全 文 :广 西 植 物 Guihaia Aug.2015,35(4):618-622 http://journal.gxzw.gxib.cn
DOI:10.11931/guihaia.gxzw201405019
李翠芬,周俊辉,肖志娜,等.甲醛胁迫下四种盆栽植物的生理动态反应[J].广西植物,2015,35(4):618-622
LiCF,ZhouJH,XiaoZN,etal.Physiologicaldynamicresponseoffourpottedplantsunderthestressofformaldehyde[J].Guihaia,2015,35(4):618-622
Physiologicaldynamicresponseoffourpoted
plantsunderthestressofformaldehyde
LICuiGFen1,ZHOUJunGHui2∗,XIAOZhiGNa2,XUHuiGLian3
(1.MaomingVocationalandTechnicalCollege,Maoming525000,China;2.ZhongkaiUniversityofAgricultureandEngineering,
Guangzhou510225,China;3.InternationalNatureFarmingResearchCenterinJapan,Matsumoto390G1401,Japan)
Abstract:Thephysiologicaldynamicchangesforthefourspeciesindoorpottedplants,Neotopterisnidus,Dralaena
fragrans,SansevieriatrifasciataandAglaonemacommutatum,werestudiedrespectivelywiththeseindexessuchas
theunitdrymatterofFormaldehyde(FDH)absorption,therelativeelectricconductivity(REC),themalondialdeG
hyde(MDA)content,andtheleafchlorophylcontent,underthestressofFDHwiththetreatmentconcentrationof
15mgmG3.TheresultsindicatedthatinfourdaysofFDHintimidation,theunitdrymatterofFDHabsorptionfor
bothNeotopterisnidusandDralaenafragransreachedtothepeakatthethirdday,whileSansevieriatrifasciataand
Aglaonemacommutatumincreasedslowly.Meanwhile,themostandleastcontentoftheunitdrymatterforFDHabG
sorptionwereNeotopterisnidusandDralaenafragransrespectively.TheRECandMDAcontentsforthefourspeG
ciesincreasedwiththeraiseofFDHstresstime,thehighestandlowestRECwereNeotopterisnidusandSansevieG
riatrifasciatarespectively,thehighestandlowestMDAwereDralaenafragransandNeotopterisnidusrespectiveG
ly.TheleafchlorophylcontentforthefourspeciesdecreasedwiththeincreasingofFDHstresstime,thehighestand
lowestdecreasingamplitudewereAglaonemacommutatumandSansevieriatrifasciatarespectively.
Keywords:stressofformaldehyde;pottedplants;physiologicaldynamicresponse
CLCnumber:Q945.78 Documentcode:A ArticleID:1000G3142(2015)04G0618G05
甲醛胁迫下四种盆栽植物的生理动态反应
李翠芬1,周俊辉2∗,肖志娜2,徐会连3
(1.茂名职业技术学院,广东 茂名525000;2.仲恺农业工程学院,广州510225;
3.日本国际自然农法研究中心,松本 日本390G1401)
摘 要:选择巢蕨(Neottopterisnidus)、巴西铁(Dralaenafragrans)、虎尾兰(Sansevieriatrifasciata)和黑美
人(Aglaonemacommutatum)4种室内盆栽植物作为典型的试验材料,以15mgmG3甲醛分别进行熏蒸处
理,测定单位干物质甲醛的吸收量、相对电导率、丙二醛含量和叶绿素含量等,以研究这些植物在甲醛胁迫下
的生理动态反应.结果表明:在甲醛胁迫的4d时间内,巢蕨和巴西铁的单位干物质甲醛吸收量均在第3天达
到峰值,而黑美人和虎尾兰则一直在缓慢增加,其中以巢蕨吸收的量最多,巴西铁单位干物质甲醛吸收量最
少;4种植物的相对电导率、丙二醛的含量均随甲醛胁迫时间的增加而增加,以巢蕨的相对电导率最高,虎尾
兰最低,但巴西铁的丙二醛的含量最高,巢蕨最低;4种植物的叶绿素含量均随甲醛胁迫时间的增加而降低,
其中黑美人降低幅度最高,虎尾兰最低.
