免费文献传递   相关文献

Lignans and Triterpenoids from Cissus repens (Vitaceae)

白粉藤的木脂素和三萜成分



全 文 :白粉藤的木脂素和三萜成分 ?
王跃虎1 , 2 , 张仲凯3 , 何红平1 , 高 锁1 ,2 ,
孔宁川1 , 2 , 丁 铭3 , 郝小江1??
(1 中国科学院昆明植物研究所 植物化学与西部植物资源持续利用国家重点实验室 , 云南 昆明 650204; 2 中国科学院
研究生院 , 北京 100039; 3 云南省农业科学院 云南省农业生物技术重点实验室 , 云南 昆明 650223 )
摘要 : 从白粉藤 ( Cissus repens Lank) 地上部分分离得到 5 个木脂素和 8 个三萜 , 其中一个木脂素是新化合
物 , 它的结构通过波谱分析和碱水解的方法鉴定为 : ( + )-异落叶松树脂醇-9′- (2-对-香豆酰 )- O-β- D-吡喃
木糖苷 ( 1)。其余化合物分别是 : ( + ) -异落叶松树脂醇-9′- O-β- D-吡喃木糖苷 ( 2) , ( + )-Lyoniside (3 ) ,
(─ )-开环异落叶松树脂醇-9- O-β- D-吡喃木糖苷 (4) , (7′R, 8′S )-4′-hydroxy-3′, 5-dimethoxy-7′, 8′-dihydro-
benzofuran-1-propanolneolignan-9′- O-β-D-xylopyranoside (5) , 木栓酮 ( 6 ) , 表木栓醇 ( 7 ) , 蒲公英赛醇乙酸酯
( 8) , 熊果酸 (9) , 2α-羟基乌索酸 ( 10) , 积雪草酸 (11) , Niga-ichigoside F1 (12) , 羽扇豆醇 (13)。这些化
合物都是首次从该植物中分离得到。
关键词 : 白粉藤 ; 葡萄科 ; 木脂素 ; 五环三萜
中图分类号 : Q 946 文献标识码 : A 文章编号 : 0253 - 2700(2006)04 - 433 - 05
Lignans and Triterpenoids from Cissus repens (Vitaceae) *
WANG Yue-Hu
1 , 2
, ZHANG Zhong-Kai
3
, HE Hong-Ping
1
, GAO Suo
1 , 2
,
KONG Ning-Chuan1 , 2 , DING Ming3 , HAO Xiao-Jiang1 **
(1 State KeyLaboratory of Phytochemistry and Plant Resources in West China, Kunming Instituteof Botany, Chinese Academy of Sciences,
Kunming 650204 , China; 2 Graduate School of the Chinese Academy of Sciences, Beijing 100039 , China;
3 Yunnan Key Laboratory of Agricultural Biotechnology, Yunnan Academy of AgricultureSciences, Kunming 650223 , China)
Abstracts: Five lignans and eight triterpenoidswere isolated fromthe aerial parts of Cissus repens . Among them, a lig-
nan, ( + )- isolariciresinol-9′- (2- p-coumaric ) - O-β- D-xylopyranoside (1) , was new and its structure was established on
the basis of spectroscopic methods andalkaline hydrolysis . Other compounds, ( + ) -isolariciresinol-9′- O-β- D-xylopyrano-
side (2) , ( + ) -lyoniside (3) , (─) -secoisolariciresinol-9- O-β- D-xylopyranoside (4 ) , ( 7′R, 8′S )-4′-hydroxy-3′,
5-dimethoxy-7′, 8′-dihydrobenzofuran-1-propanolneolignan-9′- O-β- D-xylopyranoside (5 ) , friedelin ( 6 ) , epifriedelanol
( 7) , taraxerol-3β-acetate (8) , ursolic acid (9 ) , 2α-hydroxyursolic acid ( 10) , asiatic acid (11 ) , niga-ichigoside F1
( 12 ) and lupeol (13) , werefound in the plant for the first time .
