repeats.
1灡2暋Methods
1灡2灡1暋Galinductionexperiments暋Thripsandactive
opentuber灢likegalsarefrequentlyseenonwildivytree
leavesfromspringtoautumn.Forstudythebehaviorof
thriponivytreeandthemorphogenesisofgals,every20
galandinsect灢freeivytrees(purchasedfromflowermar灢
ket)wereplantedandculturedintwodifferentmanualat灢
mosphereroom,respectively,bybranchescuttingmeth灢
odat25曟 with12h/12hlight/darkcycles.Ripethrip
insectsinivytreeleafgalswerecolectedfromcampusof
YunnanUniversity.Inonemanualatmosphereroom,ev灢
erythripwasputintooneivytreeononeyoungleaflet.
Mainstemsofeveryivytreewerecyclingpaintedwith
vaselinetopreventinsectsfromescaping.Theactivitiesof
thethripintheivytreewerecarefulyobservedandrecor灢
ded.After1,2,3,4,5days,thripsineverythreeivy
treeweretakeout,respectively,andtheleftivytrees
wereletcontinuouslyco灢culturewiththrips.Galingre灢
sponseswereobservedandrecordedeveryday.
1灡2灡2暋GalinductionexperimentsbyPhytohormoneand
insectextract暋Foranalysisoftherolesofphytohormones
ingalinduction,auxins (3 mg·L灢1,10 mg·L灢1 of
IAA),cytokines(3mg·L灢1,10mg·L灢1ofKT,6灢BA,
orzetin),GA(10mg·L灢1GA3)andtheirmixtureswere
usedtotreatyoungleavesofivytreesbymicro灢injuryin灢
jection.Insectextracts(extractedfrom50thripsbyphos灢
phatebuffer)werealsousedinthisexperiment.Respon灢
seswereobservedandrecordedeveryday.
1灡2灡3暋Physiologicalresponsesassaytoplanttissues
(1)Peroxidase(POX)activityassay.POXactivitywas
assayedbyusingaspectrophotometricprocedure.20毺lofex灢
tractwereaddedto1980毺lof88灡2mmol·L灢1 H2O2and
4灡6mmol·L灢1guaiacolin0灡1mol·L灢1KSuc,pH5灡5,and
vortexedfor5sec.Theincreaseinabsorbanceduetothe
formationoftetraguaiacolwasmonitoredfrom0灡5minto
3灡5minat470nm.,andoneunit(U)ofPOXactivity
wasdefinedas0灡1changeofabsorbanceperminute.
(2)Hydrogenperoxidecontentassay.Theconcen灢
trationofhydrogenperoxide(H2O2)wasdeterminedas
describedbyMukherjeeandChoudhuri(Mukherjeeetal灡,
1983).Briefly,freshleaves(0灡3g)werehomogenizedin
3mlofrefrigerated10%acetone,themixturewascentri灢
fugedat10000暳gfor10min,and1mlsupernatantwas
mixedwith0灡1ml5% Ti(SO4)2and0灡2ml35% am灢
monia.Aftertheprecipitatewasformed,thereaction
mixturewascentrifugedat10000暳gfor10min.There灢
sultingpeletwaswashedwithacetonethreetimesand
thendissolvedin2mol·L灢1 H2SO4,andtheabsorbance
wasrecordedat415nm.TheH2O2levelwascalculated
accordingtoastandardcurveofH2O2.Theconcentration
043暋暋暋暋暋暋暋暋暋暋暋暋 暋暋暋暋暋暋暋云暋南暋植暋物暋研暋究暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋第32卷
ofH2O2 wasexpressedasmmol·g灢1FW.
(3)Phenylalnineammonialyase (PAL)detection.
ThePALassaywasconductedbyfolowingtheprocedure
ofKoukolandConn(1961).About1gofleaftissueswas
removedatrandom,andhomogenizedin10mlofcoldso灢
lutionof0灡05mol·L灢1sodiumboratebuffer,pH8灡5.
