免费文献传递   相关文献

Molecular mechanism of Guizhi Fuling Capsule for treatment of dysmenorrhea, pelvic inflammatory disease, and hysteromyoma via network pharmacology

基于网络药理学的桂枝茯苓胶囊治疗痛经、子宫肌瘤和盆腔炎的分子作用机制研究



全 文 :中草药 Chinese Traditional and Herbal Drugs 第 47卷 第 1期 2016年 1月

·81·
• 药理与临床 •
基于网络药理学的桂枝茯苓胶囊治疗痛经、子宫肌瘤和盆腔炎的分子
作用机制研究
张新庄 1,萧 伟 1*,徐筱杰 2*,李 娜 1,曹 亮 1,柯志鹏 1,王振中 1,丁 岗 1
1. 康缘药业中药制药新技术国家重点实验室,江苏 连云港 222002
2. 北京大学化学与分子工程学院,北京 100871
摘 要:目的 探索桂枝茯苓胶囊治疗痛经、子宫肌瘤和盆腔炎的分子作用机制和潜在活性成分群。方法 通过文献挖掘、
多个数据库联用检索与痛经、盆腔炎以及子宫肌瘤疾病相关的 130个靶蛋白基础上,利用分子计算结合网络特征分析获得桂
枝茯苓胶囊的主要活性成分和潜在的靶点蛋白,并将其投射到 KEGG 数据库阐释桂枝茯苓胶囊的分子作用机制。结果 数
据分析结果表明,与蛋白相互作用较强的 115个活性分子主要分布在桂枝和茯苓中,进一步的网络特征分析发现高网络度和
介数的分子主要为五环三萜类和甾醇类化合物;与化合物作用的绝大部分靶蛋白(78.57%)分布在与痛经、盆腔炎及子宫
肌瘤密切相关的 15条生物通路中,而这些通路涉及到子宫平滑肌的增殖和收缩,子宫内的血管形成和血液循环,雌激素和
黄体酮等多种激素的分泌,以及前列腺素等炎症因子合成或释放和相关钙通道的调控等。结论 桂枝茯苓胶囊主要是由其所
含的五环三萜类和甾醇类化合物与多个靶点蛋白作用,调控多条生物通路(如 arachidonic acid metabolism,calcium signaling
pathway,GnRH signaling pathway,complement and coagulation cascades,progesterone-mediated oocyte maturation)来抑制子
宫平滑肌收缩和增殖、改善微循环、降低激素分泌和炎症反应(如 PGE2,PGF2α,leukotriene B4),从而起到缓解痛经和盆
腔炎引起的疼痛、改善子宫肌瘤患者的生活质量的作用。
关键词:网络药理学;桂枝茯苓胶囊;分子计算;靶蛋白;痛经;盆腔炎;子宫肌瘤
中图分类号:R285.5 文献标志码:A 文章编号:0253 - 2670(2016)01 - 0081 - 14
DOI: 10.7501/j.issn.0253-2670.2016.01.013
Molecular mechanism of Guizhi Fuling Capsule for treatment of dysmenorrhea,
pelvic inflammatory disease, and hysteromyoma via network pharmacology
ZHANG Xin-zhuang1, XIAO Wei1, XU Xiao-jie2, LI Na1, CAO Liang1, KE Zhi-peng1, WANG Zhen-zhong1,
DING Gang1
1. State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Ltd.,
Lianyungang 222002, China
2. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Abstract: Objective To investigate the molecular maechanism and potential active constituents population of Guizhi Fuling
Capsule (GFC) for the treatment of dysmenorrhea, pelvic inflammatory disease (PID), and hysteromyoma. Methods One handred
and thirty target proteins related with dysmenorrhea, PID, and hysteromyoma were selected through mining literature, retrieving in
DrugBank and TTD database, the main active constituents and potential target proteins from GFC were computed and analyzed by
DOVIS2.0 and Cytoscape 3.0. The potential target proteins were then projected into the KEGG databases to illustrate the molecular
mechanism of GFC. Results The results of data analysis showed that the 115 active molecules with stronger interaction with protein
were distributed in Cinnamomi Ramulus and Poria. The High network degree and betweenness of molecules were found to be
pentacyclic triterpenes and steroids by further analysis of network characteristics. The most of the potential target proteins (78.57%)

收稿日期:2015-06-04
基金项目:国家重大新药创制——现代中药创新集群与数字制药技术平台(2013ZX09402203)
作者简介:张新庄,男,博士,主要从事中药网络药理学研究与药物虚拟筛选。Tel: (025)86587935 E-mail: zxz7388@126.com
*通信作者 萧 伟 Tel: (0518)81152337 E-mail: kanionlunwen@163.com
徐筱杰 Tel: (010)62757456 E-mail: xiaojxu@pku.edu.cn
中草药 Chinese Traditional and Herbal Drugs 第 47卷 第 1期 2016年 1月

·82·
interacted wth the compounds in GFC were from 15 biological pathways closely related with dysmenorrhea, PID, and hysteromyoma
in KEGG database, which was involved in cell proliferation, angiogenesis, coagulation, dysregulation of inflammatory process, uterine
contractions, and release of estrogen or progesterone in uterus. As well as the synthesis or release of inflammatory factors such as
prostaglandin and the regulation of calcium channels and so on. Conclusion GFC has the function by the interaction of pentacyclic
triterpenes and steroids with multi target proteins, such as arachidonic acid metabolism, calcium signaling pathway, GnRH signaling
pathway, complement and coagulation cascades, and progesterone-mediated oocyte maturation, to alleviate the pain of dysmenorrhea
and PID, or improve the quality of life for the patients with hysteromyoma through inhibiting uterine contractions, improving
microcirculation, and reducing the release of estrogen or promegestone and inflammatory response (such as PGE2, PGF2α, and
leukotriene B4).
Key words: network pharmacology; Guizhi Fuling Capsule; molecular calculation; target protein; dysmenorrhea; pelvic inflammatory
disease; hysteromyoma
痛 经 ( dysmenorrhea )、 盆 腔 炎 ( pelvic
inflammatory disease, PID ) 和 子 宫 肌 瘤
(hysteromyoma)是妇科常见疾病,多见于月经期
妇女,疼痛是其主要的临床表现,严重时会影响到
患者的工作、学习以及生活质量[1-4]。目前用于痛经
和盆腔炎治疗的药物多是一些非甾体抗炎药
(NSAIDS)[5],用于治疗子宫肌瘤的药物主要有孕
激素类、纤溶药物、NSAIDS、促性腺激素类似物/
拮抗剂(GnRH analogs/antagonists)[6]等。
由于化学药的不良反应或疗效不理想等问
题,近年来从中药中寻找治疗妇科疾病的药物日
渐受到重视[5,7-9]。桂枝茯苓胶囊是由江苏康缘药
业股份有限公司根据经典方桂枝茯苓丸研发的现
代中药制剂,其君药桂枝、臣药桃仁、佐以牡丹
皮、白芍和茯苓而成,具有活血、化瘀、消癥之
功效。临床主要用于妇女瘀血阻络所致癥块、经
闭、痛经、产后恶露不尽以及子宫肌瘤、慢性盆
腔炎等[10-11]。虽然前期对桂枝茯苓胶囊的作用机
制和化学成分有一些研究[12-13],但由于中药成分
的多样性和作用机制的多靶点、多通路,桂枝茯
苓胶囊的主要活性成分和作用机制的实验研究仍
面临着诸多挑战。
网络药理学是基于网络观点从系统水平分析
药物作用机制[14]、发现先导化合物或新适应症[15]、
识别新药靶[16]等一种新的药物研发策略,其与中药
整体调控机体的理念相吻合[17]。目前网络药理学研
究思路也逐渐被引入到中药中来发现药效物质基
础、探索分子作用机制以及阐释其科学内涵[18-22],
同时也能大大降低中药后续实验研究的工作量。因
此,本研究将网络药理学研究思路与中药桂枝茯苓
胶囊相结合来阐释其治疗痛经、盆腔炎和子宫肌瘤
的药效活性成分和可能的分子机制,旨在为后续的
实验研究方向选择提供一定的信息支撑。
1 方法
1.1 分子和靶蛋白数据集的建立与处理
在前期对桂枝茯苓胶囊中 164 个化学成分分
离确认的基础上[23-24],根据 OpenBabel 2.3.2软件
产生的化合物 InChiKey 字符串从 UNPD 数据库
(http://pkuxxj.pku.edu.cn/UNPD/)共计筛选出 172
个分子(表 1),经 Open Babel 加氢后,选用
MMFF94 力场进行构象优化,优化时能量阈值设
定为 1×10−3 J/mol。
根据桂枝茯苓胶囊的临床主要用于痛经、盆腔
炎、子宫肌瘤等妇科疾病的治疗情况,利用
Therapeutic Target Database(TTD)、DrugBank数据
库结合文献综述分析[6, 8-9, 25-31],以 dysmenorrhea、
hysteromyoma、uterine fibroids(子宫平滑肌瘤)、PID
为检索词共筛选与上述疾病密切相关的 130个靶点,
并从 RCSB数据库(www.pdb.org)获取人源的且含
有原配体的晶体结构(Resulation<0.25 nm,表 2),
导入 Discovery Studio 2.5 通过 Clean Protein 和
Forcefiled中 CHARMm力场完成靶蛋白的加氢、去
水、蛋白修饰以及自动分配原子类型和确定活性位
点的中心坐标。
1.2 分子对接
根据上述确定的分子 UNPD 与靶蛋白的
Uniprot,从 TCMN 数据库[32]中抽提出分子与靶蛋
白相互作用数据对。在 TCMN数据库中,分子与靶
蛋白相互作用通过 DOVIS2.0 平台中 AutoDock4.0
内核来完成分子与靶蛋白对接计算[33]。具体对接参
数如下:以靶蛋白中原配体的坐标为活性位点的中
心,盒子大小为 4 nm×4 nm×4 nm,格点间隔为
0.037 5 nm,采用拉马克遗传算法采集分子构象,
初始种群为 150,旋转步长为 50°,平移步长为 0.2
nm,交叉率为 0.8,突变率为 0.02,局部搜索频率
为 0.06,其余均为默认设置。
中草药 Chinese Traditional and Herbal Drugs 第 47卷 第 1期 2016年 1月