Key words: Cissus repens; Vitaceae; Lignans; Pentacyclic triterpenoids
Cissus repens Lamk ., a climber, belongs to the
family Vitaceae and distributes in Southern China and
Taiwan, Guizhou and Yunnan Province . The roots
and stems of C . repenswereused for treatmentof snake
bites, rheumatic pains and carbuncles inChinese folk,
and the latter were also employed to treat nephritis,
云 南 植 物 研 究 2006 , 28 (4) : 433~437
Acta Botanica Yunnanica

?
?? ?Author for correspondance . E - mail : haoxj@ mail .kib. ac. cn
Received date: 2006 - 02 - 27 , Accepted date: 2006 - 04 - 18
作者简介 : 王跃虎 (1970 - ) 男 , 博士研究生 , 主要从事植物活性成分研究。 ?
Foundation item: This work was financially supported by two grants fromNational Natural Science Foundation of China ( No . 30370957 ) and Natu-
ral Science Foundation of Yunnan Province, P . R . China ( No . 2003C0061M )
long-termcough and diarrhea ( China National Bureau
of ChineseTraditional Medicine, 1999 ) . The compo-
nents of the plant remain unknown as yet . In the pr-
esent research, five lignans ( 1 - 5 ) and eight triterpe-
noids (6 - 13) were isolated fromthe aerial partsof the
plant . Among them, a lignan, ( + )-isolariciresinol-
9′-( 2- p-coumaric )- O-β- D-xylopyranoside ( 1 ) , was
new . This paper reports the structural elucidation of
the new compound . In addition, the 13 C NMR dataof
4 were assigned for the first time . Compound 1 was
obtained as a white amorphous powder and its molecu-
lar formulawas deduced as C34 H38 O12 by the [M-H] -
ion peak at m?z 637 .2280 ( calc . 637 .2285 ) in the
HRESIMS . The IR spectrum of 1 showed absorption
bands for hydroxyl group (νmax 3451 cm- 1 ) , conjugat-
ed carbonyl (νmax 1712 and 1632 cm- 1 ) and phenyl
ring (νmax 1606 and 1515 cm- 1 ) . In the 1 H- and 13 C-
NMR spectra of 1 , the signals atδH 7 .40 ( d, J =
8 .5 Hz, 2H, H - 2? and H - 6?) and 6 .77 ( d, J =
8 .5 Hz, 2H, H - 3?and H - 5?) , andδC 131 .0 (d,
C - 2?and C - 6?) and 116 .7 ( d, C - 3?andC - 5?)
were owing to the existence of a 4-hydroxyphenyl
group . The signals atδ7 .60 ( d, J = 15 .9 Hz, 1H,
H - 7?) and 6 .39 ( d, J = 15 .9 Hz, 1H, H - 8?)
showed thepresenceof a transolefin bond in 1 . There
was a ( + ) or (─ )-isolariciresinol-9′- O-β- D-xylopyr-
anosidemoiety in 1 by comparison of the 1 H and 13 C
NMR dataof 1 with thosein the literatures (Zuo et al ,
2005; Zhang et al , 1999 ) . The remained moiety
contained a carbonyl , a trans olefin bond and a 4-
hydroxyphenyl group, which indicated that 1 bore a p-
coumaric group . The linkageof the p-coumaric substi-
Fig . 1 Structures of compounds 1 - 13
434 云 南 植 物 研 究 28 卷
tuent to 2″- OH was established by the HMBC spec-
trum, in which H - 2″was correlated to the ester car-
bonyl carbon (δC 167 .4 , C - 9?) . After basic hydrol-
ysis of 1 , ( + )-isolariciresinol-9′- O-β- D-xylopyranoside
was harvested and confirmed by TLC comparing with
authentic samples andoptical rotation ( [α] - 筀19D ) . Thus,
thestructure of 1 was elucidated as ( + )-isolaricires-
inol-9′- (2- p-coumaric )- O-β- D-xylopyranoside .