Thehomogenatewasfilteredthroughcheeseclothand
centrifugedat14500暳gfor30 min.Thecrudeextract
wasassayedimmediatelyafterhomogenization.ThePAL
activitywasexpressedastheamount(毺gpergramtissue
dryweight)ofcinnamicacidformed.Thereactionmix灢
tureconsistedof40mmolofL灢phenylalanine,200mmol
ofsodiumboratebuffer(pH8灡8)andtheenzymesolu灢
tioninatotalvolumeof5ml.About0灡1mlof6mol·
L灢1 HCIwasusedtostopthereaction.Theacidifiedmix灢
turewasextractedwithethyletherandtheresiduedis灢
solvedin0灡05mol·L灢1sodiumhydroxideandabsorbance
wasmeasuredat268nm.
(4)malondialdehyde(MDA)contentdetection:Ox灢
idativedamagetolipidswasexpressedasequivalentsof
malondialdehyde(MDA).MDAcontentwasdetermined
asdescribedbyDuanetal灡 (2005).Freshleavesortis灢
sues(about0灡5g)werehomogenizedin10mlof10%
trichloroaceticacid(TCA),andcentrifugedat12000暳g
for10min.Then,2ml0灡6%thiobarbituricacid(TBA)
in10% TCAwasaddedtoanaliquotof2mlofthesuper灢
natant.Themixturewasheatedinboilingwaterfor30
min,andthenquicklycooledinanicebath.Aftercentrif灢
ugationat1000暳gfor10min,theabsorbanceofthesu灢
pernatantat450,532and600nmwasdeterminedwitha
spectrometer(LibraS22,England).TheMDAconcen灢
trationwasestimatedusingtheformulaC(毺mol·L灢1)=
6灡45(A532灢A600)灢0灡56A450.TheMDAconcentration
wasexpressedas毺mol·g灢1FW.
(5)Photosyntheticandrespiratoryratemeasurement:
O2releasingratein500毺mol·m灢2redlightanddecreasing
rateindarkconditionsweremeasuredbyaoxygenelectrode
equipment(Oxy灢Lab,Hansatech,Egland)togaledand
un灢galedleaftissuesaccordingtothemanualsprotocol.
PhotosynthesisratewasexpressedbyO2increasingrated
inunitoftimeandunitofleafarea(毺mol·min灢1·m灢2).
AndrespiratoryratewasexpressedbyO2uptakeamount
inunitoftimeandunitmassoftissues.
1灡2灡4暋Detectingnutrientcontent.
(1)Mineralnutrientsanalysis:Fordetectionofthe
mineralelementsofevytree,tissuesasdescribedinmate灢
rials(2灡1)werecolectedanddetectedbyaequipmentof
ICP(ICP灢AES,ICPS灢1000II,Japan).Mineralelements
contentswereexpressedas毺g/gormg/gaccordingtothe
values.
(2)Solvablesugardetection:Solublesugar was
measuredasdescribedbyLehneretal灡(2006).Thecon灢
centrationofsolublesugarwasexpressedasmg·g灢1DW.
(3)Solvableproteincontentanalysis:solubleprotein
wasmeasuredineachsampleasdescribedbyBradford
(1976)andtheconcentrationwasexpressedasmg·g灢1
FW.
(4)C,H,Nelementsdetection:ThecontentsofC,
H,andNindryingmaterialsweredetectedbyanorganic
elementsanalyzer(Elementar,zarioELIII,Germany)
accordingtothemanualsprotocol.
2暋Results
2灡1暋Galinductionandformation
Onivytreeleaf,tuber灢likegalswerestably
inducedbythrips,andthripsanditslarvaecan
befoundwithinanactivegal (Fig灡1:A,B).
Obviousresponses wereseenin 1 dayafter
thrips曚“treatment暠.Theearlierresponsepro灢
duceslightencoloredspots(about6mmdiame灢
ter)aroundtheinductionsites(Fig灡1:C,D).