·83·
表 1 桂枝茯苓胶囊中筛选出的化合物
Table 1 Compounds separated from GFC
ID 化合物 ID 化合物
UNPD10084 3-epi-dehydrotumulosic acid UNPD187407 suffrupaeonidanin A
UNPD101050 pachymic acid UNPD188804 hyperoside
UNPD101054 poricoic acid AM UNPD191345 hederagenin
UNPD102502 α-amyrin UNPD191562 lactoflorin
UNPD102661 3-epi-dehydropachymic acid UNPD194734 α-amyrin
UNPD102760 poricoic acid C UNPD195952 sodium paeoniflorin sulfonate
UNPD105334 guanosine UNPD20150 hyperoside
UNPD105452 betulinic acid UNPD20394 arginine
UNPD106083 poricoic acid C UNPD21132 coumarin
UNPD108574 catechins UNPD23348 poricoic acid DM
UNPD109023 cinnamic acid UNPD25688 α-amyrin
UNPD109974 trehalose UNPD28633 cinnamyl alcohol
UNPD11020 β-sitosterol UNPD28717 4-hydroxybenzoic acid
UNPD111541 sucrose UNPD30980 hyperoside
UNPD115852 polyporenic acid C UNPD31327 α-amyrin
UNPD117238 kaempferol-3-O-glucosylside UNPD31682 dehydropachymic acid
UNPD118360 α-amyrin UNPD32715 sucrose
UNPD120575 β-L-arabinose UNPD33147 5,7-dimethyl-3′,4′-di-O-methylene-(±)-epicatec
UNPD120855 hyperoside UNPD35192 α-D-galatose
UNPD121048 caffeic acid UNPD35358 poricoic acid A
UNPD12116 oleanolic acid UNPD3627 poricoic acid D
UNPD121313 suffrupaeonidanin A UNPD36336 mudanpioside-F
UNPD123516 citrostadienol UNPD36636 poricoic acid DM
UNPD126066 mudanpioside-B UNPD37924 eburicoic acid
UNPD127168 hyperoside UNPD38191 campesterol
UNPD128526 mudanpioside-A UNPD38563 citrostadienol
UNPD12870 trehalose UNPD41421 alanine
UNPD128750 sucrose UNPD41767 benzoyloxypaeoniflorin
UNPD129222 dehydroeburicoicacid UNPD45635 daucosterol
UNPD129797 hyperoside UNPD46148 β-sitosterol
UNPD130468 α-amyrin UNPD46267 trehalose
UNPD13342 α-amyrin UNPD48168 mannitol
UNPD133665 caffeic acid UNPD48910 apigenin
UNPD135747 lactoflorin UNPD48939 oleic acid
UNPD136822 α-amyrin UNPD49205 quercetin
UNPD137580 α-amyrin UNPD49664 cinnamic aldehyde
UNPD138219 hyperoside UNPD49764 4-hydroxybenzyl alcohol
UNPD140050 acetoguaiacon UNPD50991 poricoic acid AM
UNPD140430 ergosta-4,6,8(14),22-tetraen-3-one UNPD51284 benzoic acid
UNPD140949 gallic acid UNPD52427 caffeic acid
UNPD143140 dehydroeburicoicacid UNPD52570 β-sitosterol
UNPD143725 paeoniflorin UNPD53479 benzoylpaeoniflorin
UNPD14414 α-amyrin UNPD55450 trehalose
UNPD145255 adenosine UNPD57689 epicatechin
UNPD147172 mudanpioside-F UNPD57841 proline
UNPD147436 mudanpioside-D UNPD58928 hyperoside
UNPD147757 15a-hydroxydehydrotumulosic acid UNPD60430 protocatechuic acid
UNPD14867 polyporenic acid C UNPD61258 leucine
UNPD148744 2,5-dihydroxy-4-methylacetophenone UNPD6300 β-sitosterol
中草药 Chinese Traditional and Herbal Drugs 第 47卷 第 1期 2016年 1月

·84·
续表 1
ID 化合物 ID 化合物
UNPD148754 lactoflorin UNPD64073 paeonol
UNPD149531 5, 7, 3′-Trimethyl-(-)-epicatechin UNPD64969 suffrupaeonidanin B
UNPD152742 citrostadienol UNPD65144 mudanpioside-B
UNPD152846 citrostadienol UNPD65702 dehydroeburicoicacid
UNPD15360 α-amyrin UNPD66565 β-amyrin acetate
UNPD153802 suffrupaeonidanin B UNPD66644 poricoic acid B
UNPD155042 taxifolin UNPD6707 daucosterol
UNPD16064 7-hydroxycoumarin UNPD68611 guanosine
UNPD161634 kaempferol UNPD70084 sucrose
UNPD161812 trans-O-methoxy cinnamic acid UNPD70549 oxypaeoniflora
UNPD16201 albiflorin UNPD72055 dehydrotumulosic acid
UNPD162992 taxifolin UNPD72395 amygdalin
UNPD164160 α-amyrin UNPD72621 glucose
UNPD165682 2-methoxybenzoic acid UNPD73147 α-amyrin
UNPD166501 α-amyrin UNPD73469 hyperoside
UNPD167245 sucrose UNPD75597 hyperoside
UNPD167251 syringaresinol UNPD79460 citrostadienol
UNPD167512 dehydropachymic acid UNPD80387 catechins
UNPD170534 suffrupaeonidanin C UNPD80675 citrostadienol
UNPD172175 poricoic acid D UNPD81316 pachymic acid
UNPD172347 taxifolin UNPD82149 betulinic acid
UNPD172457 5-HMF UNPD83717 glucose
UNPD173098 poricoic acid DM UNPD83955 poricoic acid E
UNPD173899 prunasin UNPD85202 poricoic acid CM
UNPD176049 taxifolin UNPD86062 desbenzoylpaeoniflorin
UNPD17684 syringic acid UNPD86478 poricoic acid A
UNPD177395 3,3′-di-O-methyl ether ellagic acid UNPD89095 ergosterol
UNPD180657 paeoniflorin UNPD95458 cinnamyl alcohol
UNPD181583 poricoic acid D UNPD95544 methyl gallate
UNPD182597 α-amyrin UNPD96215 α-amyrin
UNPD183645 3,3′-di-O-methyl ether ellagic acid UNPD99873 dulcitol
UNPD184720 poricoic acid C GZFL_1 3-hydroxy-tirucallon-(7)-oic acid
UNPD184770 tumulosic acid GZFL_2 galloylpaeoniflorin
UNPD186476 α-amyrin GZFL_3 mudanpioside-E
UNPD186668 poricoic acid F GZFL_4 mudanpioside-C
UNPD187258 3β-p-hydroxybenzoyl-dehydrotumulosic acid UNPD59312 5a,8a-peroxydehydrotumulosic acid
UNPD77610 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose UNPD134433 β-D-glucopyranoside, phenylmethyl 6-O-β-galactopyranosyl
表 2 与痛经、盆腔炎和子宫肌瘤相关的靶蛋白
Table 2 Target proteins related with dysmenorrhea, PID, and hysteromyoma
Uniprot PDB 蛋白名称 Uniprot PDB 蛋白名称
Q8IU85 2JC6 calcium/calmodulin-dependent protein kinase type 1D Q8NBQ5 1YB1 estradiol 17-beta-dehydrogenase 11
Q96NX5 2JAM calcium/calmodulin-dependent protein kinase type 1G P62508 2P7A estrogen-related receptor gamma
Q16566 2W4O calcium/calmodulin-dependent protein kinase type IV P05230 3K1X fibroblast growth factor 1
P27815 3I8V cAMP-specific 3,5-cyclic phosphodiesterase 4A P09038 1BFB fibroblast growth factor 2
Q07343 1XLX cAMP-specific 3,5-cyclic phosphodiesterase 4B P11362 2FGI fibroblast growth factor receptor 1
Q08499 3G4K cAMP-specific 3,5-cyclic phosphodiesterase 4D P21802 3B2T fibroblast growth factor receptor 2
P22680 3SN5 cholesterol 7-alpha-monooxygenase Q9BVM4 3JUC gamma-glutamylaminecyclotransferase
P61073 3ODU C-X-C chemokine receptor type 4 P49841 3I4B glycogen synthase kinase-3 beta
P00533 1XKK epidermal growth factor receptor P62993 2H5K growth factor receptor-bound protein 2
P14061 1I5R estradiol 17-beta-dehydrogenase 1 P62826 3GJ0 GTP-binding nuclear protein Ran
中草药 Chinese Traditional and Herbal Drugs 第 47卷 第 1期 2016年 1月