Fig . 2 Key 1 H-1 H COSY ( bold) and HMBC ( arrow) correlations for 1
Experimental
General Experimental Procedures Column chromatogra-
phy was performed over silicagel (200 - 300 and300 - 400 mesh) ,
silicagel H (10 - 40μm; Qingdao Marine Chemical Ltd ., Qing-
dao, P . R . China) and Sephadex LH - 20 (40 - 70μm; Amer-
shamPharmaciaBiotech AB , Uppsala, Sweden) . TLC was per-
formed on precoated plates with silica gel F254 (Qingdao) . 1D
and 2D spectrawere recordedonBRUKER AM-400 and DRX-500
spectrometers . MS weremeasured on a VG Auto Spec-3000 mass
spectrometer . Optical rotations were determined on a JASCO
DIP370 digital polarimeter . IR spectra were recorded on a Bio-
Rad FTS-135 infrared spectrophotometer . The UV spectrum was
recorded on a Shimadzu double-beam210A spectrometer .
Plant Material Theaerial parts of C. repenswere collect-
ed fromXishuangbanna, Yunnan Province of P . R . China, in
August 2004 . The plantwas identified by professor De-DingTao
(Kunming Institute of Botany, Chinese Academy of Sciences) ,
and avoucher specimen was depositedat the State Key Laborato-
ryof Phytochemistry and Plant Resources in West China, Kun-
ming Institute of Botany, Chinese Academy of Sciences .
Extraction and Isolation The aerial parts of C. repens
(3. 0 kg) were extracted thrice with EtOH (95% ) . The solvent
was evaporated to give a residue, which was suspended in water
and participated with petrol, EtOAc and n-BuOH successively .
The EtOAc extract (23 .8 g) was fractionated by silicagel column
chromatography (CHCl3 -MeOH, 10∶1 , 5∶1 and 3∶1) to afford
four major fractions ( I-IV) .
Fraction I was purified by repeat silica gel column chroma-
tography ( CHCl3 ; petrol-EtOAc, 50∶1; petrol-acetone, 30∶
1) togive6 (161 mg) , 7 (86 mg) , 8 (5 mg) and 13 (77 mg) .
Fraction II was purifiedby repeated silicagel columnchromatogra-
phy (CHCl3 -acetone, 3∶1 - 1∶1; CHCl3 -MeOH, 20∶1 - 10∶1) to
give9 (14 mg) , 10 (23 mg) and 11 (20 mg) . Fraction III was
purified by RP-18 (MeOH-H2 O, 50∶50) and silica gel (CHCl3 -
acetone, 1∶2; EtOAc-acetone, 1∶2 ) column chromatography to
afford 1 (136 mg) , 2 (22 mg) and 5 (8 mg) . Fraction IV was
purified by repeated silica gel ( CHCl3 -MeOH, 8∶1 - 3∶1; CH-
Cl3 -acetone, 1∶5) and Sephadex LH-20 (MeOH) column chrom-
atography to yield 3 (30 mg) , 4 (5 mg) and 12 (13 mg) .
( + )-Isolariciresinol-9′-( 2- p-coumaric )- O-β-D-xylopyr-
anoside ( 1) . C34 H38 O12 , white amorphous powder (MeOH ) ;
[α]23D - 13 .5°(MeOH, c 0 .52 ) ; UV λMeOHmax ( logε) : 315.2
(4.28) , 290.2 (4 .26) nm; IRνKBrmax cm- 1 : 3451 , 1712 , 1632 ,
1606 , 1515 , 1272 , 1178 , 1081 , 1029; FABMS: m?z 637
[M-H] - ; HRESIMS m?z 637.2280 [M-H ] - ( calcd . for C34
H37 O12 : 637.2285) ; 1 H and 13 C NMR data see Table 1 .