Enationsusualyappearedonleaves曚oppositeof
thetreatedsiteswithintwodays.Onethripcan
inducemanyleafygalswithinoneday曚s.Gals
cancontinuouslygrow andform into mature
galsevenwhentheinsectsweretakenawayaf灢
terfewhourstreatment(Fig灡1:E,F,G).
2灡2暋Phytohormonetreatmentresults
Comparedtothecontrol,noobviousre灢
sponsewasinducedwhenIAAorGAwasused
alone(Fig灡2:f,g).However,symbolssimilar
totheearlierresponse(lightencoloredspotsa灢
roundtheinductionsite)ofthripinductionwere
foundwhencytokinessuchasZeatin,6灢BAand
KTwereused(Fig灡2:b,c,d).Contrarytothe
obviousboundarylightencoloredspotsinduced
byinsects,lightencoloredspotsinducedbycy灢
tokinesdisplayedavagueboundary.Nogalwas
inducedorseenanygrowthofleaftissueswhen
treatedbydifferenttypeofphytohormones,dif灢
ferenthormonecompositionaswel asinsects
extracts(Fig灡2).
1433期暋暋YANGMing灢Zhietal灡:PhysiologicalResponsesofGalTissuesonIvyTreeLeavesInducedbyThrip暋暋暋
Fig灡1暋Thripinducedtuber灢likeopengalsonivytreeleaves
A.Thripinducedtuber灢likeopengals;B.Thripsanditslarvaecanfindinanaturalyproducedactivegals;
C,D.lightencoloredspotsaroundtheinductionsiteswastheearlierresponseofgalinduction;E.obviously
enationsappearedwithintwodaysafterthrips曚treatment;F,G.onedaystayingofonethripcaninduce
morethan15galsinonecomplexleaf;G.galscangrowmaturelywithoutthecontinuouslyinduction
Fig灡2暋Phytohormonesandthripextractsinductionresults
a:Theearlierresponseoflifethripinduction;b,c,d:Responsesof6灢BA ,zeatinandkatininistreatment,respectively;
e.f,g.Resultsofthripextracts,GAandIAAtreatment,respectively
2灡3暋Nutrientsalocationingaledandungeledtissues
Solvableprotein,soluablesugar,organic
elementsandinorganicelementsingaledand
un灢galedtissueswereanalyzedandilustratedin
table1.Galedtissuescontainedhighernutri灢
entscontentthanthatoftheun灢galedtissues,
especialythecontentofsolvableprotein,solva灢
blesugar,totalNandtherecycledmineralele灢
243暋暋暋暋暋暋暋暋暋暋暋暋 暋暋暋暋暋暋暋云暋南暋植暋物暋研暋究暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋第32卷
ments,suchasphosphate,potassium,Zincand
Boron.GaledtissuesdisplayedrelativelylowC/
Nratiocomparedtothatoftheun灢galedtis灢
sues.
2灡4暋Physiologicalmetabolismofgalingtissues
Photosyntheticandrespiratoryrateofgal灢
ledandun灢galedtissuesweredetectedbyanox灢
ygenelectrodeinstrument.Asexpectednormal
matureleafhasmorephotosynthesisratethan
thoseofnormalyoungandolderleaves.Theac灢
tivegaledtissuesalmosthavenotanyphotosyn灢
theticabilitybutthetissuesaroundthegaled
tissuesonthesameleafshowedhigherphoto灢
syntheticratethanthecorrespondingage曚snor灢
malleaf.Respiratoryratesdecreasedalongwith
theleafage.Therefore,galedtissues have
higherintensityofrespiratoryratesthanitssur灢
roundingtissuesandtheactivegaltissueshave
similarintensityofrespiratoryratesasthenor灢
malyoungleaves(Fig灡3).