·85·
续表 2
Uniprot PDB 蛋白名称 Uniprot PDB 蛋白名称
P04629 4AOJ high affinity nerve growth factor receptor P29466 1RWX caspase-1
Q14643 1N4K inositol 1,4,5-trisphosphate receptor type 1 P00740 3LC3 coagulation factor IX
P23677 1W2C inositol-trisphosphate 3-kinase A P12259 3P70 coagulation factor V
Q96DU7 2A98 inositol-trisphosphate 3-kinase C P08709 2FLR coagulation factor VII
P08069 3i81 insulin-like growth factor 1 receptor P00451 3HNB coagulation factor VIII
Q9NWZ3 2NRU interleukin-1 receptor-associated kinase 4 P00742 3M36 coagulation factor X
P29460 1F42 interleukin-12 subunit beta P03951 1ZOM coagulation factor XI
P07333 3DPK macrophage colony-stimulating factor 1 receptor P45452 3ELM collagenase 3
P14174 3IJG macrophage migration inhibitory factor P00746 1DIC complement factor D
P49137 3R2B MAP kinase-activated protein kinase 2 P11511 3EQM cytochrome P450 19A1
P28482 3I5Z mitogen-activated protein kinase 1 P47712 1CJY cytosolic phospholipase A2
A6NG28 3TTI mitogen-activated protein kinase 10 P14416 2HLB d(2) dopamine receptor
P53779 3TTI mitogen-activated protein kinase 10 P00374 2W3A dihydrofolate reductase
Q15759 3GC9 mitogen-activated protein kinase 11 P03372 2QXS estrogen receptor
P53778 1CM8 mitogen-activated protein kinase 12 Q92731 2QTU estrogen receptor beta
Q16539 1KV1 mitogen-activated protein kinase 14 P49888 1G3M estrogen sulfotransferase
P27361 2ZOQ mitogen-activated protein kinase 3 P02751 2OCF fibronectin
Q13164 4B99 mitogen-activated protein kinase 7 P04150 3H52 glucocorticoid receptor
P45983 3PZE mitogen-activated protein kinase 8 Q9BY41 1T69 histone deacetylase 8
P45984 3NPC mitogen-activated protein kinase 9 P09960 3FH5 leukotriene A-4 hydrolase
Q99558 4DN5 mitogen-activated protein kinase kinase kinase 14 Q16873 2UUH leukotriene C4 synthase
Q99683 2CLQ mitogen-activated protein kinase kinase kinase 5 P09237 1MMP matrilysin
O43318 2YIY mitogen-activated protein kinase kinase kinase 7 P51512 1RM8 matrix metalloproteinase-16
P80192 3DTC mitogen-activated protein kinase kinase kinase 9 O60882 2JSD matrix metalloproteinase-20
Q9HBL8 2WM3 nmrA-like family domain-containing protein 1 P14780 1GKC matrix metalloproteinase-9
O75469 1M13 nuclear receptor subfamily 1 group i member 2 P08235 2OAX mineralocorticoid receptor
Q8NEB9 3LS8 phosphatidylinositol 3-kinase catalytic subunit type 3 P29474 1M9J nitric oxide synthase, endothelial
P27986 4A55 phosphatidylinositol 3-kinase regulatory subunit alpha P35228 4NOS nitric oxide synthase, inducible
P14555 1J1A phospholipase A2, membrane associated P51575 4DW1 P2X purinoceptor 1
P04626 3RCD receptor tyrosine-protein kinase erbB-2 O75051 3Q3J plexin-A2
P23921 2WGH ribonucleoside-diphosphate reductase large subunit P06401 2W8Y progesterone receptor
O76054 1OLM SEC14-like protein 2 O14684 3DWW prostaglandin E synthase
P42345 1FAP serine/threonine-protein kinase mTOR P23219 3N8X prostaglandin G/H synthase 1
Q9NQU5 2ODB serine/threonine-protein kinase PAK 6 P35354 3LN1 prostaglandin G/H synthase 2
P05093 3RUK steroid 17-alpha-hydroxylase/17,20 lyase Q14914 2Y05 prostaglandin reductase 1
P11474 3K6P steroid hormone receptor ERR1 Q8N8N7 2W4Q prostaglandin reductase 2
P48061 2NWG stromal cell-derived factor 1 P41222 3O19 prostaglandin-H2 D-isomerase
P36897 2X7O TGF-beta receptor type-1 P17252 3IW4 protein kinase C alpha type
P21731 1LBN thromboxane A2 receptor P05771 2I0E protein kinase C beta type
P01375 2AZ5 tumor necrosis factor P24723 3TXO protein kinase C eta type
P23458 3EYG tyrosine-protein kinase JAK1 P41743 1ZRZ protein kinase C iota type
P17948 3HNG vascular endothelial growth factor receptor 1 Q04759 1XJD protein kinase C theta type
P35968 2QU5 vascular endothelial growth factor receptor 2 P57735 3TSO ras-related protein Rab-25
P22303 4EY5 acetylcholinesterase P13501 1U4L C-C motif chemokine 5
P10275 3L3X androgen receptor Q00722 2ZKM 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-2
P01008 3EVJ antithrombin-III P16885 2W2W 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase
P10415 2W3L apoptosis regulator Bcl-2 Q9UQM7 3SOA calcium/calmodulin-dependent protein kinase type II subunit alpha
P09917 3V99 arachidonate 5-lipoxygenase Q13554 3BHH calcium/calmodulin-dependent protein kinase type II subunit beta
Q96GD4 4AF3 aurora kinase B Q13557 2VN9 calcium/calmodulin-dependent protein kinase type II subunit delta
P07550 3NY8 beta-2 adrenergic receptor Q13555 2V7O calcium/calmodulin-dependent protein kinase type II subunit gamma
P62158 1CTR calmodulin P36507 1S9I dual specificity mitogen-activated protein kinase kinase 2
P42336 3HHM phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic
subunit alpha isoform
Q13946
P52564
1ZKL
3FME
high affinity cAMP-specific 3,5-cyclic phosphodiesterase 7A
dual specificity mitogen-activated protein kinase kinase 6
P48736 3SD5 phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic
subunit gamma isoform
P67775 2IE4 serine/threonine-protein phosphatase 2A catalytic subunit alpha
isoform
Q02750 3DY7 dual specificity mitogen-activated protein kinase kinase 1 P19438 1FT4 tumor necrosis factor receptor superfamily member 1A