Table 1 1 H and 13 C NMR data of compound 1 (δppm, J Hz)a
atom δH δC atom δH δC atom δH δC
1 ?128 .6s 3′ 148 .7s 5 ;″ 3 3. 80( m, 1H ) , 3 ?. 15 ( m, 1H) 66 _. 7t
2 ?133 . 9s 4′ 146 .0s 1 4? 126 n. 9s
3 ?5 . 98 (s, 1H) 117 .0d 5′ 6 .63 ( d, 8 . 0 , 1H) 113 .6d 2?, 6? 7 5. 40 ( d, 8 . 5 , 2H ) 131 i. 0d
4 ?145 . 2s 6′ 6 .53 ( d, 8 . 0 , 1H) 123 .3d 3?, 5? 6 5. 77 ( d, 8 . 5 , 2H ) 116 i. 7d
5 ?146 . 7s 7′ 3 .79 ( m, 1H ) 47 .5d 4 4? 160 n. 9s
6 ?6 . 54 (s, 1H) 112 .2d 8′ 1 .79 ( m, 1H ) 45 .2d 7 4? 7 5. 60 ( d, 15 .9 , 1H) 146 i. 4d
7 ?2 .73 (m, 1H) , 2 ^. 72 (m, 1H) 33 .5t 9′ 3 .82( m, 1H) , 3 t. 11 ( m, 1H ) 68 .7t 8 4? 6 5. 39 ( d, 15 .9 , 1H) 115 i. 5d
8 ?1 . 94 ( m, 1H) 38 .8d 1″ 4 .29 ( d, 8 . 0 , 1H) 103 .5d 9 4? 167 n. 4s
9 ?3 . 60 ( m, 2H) 64 .7t 2″ 4 .78 ( t, 8 . 0 , 1H) 75 .0d -OMe 3 5. 68 (s, 3H ) 56 W. 2q
1 ?′ 133 . 9s 3″ 3 .53 ( m, 1H ) 75 .9d -OMe 3 5. 71 (s, 3H ) 56 W. 4q
2 ?′ 6 . 57 ( d, 1 . 3 , 1H) 115 .8d 4″ 3 .54 ( m, 1H ) 71 .2d
a: NMR dataof 1 measured in CD3 OD at 500 MHz for proton and 125 MHz for carbon .
5344 期 WANG Yue-Hu et al : Lignans andTriterpenoids from Cissus repens (Vitaceae)
( + )-Isolariciresinol-9′- O-β-D-xylopyranoside ( 2 ) . C25
H32 O10 , white amorphous powder (CHCl3 -MeOH ) ; ESIMS m?z
491 [M-H] - ; 13 C NMR data: same as the data reported inZou
et al (2005) .
( + )-Lyoniside (3 ) . C27 H36 O12 , white amorphous pow-
der (MeOH) ; [α] 25D + 9 .0° (MeOH , c 0 .45 ) ; ESIMS m?z
551 [M-H] - ; 13 C NMR data: sameas the data reported in In-
oshiri et al ( 1987) .
( ─) -secoisolariciresinol-9- O-β-D-xylopyranoside ( 4 ) .
C25 H34 O10 , colourless amorphous solid (MeOH) ; [α] 19D - 25.0°
(MeOH, c 0.60) ; ESIMS m?z 493 [M-H ] - ; 13 C NMR data
(400 MHz, CD3 OD) δC 148 .8 (s, C - 3 and C - 3′) , 145 .5
(s, C - 4 and C - 4′) , 134 .0 ( s, C - 1′) , 133.9 (s, C - 1) ,
122 .8 ( d, C - 6 and C - 6′) , 115.8 ( d, C - 5 and C - 5′) ,
113 .6 (d, C - 2′) , 113 .5 ( d, C - 2 ) , 105 .2 ( d, C - 1″) ,
78.0 (d, C - 3″) , 75 .0 ( d, C - 2″) , 71 .3 ( d, C - 4″) , 70.2
(t, C - 9) , 67.0 ( t, C - 5″) , 62 .8 (t, C - 9′) , 56.9 ( q, -
OMe×2) , 44.4 (d, C - 8′) , 41 .7 (d, C - 8) , 35 .7 (t, C -
7′) , 35.6 (t, C - 7) ; The data of optical rotation and 1 H NMR
are similar to those data reported in Lundgren et al (1985) .