2灡5暋Stressphysiologicalyresponseofgalingtissues
Normalyoungandoldleaftissuescontain
morehydrogenperoxidethanthatofthemature
leaf,asexpected.However,galedtissuescon灢
tainrelativelylow concentration of hydrogen
Fig灡3暋Photosyntheticandrespiratoryrates
ofgaledandun灢galedtissues
PR:photosynthesisrate;RR:respiratoryrate.A灢I:different
tissuesamplesasindicatedinthenotesoftable1
peroxidethanun灢galedtissues(Fig灡4:a).Per灢
oxidaseactivityincreasesfrom youngto old
leaves.However,onal kindsofleavesgaled
tissuesalwaysdisplaylowerperoxidaseactivities
thanun灢galedtissues(Fig灡4:b).Activitiesof
phenylnineamonialaseandthecontentsofma灢
londialdehydedecreasedalongwiththephysio灢
logicalageinnormalleaves.Thesametendency
wasalsofoundingaledandun灢galedtissuesas
peroxidaseactivityandhydrogenperoxidecon灢
tent(Fig灡4:b,d).
Table1暋Contentofsolvableprotein,saccharide,organicandinorganicelementsingaledandun灢galedtissues
Tissues* A B C D E F G H I
Soluableprotein
(mg/g)
4灡52暲0灡7 3灡16暲0灡5 3灡02暲0灡3 5灡87暲0灡5 5灡14暲0灡5 3灡79暲0灡4 2灡57暲0灡3 4灡72暲0灡4 4灡45暲0灡5
Soluablesugar
(mg/g)
111灡76暲9灡4 101灡19暲11灡5 94灡46暲8灡5 68灡80暲6灡7 47灡42暲7灡5 108灡74暲6灡4 93灡77暲7灡3 74灡57暲5灡9 52灡89暲5灡7
TotalN (%) 3灡85暲0灡3 3灡14暲0灡3 2灡80暲0灡3 3灡87暲0灡3 3灡67暲0灡7 2灡93暲0灡2 2灡75暲0灡3 2灡61暲0灡2 2灡63暲0灡3
TotalC(%) 46灡37暲5灡5 48灡24暲4灡3 50灡51暲5灡7 46灡32暲5灡1 46灡00暲5灡0 48灡03暲4灡7 46灡4暲4灡3 45灡19暲4灡4 44灡43暲4灡2
C/Nratio 12灡03暲0灡9 15灡36暲1灡4 18灡05暲1灡5 11灡97暲1灡1 12灡54暲0灡9 16灡41暲1灡3 16灡85暲1灡2 17灡30暲1灡1 16灡91暲1灡6
Ca (mg/gdw) 5灡46暲0灡4 9灡95暲0灡7 12灡70暲0灡3 2灡87暲0灡1 4灡91暲0灡3 3灡59暲0灡4 10灡20暲0灡7 4灡49暲0灡3 9灡64暲0灡2
P(mg/g) 1灡51暲0灡1 0灡58暲0灡1 0灡65暲0灡1 1灡54暲0灡1 1灡08暲0灡1 1灡17暲0灡1 0灡70暲0灡1 0灡91暲0灡1 0灡65暲0灡1
K (毺g/g) 7灡01暲0灡5 7灡28暲0灡9 7灡77暲0灡6 9灡03暲0灡8 4灡33暲0灡7 10灡60暲0灡6 9灡90暲0灡5 9灡78暲0灡8 8灡53暲0灡7
Fe(毺g/g) 36灡48暲1灡5 52灡47暲2灡3 50灡17暲2灡6 72灡13暲2灡7 65灡08暲4灡5 89灡13暲4灡9 105灡00暲8灡3 111灡00暲8灡2 69灡70暲3灡9
S(毺g/g) 387暲19 372暲25 625暲22 318暲31 343暲21 268暲18 278暲13 230暲21 197暲20
Mg(mg/g) 2灡25暲0灡1 3灡75暲0灡1 1灡67暲0灡1 2灡39暲0灡1 1灡73暲0灡1 1灡66暲0灡3 2灡53暲0灡2 1灡66暲0灡2 1灡63暲0灡1
Mn(毺g/g) 75暲6灡3 146暲19 54暲7 88暲7 97暲6 78暲5 168暲9 50暲4 34暲6
B(毺g/g) 34暲2 27暲3 58暲3 24暲2 22暲3 21暲2 16暲1 15暲2 15暲1
Zn(mg/g) 9灡73暲0灡5 23灡22暲0灡7 12灡24暲2灡2 11灡00暲1 7灡27暲0灡5 13灡88暲0灡8 6灡44暲0灡7 14灡67暲0灡3 11灡53暲0灡7
“*暠Tissuesamplesnotes:A:normalyoungleaf;B:normalmatureleaf;C:normaloldleaf;D:younggaledleafgaledtissues;E:
younggaledleafun灢galedtissues;F:maturegaledleafgaledtissues;G:maturegaledleafun灢galedtissues;H:oldgaledleafgaled
tissues;I:oldgaledleafun灢galedtissues
3433期暋暋YANGMing灢Zhietal灡:PhysiologicalResponsesofGalTissuesonIvyTreeLeavesInducedbyThrip暋暋暋