中草药 Chinese Traditional and Herbal Drugs 第 47卷 第 1期 2016年 1月

·86·
1.3 网络构建与靶蛋白生物通路分析
根据分子与蛋白的对接分值,以原配体对接得分
为阈值,抽取对接得分较高(score≥5.00)的分子-靶
蛋白相互作用数据对导入 Cytoscape 3.0[34]构建桂枝茯
苓胶囊中小分子与靶蛋白相互作用网络,并将网络中
小分子进一步投射到相应的药材构建出药材-分子-靶
标网络(herb-drug-target network,HDTN)。同时,针
对网络中的靶蛋白,进一步投射到 KEGG 数据库
(http://www.genome.jp/kegg/pathway. html)构建出靶蛋
白-生物通路网络(target-pathway network,TPN),从
而获得桂枝茯苓胶囊对生物通路的影响。上述网络的
构建及网络特征的分析均采用Cytoscape 3.0及其插件
NetworkAnalyzer来计算。
2 结果
2.1 网络特征分析
在构建的 HDTN网络(图 1)中,包含 115个
分子,116 个靶蛋白以及 5 味中药,平均每个分子
靶向 17.90 个靶蛋白,每个蛋白有 17.75 个分子,
然后利用 Cytoscape 3.0中插件 NetworkAnalyzer[35]
进一步对 HDTN 网络中分子与靶蛋白间的相互关
系网的分析发现,此关系网的平均最短路径为
17.827,远小于整个节点数(231),提示分子与靶
标的关系网为典型的小世界网络(small world),而
从分子与靶标关系网中各节点的度分布服从幂律
分布[P(κ)=28.96×κ−0.73(r=0.865)]来看,说明
分子与靶标构成的关系网具有良好的稳定性[36-37],
提示桂枝茯苓胶囊中这些活性成分能纠正疾病状
态下的机体平衡网络促使其形成新的机体平衡,进
而可能起到调控机体的治疗作用[38]。同时,在分子
与药材的相互关系分析发现,46个分子来自于君药
桂枝、46个分子来自于茯苓,而来自白芍和牡丹皮
的分子各有 27个,此外还有桃仁的 28个分子,其
中桃仁与桂枝之间的活性成分有较大的重叠,这也
印证了桂枝茯苓胶囊组方的合理性(图 2)。


圆形代表从茯苓桂枝胶囊中筛选的化合物;菱形代表蛋白靶点;圆角矩形代表组方药材
Ellipse represents small molecules from GFC; Diamond represents target proteins; Round rectangle represents herbs
图 1 药材-分子-靶点网络
Fig. 1 Herb-drug-target network (HDTN)
2.2 主要活性化合物和潜在靶蛋白分析
在网络分析中,除了整体网络特征分析,还提
出了度(degree)、介数(betweenness)、聚类系数
(clustering coefficient)等一系列可定量刻画网络内
部结构的度量[39],并已被应用到生物网络中来鉴别
可药的靶点[40]、发现药物新适应症[15]、解析药物作
用新机制以及活性化合物的发现[14]等,尤其是度、
介数常被用于研究分子网络中各节点的重要性。因
此,在对 HDTN网络的整体拓扑学特征分析的基础
上,进一步对网络中各节点的度和介数进行了详细
分析,以确定桂枝茯苓胶囊中主要活性化合物和潜
在的靶蛋白。
中草药 Chinese Traditional and Herbal Drugs 第 47卷 第 1期 2016年 1月

·87·

图 2 桂枝茯苓胶囊中活性成分在药味归属中的分布
Fig. 2 Distribution of active constituents from GFC
in herbal attribution
从 HDTN 网络中分子节点的网络度和介数来
看(表 3、4),67个分子(35个化合物)可与 6个
以上的靶蛋白相互作用,其中网络度和介数较高的
分子多数为五环三萜类化合物和甾醇类化合物,如
柠 檬 甾 二 烯 醇 ( citrostadienol )、 菜 油 甾 醇
(campesterol)、麦角甾醇(ergosterol)、去氢茯苓酸
(dehydropachymic acid)、茯苓酸(pachymic acid)、
去氢土莫酸(dehydrotumulosic acid)、ergosta-4,6,8
(14),22-tetraen-3-one、齐墩果酸(oleanolic acid),
还有部分黄酮类化合物如槲皮素(quercetin)、芹菜
素(apigenin)。而文献分析也发现,ergosta-4,6,8
(14),22-tetraen-3-one、oleanolic acid、polyporenicacid
C、eburicoic acid 和 dehydroeburicoic acid能明显抑
制 NO、IL-1β 和 TNF-α[41-44],β-amyrin acetate具有
表 3 HDTN网络中部分节点(化合物)的网络特征
Table 3 Network features of nodes (compounds from GFC) with high degree in HDTN
编码 名称 度 介数 编码 名称 度 介数
UNPD166501 α-amyrin 76 0.048 5 UNPD80675 citrostadienol 25 0.003 4
UNPD164160 α-amyrin 74 0.055 0 UNPD14867 polyporenic acid C 24 0.011 9
UNPD31327 α-amyrin 73 0.061 3 UNPD191345 hederagenin 17 0.004 0
UNPD15360 α-amyrin 72 0.043 9 UNPD129222 dehydroeburicoic acid 16 0.005 5
UNPD140430 ergosta-4,6,8(14),22-tetraen-3-one 65 0.061 0 UNPD105452 betulinic acid 15 0.001 4
UNPD118360 α-amyrin 62 0.030 0 UNPD115852 polyporenic acid C 14 0.002 7
UNPD25688 α-amyrin 60 0.023 6 UNPD148754 lactoflorin 14 0.001 9
UNPD194734 α-amyrin 59 0.029 6 UNPD184770 tumulosic acid 12 0.001 5
UNPD96215 α-amyrin 58 0.022 9 UNPD147757 15α-hydroxydehydrotumulosic acid 12 0.001 3
UNPD14414 α-amyrin 58 0.019 7 UNPD176049 taxifolin 11 0.001 2
UNPD73147 α-amyrin 57 0.029 6 UNPD45635 daucosterol 11 0.000 7
UNPD66565 β-amyrin acetate 57 0.024 7 UNPD48910 apigenin 10 0.004 1
UNPD137580 α-amyrin 55 0.022 9 UNPD162992 taxifolin 10 0.003 2
UNPD130468 α-amyrin 55 0.021 5 UNPD10084 3-epi-dehydrotumulosic acid 10 0.001 1
UNPD186476 α-amyrin 55 0.019 5 UNPD37924 eburicoic acid 9 0.002 5
UNPD13342 α-amyrin 53 0.020 6 UNPD167512 dehydropachymic acid 9 0.002 4
UNPD136822 α-amyrin 52 0.022 6 UNPD31682 dehydropachymic acid 9 0.000 8
UNPD102502 α-amyrin 43 0.012 0 UNPD105334 guanosine 9 0.000 6
UNPD182597 α-amyrin 41 0.024 7 UNPD65702 dehydroeburicoicacid 8 0.001 4
UNPD123516 citrostadienol 41 0.014 5 UNPD81316 pachymic acid 8 0.000 5
UNPD38191 campesterol 39 0.011 4 UNPD102661 3-epi-dehydropachymic acid 8 0.000 5
UNPD12116 oleanolic acid 38 0.033 3 UNPD187258 3β-p-hydroxybenzoyl-dehydrotumulos ic acid 8 0.000 5
UNPD79460 citrostadienol 38 0.008 0 GZFL_3 mudanpioside-E 8 0.000 4
UNPD11020 β-sitosterol 36 0.017 7 UNPD80387 catechins 7 0.001 3
UNPD52570 β-sitosterol 35 0.009 9 UNPD49205 quercetin 7 0.000 7
UNPD38563 citrostadienol 35 0.005 9 UNPD72055 dehydrotumulosic acid 7 0.000 5
UNPD46148 β-sitosterol 34 0.017 8 UNPD195952 sodium paeoniflorin sulfonate 7 0.000 4
UNPD6300 β-sitosterol 33 0.009 2 UNPD172347 taxifolin 7 0.000 3
UNPD152846 citrostadienol 31 0.007 1 UNPD161634 kaempferol 6 0.002 5
GZFL_1 3-hydroxy-tirucallon-(7)-oic acid 28 0.014 0 UNPD183645 3,3-di-O-methyl ether ellagic acid 6 0.000 3
UNPD191562 lactoflorin 27 0.004 9 UNPD6707 daucosterol 6 0.000 2
UNPD143140 dehydroeburicoic acid 26 0.008 1 UNPD59312 5a,8a-peroxydehydrotumulosic acid 6 0.000 1
UNPD152742 citrostadienol 26 0.004 9 UNPD135747 lactoflorin 6 0.000 1
UNPD89095 ergosterol 25 0.010 2