( 7′R, 8′S ) -4′-Hydroxy-3′, 5-dimethoxy-7′, 8′-di-
hydrobenzofuran-1-propanolneolignan-9′- O-β-D-xylopyrano-
side (5) . C25 H32 O10 , colourlesssolid (acetone) ; FABMS m?z
491 [ M-H ] - ; 13 C NMR data: same as the data repoted in
Kouno et al (1993) .
Friedelin ( 6 ) . C30 H50 O, colourless needles ( CHCl3 ) ;
EIMS m?z [M ] + 426 ( 52% ) , 411 ( 12 ) , 341 ( 7 ) , 302
(25) , 273 (100) , 95 (83) , 123 (93 ) , 69 (81 ) ; 13 C NMR
data: same as the data reported in Klass et al (1992) .
Epifriedelanol ( 7 ) . C30 H52 O, colourless flakes ( CH-
Cl3 ) ; EIMS m?z [M] + 428 ( 28% ) , 413 ( 29) , 275 (90 ) ,
125 (92) , 95 ( 100 ) , 69 ( 84) ; 13 C NMR data: same as the
data reported in Kundu et al (2000) .
Taraxerol-3β-acetate (8 ) . C32 H52 O2 , colourless needles
(CHCl3 ) ; EIMS m?z [M ] + 468 ( 14% ) , 453 ( 10 ) , 344
(50 ) , 204 (100) ; 13 C NMR data: sameasthe datareported in
Li et al (1998) .
Ursolic acid ( 9 ) . C30 H48 O3 , white amorphous powder
(CHCl3 -MeOH ) ; 13 C NMR data: same as the data reported in
Yang andZhao (2003) .
2α-Hydroxyursolic acid ( 10 ) . C30 H48 O4 , white amor-
phous powder (CHCl3 -MeOH) ; FABMS m?z 471 [M-H] - ; 13 C
NMR data: same as the data reported in Gao et al (2004) .
Asiatic acid ( 11 ) . C30 H48 O5 , white amorphous powder
(MeOH) ; FABMS m?z 487 [M-H ] - ; 13 C NMR data: same
as the data reported in Zhang et al (1997) .
Niga-ichigoside F1 ( 12) . C36 H58 O11 , colourless needles
(MeOH) ; FABMS m?z 665 [M-H ] - ; 13 C NMR data: same
as the data reported in Seto et al (1984) .
Lupeol ( 13) . Colourless needles ( petrol-EtOAc) ; deter-
mined by TLC with the authentic sample .
Weak alkaline hydrolysis of 1 . Ninemilligrams of 1 were
dissolved in 20 ml solution (MeOH-H2 O, 1∶1 ) containing ap-
propriate Na2 CO3 and hydrolyzed under reflux ( 2 h) at 45℃ .
Then, the basic solution was evaporated in vacuo to dryness and
separated by silicagel columnchromatography elutedwith CHCl3 -
MeOH (10∶1) to yield 6 mg of ( + )-isolariciresinol-9′- O-β- D-
xylopyranoside detected by TLC and optical rotation, [α]19D +
40 .6°( pyridine; c 0 .60) .
Acknowledgements: We thank Xishuangbanna Tropical Botani-
cal Garden, Chinese Academyof Sciences, for its help to collect
the plant materials .