Fig灡4暋Physiologicalresponsesofgaledandun灢galedtissuesofivytreeleaves
A灢I:differenttissuesamplesasindicatedinthenotesoftable1
3暋Discussion
Traditionaly manygal makinginsectshave
beenstudiedasplantpest,(Rohfritsch,1992;
Abroletal灡,2006;Protasovetal灡,2007;Lvarez
etal灡,2009),andresearchworksmainlyhave
focusedongalmorphological(StoneandSchon灢
rogge,2003;Arduinetal灡,2005),damageof
galtoplant(Abroletal灡,2006 )andsoon.
Themorphologicalofgalsareconsideredtobe
determinedbythegeneticcharactersofgaling
makers (Brantner etal灡,2000;Stone and
Schonrogge,2003;Arduinetal灡,2005).How灢
ever,galformationmechanismsstilremainun灢
clear.Galsmaybeinducedbyinsectsormicro灢
organisms.Nodulesandcrowngalsarethefre灢
quentlyseenmicrobe灢inducedgals.Nodulesare
inducedbynitrogen灢fixing Rhizobium andthe
noduleinductionfactorisidentifiedandproved
tobeoneoftheplantendogenoussubstances
(GeurtsandBiseeling,2002;Limpensetal灡,
2003).Studiesonthecrowngalleadtothe
findingsofplantcytokinesandthebroadlyappli灢
cationoftransgenictool(T灢DNA).Itiswel
knownthat,abnormalgrowthofplantsuchas
phototropism,crowngalandBanakaeDisease,
leadtothefindingsanddeeplyunderstandingof
plantendogenousregulatorsofIAA,cytokine
andGA,respectively.Whatmaytelusthatso
manytypesofgalsinducedbyinsects?
Convenientlypropagationofivytreeplant,
widelyseenofgal andgalingthrip,rapidly
galingrespond,higherefficiencyofinduction
andeasilyobservationmakeopentuber灢likeleafy
galinducedbythripagoodmodelinplant灢in灢
sectinteractionstudy.Inthiscase,wefocused
ontheplantresponsesduringgalinginduction
andformation.Asdescribedinothertypeof
gals(Bagattoetal灡,1996;RehilandSchultz,
2003;Florentineetal灡,2005;Koyamaetal灡,
2002),galingtissuesconcentratedmorenutri灢
entssuchassolvableproteins,solvablesaccha灢
ride,Nitrogen,phosphate,potassiumthansur灢
roundingun灢galedtissues(Table1).Galinge灢
ventsleadedtotherealocationofnutrients.But
theaveragecontentof manynutrients within
galedleaveswaslowerthanthatofthenormal
correspondingstageleaves.Itimpliedthatnu灢
trientrealocationwasmostlyrestrictedwithin
thenearingtissuesandorgans.However,one
questionishowplantcelsrespondtotheaction
443暋暋暋暋暋暋暋暋暋暋暋暋 暋暋暋暋暋暋暋云暋南暋植暋物暋研暋究暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋第32卷
ofgalinginsects.Innormalconditions,when
diseaseorpestthreatensaplant,plantcelsre灢
spondasberesistantorsusceptible.Nomatter
resistantorsusceptibleresponse,plantcelsof灢
tenrespondwithincreseofROs(reactiveoxi灢
dates)stress,anti灢oxidaseactivities.MDAcon灢
tentmayincreaseforoxidativedamagetolipids.