中草药 Chinese Traditional and Herbal Drugs 第 47卷 第 1期 2016年 1月

·88·
表 4 HDTN网络中部分节点(靶蛋白)的网络特征
Table 4 Network features of nodes (target proteins) with high degree in HDTN
Uniprot 名称 度 介数
P29474 nitric oxide synthase, endothelial 36 0.033 6
P14416 D(2) dopamine receptor 35 0.027 1
Q13557 calcium/calmodulin-dependent protein kinase type II subunit δ 32 0.017 2
P45452 collagenase 3 32 0.013 1
Q14914 prostaglandin reductase 1 32 0.009 4
P07550 beta-2 adrenergic receptor 32 0.009 0
P14061 estradiol 17-beta-dehydrogenase 1 31 0.015 3
P49841 glycogen synthase kinase-3 beta 31 0.010 9
O75469 nuclear receptor subfamily 1 group I member 2 30 0.020 0
P14555 phospholipase A2, membrane associated 30 0.018 5
Q02750 dual specificity mitogen-activated protein kinase kinase 1 29 0.010 6
P41743 protein kinase C iota type 29 0.007 6
P49888 estrogen sulfotransferase 28 0.013 0
P42345 serine/threonine-protein kinase mTOR 28 0.010 2
P35228 nitric oxide synthase, inducible 28 0.007 4
Q9UQM7 calcium/calmodulin-dependent protein kinase type II subunit α 27 0.019 7
Q16539 mitogen-activated protein kinase 14 27 0.018 0
P29466 caspase-1 27 0.008 4
Q13555 calcium/calmodulin-dependent protein kinase type II subunit γ 27 0.008 0
Q9HBL8 nmrA-like family domain-containing protein 1 25 0.017 5
P62826 GTP-binding nuclear protein Ran 25 0.017 1
Q96NX5 calcium/calmodulin-dependent protein kinase type 1G 25 0.013 8
Q99683 mitogen-activated protein kinase kinase kinase 5 25 0.007 4
P23921 ribonucleoside-diphosphate reductase large subunit 24 0.015 1
P41222 prostaglandin-H2 D-isomerase 24 0.013 8
O76054 SEC14-like protein 2 24 0.009 3
P53778 mitogen-activated protein kinase 12 24 0.006 8
Q16566 calcium/calmodulin-dependent protein kinase type IV 24 0.005 7
Q8IU85 calcium/calmodulin-dependent protein kinase type 1D 24 0.004 8
P27815 cAMP-specific 3,5-cyclic phosphodiesterase 4A 24 0.003 5
O76083 high affinity cGMP-specific 3,5-cyclic phosphodiesterase 9A 24 0.003 3
P00533 epidermal growth factor receptor 23 0.005 0
Q9NWZ3 interleukin-1 receptor-associated kinase 4 22 0.006 5
Q15759 mitogen-activated protein kinase 11 22 0.005 8
O60658 high affinity cAMP-specific and IBMX-insensitive 3,5-cyclic phosphodiesterase 8A 22 0.004 7
P00374 dihydrofolate reductase 22 0.004 0
P61073 C-X-C chemokine receptor type 4 22 0.003 8
P05771 protein kinase C beta type 22 0.002 6
P14780 matrix metalloproteinase-9 21 0.018 5
P11362 fibroblast growth factor receptor 1 21 0.006 5
P48736 phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit γ 21 0.005 4
P03951 coagulation factor XI 21 0.004 5
P08069 insulin-like growth factor 1 receptor 21 0.003 3
P00742 coagulation factor X 20 0.007 8
P52564 dual specificity mitogen-activated protein kinase kinase 6 20 0.005 9
P01375 tumor necrosis factor 20 0.005 7
P53779 mitogen-activated protein kinase 10 20 0.005 1
P23219 prostaglandin G/H synthase 1 20 0.004 7
Q08499 cAMP-specific 3,5-cyclic phosphodiesterase 4D 20 0.004 3
P09237 matrilysin 20 0.003 0
P45983 mitogen-activated protein kinase 8 19 0.025 5
P23458 tyrosine-protein kinase JAK1 19 0.012 9
O14684 prostaglandin E synthase 19 0.007 8
P45984 mitogen-activated protein kinase 9 19 0.007 1
P05093 steroid 17-alpha-hydroxylase/17,20 lyase 19 0.005 5
P22680 cholesterol 7-alpha-monooxygenase 19 0.003 2
中草药 Chinese Traditional and Herbal Drugs 第 47卷 第 1期 2016年 1月

·89·
续表 4
Uniprot 名称 度 介数
P00746 complement factor D 19 0.002 5
P01008 antithrombin-III 18 0.013 2
Q07343 cAMP-specific 3,5-cyclic phosphodiesterase 4B 18 0.006 1
P09917 arachidonate 5-lipoxygenase 18 0.005 1
Q13946 high affinity cAMP-specific 3,5-cyclic phosphodiesterase 7A 18 0.003 4
Q04759 protein kinase C theta type 18 0.001 6
P80192 mitogen-activated protein kinase kinase kinase 9 17 0.010 5
P00740 coagulation factor IX 17 0.007 8
P17948 vascular endothelial growth factor receptor 1 17 0.007 4
P36897 TGF-beta receptor type-1 17 0.003 3
Q13554 calcium/calmodulin-dependent protein kinase type II subunit β 17 0.003 0
P27361 mitogen-activated protein kinase 3 17 0.002 3
P62158 calmodulin 17 0.002 1
P07333 macrophage colony-stimulating factor 1 receptor 16 0.007 7
P04626 receptor tyrosine-protein kinase erbB-2 16 0.007 4
Q8NBQ5 estradiol 17-beta-dehydrogenase 11 16 0.007 0
P35968 vascular endothelial growth factor receptor 2 15 0.002 8
Q8NEB9 phosphatidylinositol 3-kinase catalytic subunit type 3 15 0.001 2
Q9BVM4 gamma-glutamylaminecyclotransferase 14 0.007 7
P67775 serine/threonine-protein phosphatase 2A catalytic subunit α 14 0.004 0
P02751 fibronectin 14 0.002 6
O75051 plexin-A2 13 0.032 2
P62993 growth factor receptor-bound protein 2 13 0.008 2
P03372 estrogen receptor 13 0.004 6
Q00722 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase β2 13 0.004 5
P21802 fibroblast growth factor receptor 2 13 0.001 6
P62508 estrogen-related receptor gamma 13 0.000 8
P08709 coagulation factor VII 12 0.003 1
P04629 high affinity nerve growth factor receptor 12 0.002 5
Q92731 estrogen receptor beta 12 0.002 5
O60882 matrix metalloproteinase-20 12 0.002 1
P49137 MAP kinase-activated protein kinase 2 12 0.001 1
Q9BY41 histone deacetylase 8 12 0.000 7
P14174 macrophage migration inhibitory factor 11 0.036 8
P17252 protein kinase C alpha type 11 0.001 8
P24723 protein kinase C eta type 11 0.000 9
P22303 acetylcholinesterase 11 0.000 6
Q9NQU5 serine/threonine-protein kinase PAK 6 10 0.011 2
P51512 matrix metalloproteinase-16 10 0.004 6
P57735 ras-related protein Rab-25 10 0.004 5
Q96GD4 aurora kinase B 10 0.001 1
P36507 dual specificity mitogen-activated protein kinase kinase 2 9 0.003 1
P09960 leukotriene A-4 hydrolase 9 0.000 9
Q99558 mitogen-activated protein kinase kinase kinase 14 8 0.003 6
P12259 coagulation factor V 7 0.018 4
P08235 mineralocorticoid receptor 7 0.001 3
P19438 tumor necrosis factor receptor superfamily member 1A 7 0.001 3
P51575 P2X purinoceptor 1 7 0.000 7
O43318 mitogen-activated protein kinase kinase kinase 7 7 0.000 3
P42336 phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit α 7 0.000 3
P05230 fibroblast growth factor 1 6 0.000 4
P28482 mitogen-activated protein kinase 1 6 0.000 4

镇痛和抗炎活性[45-46],campesterol可抑制血管形成[47],
与用于治疗子宫肌瘤的 Progesterone 受体激动剂和调
节剂药物有类似的结构的甾醇类化合物也被报道治疗
多种癌症[6,8,48],黄酮类化合物与用于子宫肌瘤治疗的
genistein、isoliquiritigenin 等化合物有类似的结构,且
槲皮素已被作为有可能治疗子宫肌瘤的多酚类化合物
中草药 Chinese Traditional and Herbal Drugs 第 47卷 第 1期 2016年 1月