References:
Chin ?a National Bureau of Chinese Traditional Medicine ( 国家中药管理
局 ) , 1999 . Zhonghua Bencao (5 ) ( 中华本草 ) [M ] . Shanghai :
Shanghai Science and Technology Press, 289─290
Gao ?HY (高慧媛 ) , Wu B ( 吴斌 ) , Li W ( 李文 ) , et al , 2004 .
Chemical constituentsof Chaenomeles sinensis (Thouin) Koehne [ J ] .
Chin J Nat Med, 2 (6) : 351─353
Inos ?hiri S, Sasaki M , Hiroshi K , et al , 1987 . Aromatic glycosides
from Berchemia racemosa [ J ] . Phytochemistry, 26 ( 10 ) : 2811─
2814
Klas ?s J , Tinto WF , Mclean S, et al , 1992 . Friedelane triterpenoids
from Peritassa compta: Complete 1 H and 13C assignments by 2D nmr
spectroscopy [ J ] . J Nat Prod, 55 (11) : 1626─1630
Koun ?o I , Yanagida Y , Shimono S, et al , 1993 . Neolignans and a
phenylpropanoid glucoside from Illiciumdifengpi [ J ] . Phytochemis-
try, 32 (6 ) : 1573─1577
Kund ?u JK , Rouf ASS, Hossain MN , et al , 2000 . Antitumor activity of
epifriedelanol from Vitis trifolia [ J ] . Fitoterapia, 71 : 577─579
Li J ?X ( 李 建新 ) , Liu JT ( 刘巨 涛 ) , Jin YR ( 金永 日 ) , et al ,
1998 . Chemical constituents fromstems and leaves of Rhodiola sach-
linesis [ J ] . Zhongcaoyao (中草药 ) , 29 (10 ) : 659─661
Lund ?gren LN, Shen Z, Theander O, 1985 . The constituents of conifer
needles . Dilignol glycosides from Pinus massoniana Lamb . [ J ] .
Acta Chem Scand, Ser B , 39 : 241─248
Seto ?T , Tanaka T, Tanaka O, et al , 1984 . β-Glucosyl eaters of 19α-
hydroxyursolic acid derivatives in leavesof Rubus species [ J ] . Phy-
tochemistry, 23 (12 ) : 2829─2834
Yang ?XW (杨秀伟 ) , Zhao J ( 赵静 ) , 2003 . Studies on the chemical
constituents from Rabdosia japonica ( Burm . f .) Hara var. glaucocalyx
634 云 南 植 物 研 究 28 卷
(Maxim .) Hara [ J ] . Natural Product Research and Development
(天然产物研究与开发 ) , 15 ( 6) : 490─493
Zhan g ZZ (张治针 ) , Guo DA (果德安 ) , Li CL ( 李长龄 ) , et al ,
1999 . Studies on the lignan glycosides from Gaultheria yunnanensis
[ J ] . Acta Pharmaceutica Sinica (药学学报 ) , 34 (2) : 128─131
Zhang VGL (张国林 ) , Zhou ZZ (周正质 ) , Li BG ( 李伯刚 ) , 1997 .
Chemical investigation of Morina chinensis [ J ] . Natural Product
Research and Development ( 天然产物研究与开发 ) , 9 ( 4) : 10
─13
Zuo ?GY ( 左 国营 ) , He HP ( 何红 平 ) , Hong X ( 洪鑫 ) , et al ,
2005 . Chemical constituents of Spiraea japonica var. ovalifolia [ J ] .
Acta Bot Yunnan (云南植物研究 ) , 27 (1) : 101─106
* * * * * * * * * * * * * * *
资讯 能源植物专题资料汇编 (后续 )
能源植物经典文献 :
Fr?h ,lich A , Rice B , 2005 . Evaluation of Camelina sativa oil as a feedstock for biodiesel production . Industrial Crops and Products .
21 (1) : 25 - 31
Abde Drrahim Bouaid, et al , 2005 . Pilot plant studies of biodiesel productionusing Brassica carinata as rawmaterial . CatalysisToday .