Inthisresearch,contentofhydrogenperoxide,
MDAcontentsandtheactivitiesofPAL,POX
werealseenobviouslydecreasedorinhibited.
Altheseindexesabovewereseenloweringal灢
ingleavesthanthatofun灢galedornormalleav灢
es.Theseresultsmeansthatthegalingplant
hasnotseeanyevidencestoinjuryorresistance.
Wehypothesizedherethatthesubstances
whichgalinginsectsusedinplantgalinginduc灢
tionmaybeakindofplantcelendogenouscom灢
ponents,andactinthefarupstreamofgalin灢
duction.Thecontentandproductionofthese
substancesareunderstrictlycontrolinginnor灢
malun灢galedplantcels.Exogenousintroduc灢
tionofthesekindsofsubstancesleadstothe
changesbothinplantcelmetabolismandphyto灢
hormoneequilibrium,andconsequently,thegal
isformed.Withthishypothesis,alofthere灢
sultscanbereasonablyexplained.Becausethe
galing induction substances are endogenous
compoundsandplanttreatsthesemoleculesas
endogenoussignals,noresistantresponseisde灢
tected.Directevidencescomefromthemecha灢
nismofrootnoduleandcrowngalformation.
Rhizobiumnodfactor(akindoflow molecular
polysaccharide)whichproducedbyrootnodule
bacterialhasbeenprovedasoneoftheplantcel
endogenous signal (Engler et al灡,1999).
Agrobacteriacandirectlytransformplantcyto灢
kinesgeneintoplantcelandleadtotheforma灢
tionofcrowngals(Lynnetal灡,1987).Itis
notanewstorythatpests,pathogensorother
plantsymbioticorganismownplantendogenous
regulatorasitsbenefit.Ontheotherside,stud灢
iesontheinteractionbetweenplantanditsene灢
miesalsodramaticalybroadenedourknowledge
toplant.Forplanthormones,manyofthem
maybeinvolvedduringtheformationofgals,
especialytheplantcelgrowthanddivisionen灢
hancinghormones.Itisindirectevidencethat
cytokinestypesofphytohormonesuchas6灢BA,
KTandZeatincaninduceresponsessimilarto
theearlierinductionbythrips.Earlierreports
demonstratedthatendogenousphytohormones
weredetectedandfound17timesmoreauxinac灢
tivityandasmuchas21timesmoregibberelin灢
likeactivityingalingtissuesthannormaltis灢
sues (Byersetal灡,1976).Cytokinesisalso
foundtoincreaseinbalgals(MapesandDa灢
vies,2001).So,phytohormones mayactto
downstreamthissignalpathwayduringgalin灢
duction.Rootnodinducingfactorsasasignal
thatacceptedbycelularreceptorsthenmediate
thenoduleformation has been demonstrated
(Geurtsetal灡,2002;Limpensetal灡,2003).
Geneswithinhostplanthavebeenprovedaffect灢
ingtheinteractionofgal midgeandrice(Limaa
etal灡,2007).Fornutrientrealocation,anutri灢
entshypothesisisprovidedtoexplaintheforma灢
tionmechanismofgals(Koyamaetal灡,2004).
Butgalsbecomingamobilevegetablesinkmay
alsobetheresponsetothehighercontentsof
phytohormones,because many ofthe plant
growth enhancing hormones such as IAA,
CTK,GAandsoonareinvolvedinthenutrients
partitioningregulation.