·90·
被研究,儿茶素类化合物用于癌症的治疗[9,49]。
在对 HDTN5网络中 116个靶蛋白节点的网络
特征分析发现(表 5),有 109个靶蛋白可与 6个以
上的活性分子存在较强相互作用,其中 NOS、
collagenase 3、coagulation factor X、GSK、PLA2、
FGFR、MMP-9、EGFR、COX等 50个靶点可与 20
个以上的活性分子存在较强相互作用,在这些靶蛋
白中,即包括可与 NO、PGE2、TNF-α、leukotriene
炎症因子的合成与释放炎症因子密切相关的 NOS、
COX、PLA2、PGES、5-LOX、caspase-1等关键酶、
与凝血过程相关的 antithrombin-III、coagulation
factor XI、coagulation factor VII、cogulation factor X、
cogulation factor IX 、 coagulation factor V 、
antithrombin-III 酶以及与血管形成和激素作用密切
相关的 GFR、TGFR、FGR、VEGFR、estrogen
receptor、P2X purinoceptor 1受体[9]。同时桂枝茯苓
胶囊中化合物还可与 PI3K、GSK3、IRAK4、ERK、
PKC、mTOR、MMP-9 等靶蛋白相互作用来调控
PI3K、PKC、MAPKs 等多条信号通路和钙离子通
道,进而来影响子宫平滑肌收缩和细胞增殖。
2.3 潜在生物通路分析
生物通路通过其构成的不同靶蛋白间的相互
作用来执行特定的生物学功能,是理解疾病临床表
现的生理学基础[50-51]。因此药物的作用不仅与靶蛋
白有关,而且也受靶蛋白所在的生物通路的影响,
多靶点的中药更是如此,故在上述靶蛋白分析的基
础上,又进一步将 116个潜在靶点投射到 KEGG数
据库[52],其中 98个靶蛋白可投射到KEGG上的 157
条人源生物通路上(图 3)。进一步的网络分析发现
(表 6),网络度最高的 3 条生物通路分别为
proteoglycans in cancer、pathways in cancer和MAPK
signaling pathway,均是与肿瘤、炎症等密切相关,
介数最高的生物通路为 complement and coagulation
cascades,是与凝血系统密切相关。
表 5 TPN中部分节点(生物通路)的网络特征
Table 5 Network features of nodes (pathway from KEGG database) with high degree in TPN
ID 名称 度 介数 ID 名称 度 介数
hsa05205 proteoglycans in cancer 30 0.039 4 hsa04730 long-term depression 10 0.007 9
hsa05200 pathways in cancer 29 0.034 6 hsa04666 Fc gamma R-mediated phagocytosis 10 0.005 6
hsa04010 MAPK signaling pathway 28 0.042 0 hsa05132 salmonella infection 10 0.004 4
hsa04722 neurotrophin signaling pathway 27 0.021 9 hsa04713 circadian entrainment 10 0.002 6
hsa04151 PI3K-Akt signaling pathway 23 0.023 0 hsa04930 type II diabetes mellitus 10 0.002 3
hsa05164 influenza A 23 0.021 3 hsa04726 serotonergic synapse 9 0.012 3
hsa04912 GnRH signaling pathway 23 0.020 0 hsa04070 phosphatidylinositol signaling system 9 0.008 9
hsa04380 osteoclast differentiation 23 0.016 4 hsa05203 viral carcinogenesis 9 0.005 8
hsa04012 ErbB signaling pathway 23 0.013 9 hsa04060 cytokine-cytokine receptor interaction 9 0.004 1
hsa04066 HIF-1 signaling pathway 21 0.017 2 hsa04150 mTOR signaling pathway 9 0.003 7
hsa05152 tuberculosis 20 0.025 0 hsa05162 measles 9 0.002 3
hsa04664
hsa05145
Fc epsilon RI signaling pathway
toxoplasmosis
20
20
0.018 9
0.017 3
hsa05120 epithelial cell signaling in
helicobacter pylori infection 9 0.001 7
hsa04510 focal adhesion 20 0.014 8 hsa04622 RIG-I-like receptor signaling pathway 9 0.001 0
hsa05142 chagas disease (American trypanosomiasis) 19 0.016 4 hsa05211 renal cell carcinoma 9 0.001 0
hsa05214 glioma 19 0.008 6 hsa05220 chronic myeloid leukemia 9 0.000 7
hsa01100 metabolic pathways 18 0.150 6 hsa05221 acute myeloid leukemia 9 0.000 6
hsa04660 T cell receptor signaling pathway 18 0.011 1 hsa04960 aldosterone-regulated sodium reabsorption 8 0.009 3
hsa05160 hepatitis C 18 0.008 4 hsa05034 alcoholism 8 0.007 8
hsa04620 toll-like receptor signaling pathway 18 0.006 1 hsa04064 NF-κB signaling pathway 8 0.004 6
hsa04728 dopaminergic synapse 17 0.018 7 hsa04210 apoptosis 8 0.002 4
hsa04370 VEGF signaling pathway 17 0.015 3 hsa05014 amyotrophic lateral sclerosis (ALS) 8 0.001 9
hsa05161 hepatitis B 17 0.009 4 hsa04520 adherens junction 8 0.001 4
hsa04020 calcium signaling pathway 16 0.022 8 hsa04971 gastric acid secretion 8 0.001 2
中草药 Chinese Traditional and Herbal Drugs 第 47卷 第 1期 2016年 1月

·91·
续表 5
ID 名称 度 介数 ID 名称 度 介数
hsa05169 epstein-barr virus infection 16 0.019 0 hsa05168 herpes simplex infection 8 0.000 9
hsa04725 cholinergic synapse 15 0.013 4 hsa05131 shigellosis 8 0.000 4
hsa04910 insulin signaling pathway 15 0.008 3 hsa04610 complement and coagulation cascades 7 0.964 3
hsa05215 prostate cancer 15 0.004 2 hsa05032 morphine addiction 7 0.047 0
hsa05133 pertussis 14 0.009 8 hsa00230 purine metabolism 7 0.012 6
hsa05166 HTLV-I infection 13 0.014 6 hsa05010 alzheimers disease 7 0.004 8
hsa04310 wnt signaling pathway 13 0.013 5 hsa00590 arachidonic acid metabolism 7 0.003 4
hsa04916 melanogenesis 13 0.005 3 hsa04920 adipocytokine signaling pathway 7 0.001 5
hsa04720 long-term potentiation 13 0.004 4 hsa04911 insulin secretion 7 0.000 8
hsa04810 regulation of actin cytoskeleton 13 0.003 9 hsa05219 bladder cancer 7 0.000 8
hsa05223 non-small cell lung cancer 13 0.003 5 hsa04913 ovarian steroidogenesis 6 0.010 7
hsa04914 progesterone-mediated oocyte maturation 13 0.002 2 hsa04360 axon guidance 6 0.009 9
hsa05212 pancreatic cancer 13 0.002 2 hsa04530 tight junction 6 0.004 6
hsa04270 vascular smooth muscle contraction 12 0.025 2 hsa04724 glutamatergic synapse 6 0.002 8
hsa05140 leishmaniasis 12 0.006 3 hsa04630 jak-STAT signaling pathway 6 0.000 4
hsa04650 natural killer cell mediated cytotoxicity 12 0.005 9 hsa00140 steroid hormone biosynthesis 5 0.016 8
hsa04540 gap junction 11 0.010 6 hsa05143 african trypanosomiasis 5 0.003 2
hsa04062 chemokine signaling pathway 11 0.007 3 hsa00562 inositol phosphate metabolism 5 0.003 2
hsa04670 leukocyte transendothelial migration 11 0.006 4 hsa04970 salivary secretion 5 0.002 9
hsa04144 endocytosis 11 0.006 3 hsa04350 TGF-beta signaling pathway 5 0.001 7
hsa04621 NOD-like receptor signaling pathway 11 0.003 8 hsa05222 small cell lung cancer 5 0.001 2
hsa04723 retrograde endocannabinoid signaling 11 0.003 6 hsa04390 hippo signaling pathway 5 0.001 0
hsa04114 oocyte meiosis 11 0.003 2 hsa04973 carbohydrate digestion and absorption 5 0.000 9
hsa04662 B cell receptor signaling pathway 11 0.003 0 hsa05202 transcriptional misregulation in cancer 5 0.000 5
hsa05218 melanoma 11 0.002 0 hsa05216 thyroid cancer 5 0.000 4
hsa05210 colorectal cancer 11 0.001 8 hsa04320 dorso-ventral axis formation 5 0.000 1
hsa05213 endometrial cancer 11 0.001 6 hsa04740 olfactory transduction 5 0.000 1
hsa05146 amoebiasis 10 0.009 6


图 3 靶蛋白-生物通路网络
Fig. 3 Potential target proteins –biological pathway network
中草药 Chinese Traditional and Herbal Drugs 第 47卷 第 1期 2016年 1月