106 ( 1 - 4) : 193 - 196
Ashwani Kumar, Bioengineeringof Crops for Biofuels and Bioenergy . http:?bibd. uni-giessen.de?gdoc?2001?uni?p010012?kumar.pdf
Gemm Xa Vicente, et al, 2006 . A ComparativeStudy of VegetableOils for Biodiesel Production in Spain . Energy& Fuels . 20 (1) : 394 - 398
He Y AuanZhang, et al, 1996 . Yellownut-sedge ( Cyperusesculentus L .) tuber oil as afuel . Industrial Crops and Products . 5 (3) : 177 - 181
Lewa Jose 5′M . Encinar, et al , 1999 . Preparation and Properties of Biodiesel from Cynara cardunculus L . Oil . Industrial & Engineering
ChemistryResearch . 38 (8) : 2927 - 2931
Kall ?ivroussis L, et al, 2002 . TheEnergy Balance of Sunflower Production for Biodiesel in Greece . BiosystemsEngineering . 81 (3) : 347 - 354
Mass :imo Cardone, et al, 2003 . Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: agronomic evalu-
ation, fuel production by transesterification and characterization . Biomass and Bioenergy . 25 (6) : 623 - 636
Mass :imo Cardone, et al, 2002 . Brassica carinata as an Alternative oil crop for the production of biodiesel in Italy: Engine Perfor-
mance and Regulated and Unregulated Exhaust Emissions . Environmental Science& Technology . 36 (21) : 4656 - 4662
Pila ?r DoradoM , et al , 2004 . Optimizationof alkali-catalyzed transesterificationof Brassica carinata oil for biodiesel production . En-
ergy& Fuels . 18 (1) : 77 - 83
Foid ?l N, et al, 1996 . Jatropha curcasL . as a Sourcefor theproductionof biofuel in Nicaragua . Bioresource Technology . 58 (1) : 77 - 82
Vene @ndaal R , et al , 1997 . European energy crops: a synthesis, Biomass and Bioenergy . 13 (3) : 147 - 185
Bona SS, et al, 1999 . Oil crops for biodiesel production on Italy . Renewable Energy . 16 (1 - 4) : 1053 - 1056
McLa Nughlin S, et al , 1999 . Developing switchgrass as a bioenergy crop . In: Janick J (ed .) , Perspectives on New Crops and New
Uses . Alexandria: ASHS Press, VA , 282 - 299
Sanj #ib Kumar Karmee, Anju Chadha, 2005 . Preparation of biodiesel from crude oil of Pongamia pinnata . Bioresource Technology .
96 (13) : 1425 - 1429
Sril ?ekha De, et al , 1997 . Potential use of Pedilanthus tithymaloides Poit . as a renewable resource of plant hydrocarbons . Botanical
Bulletin of Academia Sinica . 38 (2 ) : 105 - 108
Ikwu 6agwuOE , et al , 2000 . Production of biodiesel using rubber [ Hevea brasiliensis (Kunth . Muell .) ] seed oil . Industrial Crops
and Products . 12 (1 ) : 57 - 62
Karen Faupel, Al Kurki , 2002 . Biodiesel : a brief overview . http:?www. agroindonesia. comPublicationsbiodiesel.pdf
Al Kurki , et al , 2006 . Biodiesel : the Sustainablility Dimensions . http:?attra.ncat.org?attra-pub?PDF?biodiesel—sustainable. pdf
Dove SBiotech LTD . J atropha curcas L . an international botanical answer to biodiesel production & renewablie energy .
http:?www.dovebiotech. com?pdf?JATROPHA%20CURCAS% 20L . pdf
组织及网站 :
The Jatropha System: http:?www. jatropha.de?
7344 期 WANG Yue-Hu et al : Lignans andTriterpenoids from Cissus repens (Vitaceae)