Multiplemorphologicalgalsareinducedby
differenttypeofgalinginsectsanddifferent
galinginsectsmayproducedifferenttypeofgal
inductionsubstanceandcreatingdifferentpat灢
ternsofcelularequilibriumofplantregulators
duringthegalinductionprocess.So,identifica灢
tion,functioningofthesetraceexistingsub灢
stancesmaydeeplyandwidelyimproveourun灢
derstandingofplantcel divisionandgrowth
regulatingmechanism.
Acknowledgements:WeappreciateDr.ChenJin (Presi灢
dentofXishuangbannaTropicalBotanicalGarden,Chi灢
neseAcademyofScience)theencouragementtopublic
theseinitialystudyresults.
References:
AbrahamsonWG,HunterMD,MelikaGetal灡,2003.Cynipid
5433期暋暋YANGMing灢Zhietal灡:PhysiologicalResponsesofGalTissuesonIvyTreeLeavesInducedbyThrip暋暋暋
gal灢waspcomunitescorrelatewithoakchemistry[J].Jour灢
nalofChemicalEcology,29:209—223
ArduinM,FernandesGW,KrausJEetal灡,2005.Morphogene灢
sisofgalsinducedbyBaccharopelmadracunculifoliae(He灢
miptera:Psylidae)onBaccharisdracunculifolia(Asterace灢
ae)leaves[J].BrazilianJournalofBiology,65:559—571
AbrolDP,Ramamurthy VV,Srivastava K,2006.Beangal
weevilandblisterbeetleasnewpestsonredkidneybean
(Phaseo/usvulgarisL.)inIndia[J].JournalofAsia灢Pa灢
cificEntomology,9:317—320
BagattoG,PaquetteLC,ShorthouseJD,1996.Influenceofgals
ofphanacistaraxacioncarbonpartitioningwithincommon
dandelion,Taxacum oficinale.Entomol [J].Entomdogia
ExperimentalisetApplicata,79:111—117
BjorkmanC,2000.Interactiveeffectsofhostresistanceand
droughtstressontheperformanceofagal灢makingaphidliv灢
ingonNorwayspruce[J].Oecologia,123:223—231
BradfordMM,1976.Arapidandsensitivemethodforthequan灢
titationofmicrogramquantitiesofproteindye灢binding[J].
AnnalsofBiochemistry,72:248—254
BrantnerAH,AsresK,ChakrabortyHetal灡,2000.Diversity
ofinsect灢inducedgalsalongatemperature灢rainfalgradient
inthetropicalsavannahregionoftheNorthernterritory,
Australia[J].AustralEcology,25:311—318
ByersJA,BrewerJW,DennaDW,1976.Plantgrowthhor灢
monesinpinyoninsectgals[J].Marcelia,39:125—134
CrespiBJ,CarmeanDA,MoundLAetal灡,1998.Phylogenetic
ofSocialbehaviorin Australiangal灢formingThrips:Evi灢
dencefrom mitochondrialDNAsequence,Adultmorphology
andbehavior,andgal morphology[J].MolecularPhyloge灢
neticsandEvolution,9:163—180
DorchinN,FreidbergA,AloniR,2002.Morphogenesisofstem
galtissuesinducedbylarvaeoftwocecidomyidspecies
(Diptera:Cecidomyidae)onSuaedamonoica(Chenopodi灢
aceae)[J].CanadianJournalofBotany,80:1141—1150
DuanB,LuY,YinCetal灡,2005.Physiologicalresponsesto
droughtandshadeintwocontrastingPiceaasperatapopu灢
lations[J].PhysiologiaPlantarum,124:476—484
EnglerJA,CelenzaJL,1999.Molecularmarkersandcelcyclein灢
hibitorsshowtheimportanceofcelcycleprogressioninnema灢
tode灢inducedgalsandsyncytia [J].ThePlantCel,11:
793—808
FayPA,HartnettDC,KnappAK,1996.Planttoleranceofgal灢
insectattackandgal灢insectperformance[J].Ecology,77:
521—534
FentonB,BirchANE,MalochGetal灡,2000.Galmitemolec灢