·92·
为了更好地理解桂枝茯苓胶囊发挥治疗痛经、
盆腔炎和子宫肌瘤的作用机制,从上述的靶点-通路
网络中抽提了与痛经、盆腔炎、子宫肌瘤密切相关
的 15条生物通路(表 6)。在这 15条生物通路中,
GnRH signaling pathway 和 progesterone-mediated
oocyte maturation 分别涉及到雌激素对子宫平滑肌
细胞的生理作用、子宫内膜增生、月经出血[6,8];
VEGF signaling pathway 和 arachidonic acid
metabolism 分别涉及到子宫内膜内血管形成、
PGE2、PGF2α、leukotriene B4生成以及子宫内膜内
腺体增生等[28,31,53-55];TGF-beta signaling pathway
涉及到调控细胞生长、纤维化以及炎症反应等[9];
而 complement and coagulation cascades 和 steroid
hormone biosynthesis则分别与凝血系统以及类固醇
激素合成密切相关[56];calcium signaling pathway和
vascular smooth muscle contraction与子宫平滑肌的
松弛有密切关系[57]。而从 target-pathway 中节点网
络特征分析来看,这 15 条生物通路多数均有较高
的网络度和或较高的介数,且包含了 98 个潜在蛋
白中 77个,占 78.57%(图 4)。因此,推测桂枝茯
苓胶囊可能是通过多个成分对多条生物通路的作
用来抑制子宫平滑肌的增殖、改善子宫内膜的血管
形成和血液循环、降低/减弱雌激素和黄体酮的分
泌、子宫平滑肌收缩以及前列腺素等炎症因子合成
表 6 TPN网络中与痛经、盆腔炎和子宫肌瘤密切相关生物
通路的网络特征
Table 6 Network features of biological pathways related to
dysmenorrhea, PID, and hysteromyoma in TPN
ID 通路 度 介数
hsa05200 pathways in cancer 29 0.034 6
hsa04010 MAPK signaling pathway 28 0.042 0
hsa04151 PI3K-Akt signaling pathway 23 0.023 0
hsa04912 GnRH signaling pathway 23 0.020 0
hsa04370 VEGF signaling pathway 17 0.015 3
hsa04020 calcium signaling pathway 16 0.022 8
hsa04310 wnt signaling pathway 13 0.013 5
hsa04914 progesterone-mediated oocyte maturation 13 0.002 2
hsa04270 vascular smooth muscle contraction 12 0.025 2
hsa04064 NF-kappa B signaling pathway 8 0.004 6
hsa04210 apoptosis 8 0.002 4
hsa04610 complement and coagulation cascades 7 0.964 3
hsa00590 arachidonic acid metabolism 7 0.003 4
hsa00140 steroid hormone biosynthesis 5 0.016 8
hsa04350 TGF-beta signaling pathway 5 0.001 7

图 4 靶蛋白在与痛经、盆腔炎及子宫肌瘤密切相关的 15
条生物通路中的分布
Fig. 4 Potential target proteins in 15 biological pathway
related to dysmenorrheal, PID, and mysteromyoma
或释放,从而起到缓解痛经、盆腔炎和子宫肌瘤引
起的疼痛、降低炎症反应、改善患者生活质量的作
用。在上述分析结果的基础上,对前期的实验报道
分析也发现桂枝茯苓胶囊的确能明显降低子宫肌
瘤组织中 progesterone receptor 和大鼠血清中
progesterone 水平[58-59],能下调盆腔炎大鼠血清中
TGF-β1 的水平[60]。同时,整体动物实验也发现桂
枝茯苓胶囊的醋酸乙酯部位能显著抑制缩宫素诱
导的子宫收缩 [61],能显著降低痛经大鼠血清中
PGF2α的量[62]。
3 讨论
通过分子对接、分子-靶蛋白网络特征分析以及
生物通路的信息挖掘对桂枝茯苓胶囊治疗痛经、盆
腔炎以及子宫肌瘤疾病的主要活性成分和可能的
分子进行了分析,明确了 67个分子(35化合物),
主要为五环三萜类、甾醇类和黄酮类,进一步的药
材归属发现这些分子在各单味中药中的分布与桂
枝茯苓方的君臣佐使组方相一致,这也从侧面印证
了该处方的合理性。生物通路分析发现桂枝茯苓胶
囊 中 的 活 性 化 合 物通 过 与 arachidonic acid
metabolism、complement and coagulation cascades、
calcium signaling pathway、VEGF signaling pathway、
GnRH signaling pathway等 15条生物通路作用来抑
制子宫平滑肌的增殖、改善子宫内膜的血管形成和
血液循环、降低/减弱雌激素和黄体酮的分泌、子宫
平滑肌收缩以及 NO、PGE2、PGF2α、TNF-α、
leukotriene 等炎症因子合成或释放。本研究通过分
中草药 Chinese Traditional and Herbal Drugs 第 47卷 第 1期 2016年 1月

·93·
子计算、网络分析和信息挖掘的组合应用,初步解
析了桂枝茯苓胶囊治疗痛经、盆腔炎及子宫肌瘤的
药效物质基础、可能的分子机制和相关的生物通
路,这将为后续桂枝茯苓胶囊药效成分分析和作用
机制探索等实验研究选择提供一定的参考方向。
参考文献
[1] Gupta M, Duckitt K. Dysmenorrhoea [J]. Womens Health
Med, 2005, 2(3): 10-13.
[2] Deb S, Raine-Fenning N. Dysmenorrhoea [J]. Obstet,
Gynaecol Reprod Med, 2008, 18(11): 294-299.
[3] Haggerty C L, Wiringa A E. Chapter 35-Pelvic
inflammatory disease and chronic pelvic pain [A] //
Goldman M B, Troisi R, Rexode K M. Women and
Health [M]. 2nd Edition. Tokyo: Academic Press, 2013.
[4] Ross J D C. Pelvic inflammatory disease [J]. Medicine,
2014, 42(6): 333-337.
[5] Kolhe S, Deb S. Dysmenorrhoea [J]. Obstet Gynaecol
Reprod Med, 2011, 21(11): 311-316.
[6] Marret H, Fritel X, Ouldamer L, et al. Therapeutic
management of uterine fibroid tumors: updated French
guidelines [J]. Eur J Obstet Gynecol Reprod Biol, 2012,
165(2): 156-164.
[7] Stewart K, Deb S. Dysmenorrhoea [J]. Obstet Gynaecol
Reprod Med, 2014, 24(10): 296-302.
[8] Taylor D K, Leppert P C. Treatment for uterine fibroids:
Searching for effective drug therapies [J]. Drug Dis
Today: Therap Strat, 2012, 9(1): e41-e49.
[9] Islam M S, Akhtar M M, Ciavattini A, et al. Use of dietary
phytochemicals to target inflammation, fibrosis,
proliferation, and angiogenesis in uterine tissues: promising
options for prevention and treatment of uterine fibroids?
[J]. Mol Nutr Food Res, 2014, 58(8): 1667-1684.
[10] 中国药典 [S]. 一部. 2010.
[11] 孙 兰, 宗绍波, 吕耀中, 等. 桂枝茯苓胶囊治疗大鼠
子宫肌瘤及其机制研究 [J]. 现代药物与临床, 2015,
30(4): 362-365.
[12] 王雪晶, 谢 雪, 罗 鑫, 等. 桂枝茯苓胶囊化学成分
研究(V) [J]. 中草药, 2015, 46(6): 812-816.
[13] 倪付勇, 刘 露, 宋亚玲, 等. 分子印迹技术定向分离
桂枝茯苓胶囊中活性成分去氢土莫酸 [J]. 中草药 ,
2015, 46(6): 853-856.
[14] Iorio F, Bosotti R, Scacheri E, et al. Discovery of drug
mode of action and drug repositioning from
transcriptional responses [J]. Proc Natl Acad Sci USA,
2010, 107(33): 14621-14626.
[15] Wu Z, Wang Y, Chen L. Network-based drug
repositioning [J]. Mol Bios, 2013, 9(6): 1268-1281.
[16] Zhang M, Su S, Bhatnagar R K, et al. Prediction and
analysis of the protein interactome in Pseudomonas
aeruginosa to enable network-based drug target selection
[J]. PLoS One, 2012, 7(7): e41202.
[17] Li J, Lu C, Jiang M, et al. Traditional chinese
medicine-based network pharmacology could lead to new
multicompound drug discovery [J]. Evid Based
Complement Alternat Med, 2012, 2012: 149762.
[18] 张新庄, 萧 伟, 徐筱杰, 等. 利用网络药理学方法研
究热毒宁注射液抗流感病毒的分子作用机制 [J]. 物
理化学学报, 2013, 29(7): 1415-1420.
[19] 郑春松, 徐筱杰, 刘献祥, 等. 精制透骨消痛颗粒防治
骨性关节炎的计算机药理学 [J]. 物理化学学报, 2010,
26(3): 775-783.
[20] 李 梢, 张 博. 中药网络药理学: 理论、方法与应用
(英文) [J]. 中国天然药物, 2013, 11(2): 110-120.
[21] Chen G, Lu C, Zha Q, et al. A network-based analysis of
traditional Chinese medicine cold and hot patterns in rheumatoid
arthritis [J]. Compl Therap Med, 2012, 20(1/2): 23-30.
[22] Liu Y F, Ai N, Keys A, et al. Network pharmacology for
traditional Chinese medicine research: Methodologies
and applications [J]. Chin Herb Med, 2015, 7(1): 18-26.
[23] Wang Y Q, Qi L W, Aa J, et al. Comprehensive chemical
profiling of Guizhi Fuling capsule by the combined use of gas
chromatography-mass spectrometry with a deconvolution
software and rapid-resolution liquid chromatography
quadrupole time-of-flight tandem mass spectrometry [J].
Biomed Chromatogr, 2012, 26(10): 1286-1296.
[24] 杨鹏飞. 桂枝茯苓胶囊及其单味药茯苓化学成分和生
物活性研究 [D]. 北京: 北京协和医学院, 2012.
[25] Jabbour H N, Sales K J. Prostaglandin receptor signalling
and function in human endometrial pathology [J]. Trends
Endocrinol Metabol, 2004, 15(8): 398-404.
[26] Edwards A K, Nakamura D S, Virani S, et al. Animal
models for anti-angiogenic therapy in endometriosis [J]. J
Reproduct Immunol, 2013, 97(1): 85-94.
[27] Wu M H, Lu C W, Chuang P C, et al. Prostaglandin E2:
the master of endometriosis? [J]. Exp Biol Med, 2010,
235(6): 668-677.
[28] Jabbour H N, Sales K J, Smith O P M, et al.
Prostaglandin receptors are mediators of vascular
function in endometrial pathologies [J]. Mol Cell
Endocrinol, 2006, 252(1/2): 191-200.
[29] Maybin J A, Critchley H O D, Jabbour H N.
Inflammatory pathways in endometrial disorders [J]. Mol
Cell Endocrinol, 2011, 335(1): 42-51.
[30] Zhao L, Yang H, Xuan Y, et al. Increased expression of
fibroblast growth factor receptor 1 in endometriosis and
its correlation with endometriosis-related dysmenorrhea
and recurrence [J]. Eur J Obstet Gynecol Reprod Biol,
2014, 184: 117-124.
[31] Kelly R W, King A E, Critchley H O. Cytokine control in
human endometrium [J]. Reproduction, 2001, 121(1): 3-19.
[32] Gu J, Gui Y, Chen L, et al. Use of natural products as
chemical library for drug discovery and network
pharmacology [J]. PLoS One, 2013, 8(4): e62839.
中草药 Chinese Traditional and Herbal Drugs 第 47卷 第 1期 2016年 1月