ularphylogenyanditsrelationshiptotheevolutionofplant
hostspecificity[J].ExperimentalandAppliedAcarology,
24:831—861
FlorentineSK,RamanA,DhileepanK,2005.Effectsofgalin灢
ductionbyEpiblemastrenuanaongasexchange,nutrients,
andenergeticsinParthenium hysterophorus[J].BioCon灢
trol,50:787—801
GeurtsR,BisselingT,2002.Rhizobium Nodfactorperception
andsignaling[J].ThePlantCel,14:239—249
KoukolJ,ConnE,1961.The metabolism ofaromaticcom灢
poundsinhigherplants.IV.Purificationandpropertiesof
thephenylalaninedeaminaseofHordeumvulgare[J]Jour灢
nalofBiochemisty,236:2692—2698
KoyamaY,YaoI,AkimotoSI,2004.Aphidgalsaccumulate
highconcentrationsofaminoacids:asupportforthenutri灢
tionhypothesisforgalformation[J].EntomologiaExperi灢
mentalisetApplicata,113:35—44
LehnerA,BailyC,FlechelBetal灡,2006.Changesinwheat
seedgerminationability,solublecarbohydrateandantioxi灢
dantenzymeactivitiesintheembryoduringthedesiccation
phaseofmaturation [J].JournalofCerealScience,4:
175—182
LimaaJM,DassaA,SahubSCetal灡,2007.ARAPDmarkeri灢
dentifiedasusceptiblespecificlocusforgalmidgeresistance
geneinricecultivarARC5984 [J].CropProtection,26:
1431—1435
LimpensE,FrankenC,MitPSetal灡,2003.LysMdomainre灢
ceptorkinasesregulatingrhizobialnodfactor灢inducedinfec灢
tion[J].Science,302:630—633
LvarezRA,EncinaA,Pe曚rezHidalgoN,2009.Histologicalas灢
pectsofthreePistaciaterebinthusgalsinducedbythreedif灢
ferentaphids:Paracletuscimiciformis,Forda marginata
andFordaformicaria[J].PlantScience,176:303—314
LynnDG,ChenRH,ManningKSetal灡,1987.Thestructural
characterizationofendogenousfactorsfrom Vincarosea
crowngaltumorsthatpromoteceldivisionoftobaccocels
[J].ProceedingsoftheNationalAcademyofSciencesof
theUnitedStatesofAmerica,84:625—629
MapesCC,DaviesPJ,2001.CytokininsinthebalgalofSoli灢
dagoaltissimaandinthegalforminglarvaeofEurostasoli灢
daginis[J].NewPhytologist,151:203—212
MukherjeeSP,Choudhuri MA,1983.Implicationsof water
stress灢inducedchangesinthelevelsofendogenousascorbic
acidandhydrogenperoxideinvignaseedlings[J].Physio灢
logiaPlantarum,58:166—170
ProtasovA,BlumbergD,BrandDetal灡,2007.Biologicalcon灢
troloftheeucalyptusgal waspOphelimusmaskeli(Ash灢
mead):Taxonomyandbiologyoftheparasitoidspecies
Closteroceruschamaeleon(Girault),withinformationonits
establishmentinIsrael[J].BiologyControl,42:196—206
RehilBJ,SchultzJ,2003.Enhancedinvertaseactivitiesinthe
galsofHormaphishamamelidis[J].JournalofChemical
Ecology,29:2703—2720
RohfritschO,1992.PatternsinGalDevelopment[A].In:Short灢
houseJD,RohfritschOeds.,BiologyofInsect灢inducedGals
[M].NewYork:OxfordUniversityPress,60—86
StoneGM,SchonroggeK,2003.Theadaptivesignificanceofin灢
sectgal morphology[J].TrendinEcology& Evolution,
18:512—522
StoyanovaS,HamburgerM,2003.Crowngal灢aplanttumour
withbiologicalactivities[J].PhytotherapyResearch,17:
385—390
643暋暋暋暋暋暋暋暋暋暋暋暋 暋暋暋暋暋暋暋云暋南暋植暋物暋研暋究暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋第32卷