·94·
[33] Jiang X, Kumar K, Hu X, et al. DOVIS 2. 0: an efficient and
easy to use parallel virtual screening tool based on AutoDock
4. 0 [J]. Chem Cent J, 2008. doi: 10.1186/1752-153X-2-18.
[34] Smoot M E, Ono K, Ruscheinski J, et al. Cytoscape 2. 8:
new features for data integration and network
visualization [J]. Bioinformatics, 2011, 27(3): 431-432.
[35] Saito R, Smoot M E, Ono K, et al. A travel guide to
Cytoscape plugins [J]. Nat Methods, 2012, 9(11): 1069-1076.
[36] Barabási A L. Scale-Free Networks: A decade and beyond
[J]. Science, 2009, 325(5939): 412-413.
[37] Xu X, Luo J W, Gu Y T. Collective dynamics and control
of a 3-D small-world network with time delays [J]. Inter J
Bifur Chaos, 2012, 22(11): 1853.
[38] Ding R, Tang J, Gao H, et al. New methymycin
derivatives of Streptomyces venezuelae ATCC 15439 and
their inhibitory effects on human T cell proliferation
mediated by PMA/ionomycin [J]. Arch Pharm Res, 2012,
35(9): 1567-1572.
[39] Zhang M, Deng J, Fang C V, et al. Molecular Network
Analysis and Applications [M]. Knowledge-Based
Bioinformatics; Hoboken: John Wiley & Sons Ltd., 2010.
[40] Hwang W C, Zhang A, Ramanathan M. Identification of
information flow-modulating drug targets: a novel
bridging paradigm for drug discovery [J]. Clin
Pharmacol Ther, 2008, 84(5): 563-572.
[41] Quang D N, Bach D D. Ergosta-4,6,8(14),22-
tetraen-3-one from Vietnamese xylaria sp. possessing
inhibitory activity of nitric oxide production [J]. Nat Prod
Res, 2008, 22(10): 901-906.
[42] Cai T G, Cai Y. Triterpenes from the fungus Poria cocos
and their inhibitory activity on nitric oxide production in
mouse macrophages via blockade of activating protein-1
pathway [J]. Chem Biodivers, 2011, 8(11): 2135-2143.
[43] Bhandari P, Patel N K, Gangwal R P, et al. Oleanolic acid
analogs as NO, TNF-alpha and IL-1beta inhibitors:
synthesis, biological evaluation and docking studies [J].
Bioorg Med Chem Lett, 2014, 24(17): 4114-4119.
[44] Deng J S, Huang S S, Lin T H, et al. Analgesic and
anti-inflammatory bioactivities of eburicoic acid and
dehydroeburicoic acid isolated from Antrodia
camphorata on the inflammatory mediator expression in
mice [J]. J Agric Food Chem, 2013, 61(21): 5064-5071.
[45] Marcon R, Luiz A P, de Paula Werner M F, et al.
Evidence of TRPV1 receptor and PKC signaling pathway
in the antinociceptive effect of amyrin octanoate [J].
Brain Res, 2009, 1295: 76-88.
[46] Gupta M B, Bhalla T N, Tangri K K, et al. Biochemical
study of the anti-inflammatory activity of α and β-amyrin
acetate [J]. Biochem Pharmacol, 1971, 20(2): 401-405.
[47] Choi J M, Lee E O, Lee H J, et al. Identification of
campesterol from Chrysanthemum coronarium L. and its
antiangiogenic activities [J]. Phytother Res, 2007, 21(10):
954-959.
[48] Majeed R, Hussain A, Sangwan P L, et al. PI3K target
based novel cyano derivative of betulinic acid induces its
signalling inhibition by down-regulation of pGSK3beta and
cyclin D1 and potentially checks cancer cell proliferation
[J]. Mol Carcinog, 2015. doi: 10.1002/mc.22339.
[49] Fujiki H, Sueoka E, Watanabe T, et al. Synergistic
enhancement of anticancer effects on numerous human
cancer cell lines treated with the combination of EGCG,
other green tea catechins, and anticancer compounds [J].
J Cancer Res Clin Oncol, 2014, 141(9): 1511-1522.
[50] Castoreno A B, Eggert U S. Small molecule probes of
cellular pathways and networks [J]. ACS Chem Biol,
2011, 6(1): 86-94.
[51] Li Y, Agarwal P. A pathway-based view of human
diseases and disease relationships [J]. PLoS One, 2009,
4(2): e4346.
[52] Kanehisa M, Goto S, Furumichi M, et al. KEGG for
representation and analysis of molecular networks
involving diseases and drugs [J]. Nuclc Acids Res, 2010,
38 (Database issue): 355-360.
[53] Liu P, Duan J, Wang P, et al. Biomarkers of primary
dysmenorrhea and herbal formula intervention: an
exploratory metabonomics study of blood plasma and
urine [J]. Mol Biosyst, 2013, 9(1): 77-87.
[54] Bottcher B, Laterza R M, Wildt L, et al. A first-in-human
study of PDC31 (prostaglandin F2alpha receptor
inhibitor) in primary dysmenorrhea [J]. Hum Reprod,
2014, 29(11): 2465-2473.
[55] Kilic I, Oksuz-Kanbur N, Derman O, et al. Role of
leukotrienes in the pathogenesis of dysmenorrhea in
adolescent girls [J]. Turk J Pediatr, 2008, 50(6): 521-525.
[56] Baranowski A P. Chronic pelvic pain [J]. Best Pract Res
Clin Gastroenterol, 2009, 23(4): 593-610.
[57] Rowlands D K, Cui Y G, Wong H Y, et al. Traditional
Chinese medicine Bak Foong Pills alters uterine
quiescence-possible role in alleviation of dysmenorrhoeal
symptoms [J]. Cell Biol Inter, 2009, 33(12): 1207-1211.
[58] 胡舒勤, 郑红兵. 桂枝茯苓胶囊对实验性子宫肌瘤中
孕激素受体和胰岛素样生长因子 I 的影响 [J]. 湖北中
医杂志, 2005, 27(4): 6-9.
[59] 李 洁, 林 杰, 李 征, 等. 桂枝茯苓胶囊对实验大
鼠血浆内雌二醇、黄体酮、催乳素的影响 [J]. 中国新
药与临床杂志, 2003, 22(3): 146-148.
[60] 师 伟, 刘瑞芬, 杨晓娜, 等. 活血化瘀法对慢性盆腔
炎雌性大鼠血清TGF-β1和 IL-4、IL-10水平的影响 [J].
中国妇幼保健, 2011, 26(36): 5794-5796.
[61] 王振中, 范麒如, 窦 霞, 等. 桂枝茯苓胶囊抑制小鼠
离体子宫收缩效应及其物质基础评价 [J]. 中草药 ,
2009, 40(4): 609-611.
[62] 孙 兰, 林 楠, 李家春, 等. 桂枝茯苓胶囊治疗原发
性痛经的实验研究 [J]. 中医药导报, 2014, (3): 15-17.