收稿日期:2014G11G30 修回日期:2015G04G02
基金项目:广州市科技攻关项目(2010Y1GC731)
作者简介:李翠芬(1966G),女,广东茂名人,园林高级工程师,主要从事生态园林研究.
∗通讯作者:周俊辉,博士,教授,主要从事园艺植物栽培生理的教学与研究工作,(EGmail)junhuizhou@163.com.
关键词:甲醛胁迫;盆栽植物;生理动态反应
Sinceformaldehyde(FDH)wasexcessivelyused
inhousingconstruction,reformationanddecoration,
thequalityoftheindoorenvironmenthasbecomea
majorhealthconsiderationinmanycitiesofChina(Yu
etal.,2005).FDHexposurehasbeenassociatedwith
cancerofthenasalcavities,nasopharynx,prostate,
lung,andpancreas(Hauptmann,2004).Duringthe
pastdecades,muchworkhasbeendonetopurifythe
indoorFDHpolutants,suchasphysicaladsorption,
chemicaladsorption,photocatalyticoxidation,combined
adsorptionandplantsabsorption(Dingetal.,2003).
Thefirstresearchforadsorptionpolutantair
withplantswascarriedoutbyNASA (Wolvertonet
al.,1985).Then,manyresearchersfromChinafocused
onselectionandsequenceofplantspeciesthatareefG
fectiveinabsorbingFDHfromindoorairinrecent
years,butafewplantsspeciesweretestedcurrently
(Heetal.,2014).Inourpaststudies,63speciesplants
from7familiessuchasAraceae,Agavaceae,LiliaceG
ae,Marantaceae,Euphorbiaceae,MoraceaeandAraliG
aceae,andfromPteridophytesweretestedfortheiraG
bilitiesofremovingFDHintheairrespectively(Zhou
etal.,2011,2012;Ouetal.,2012).Verylittlework
hasbeenperformedonthephysiologicaldynamicreacG
tionofthepottedplantsundertheFDHstress.ThereG
fore,inthispresentstudy,4typicalpottedplantswere
tested,inordertoprovidereferencetotheselectionand
utilizationofplantsforindoorFDHpolutantairpuriG
fication.
1 MaterialsandMethods
Fourindoorplantspecies,Neotopterisnidus,
Dralaenafragrans,SansevieriatrifasciataandAglaG
onemacommutatumwereusedasexperimentalmateriG
als.
1.1Experimentaltreatments
Thetestedpottedplantswereplacedrespectively
inaglassboxchamberwithawal0.8mmthickand
insidevolumeof0.8m3(Wolverton,1993).Asmal
fanandathermometerwereplacedinsidethechamber.
TheprobeofFDHinspector(KeErnuotradingCo.,
Ltd.ofShenzhen)wasinsertedintothechamber
throughaholeof1cmindiameter.Themouthofthe
holewasremovableandfittedwitharubbergasketand
clampstoprovideanairtightseal.TheinitialconcenG
trationofFDHwassetupto15mgmG3.TheexperiG
mentaltemperaturewascontroledat(25±1)℃
(Zhouetal.,2011).Threetreatmentsweredesigned
asbelow:(1)plantpottedinthemediumwasplaced
inthechamberwith15mgmG3FDH;(2)thepot
withmedium butwithoutplantwasplacedinthe
chamberwith15mgmG3FDH;(3)thechamberonG
lyfiledwith15mgmG3FDHascontrol.EachtreatG
mentwasrepeatedfor3times.
1.2Measurementofleafchlorophyl
Leafchlorophylwasextractedwith95%ethanol.
Theconcentrationoftheextractedchlorophyl was
measuredat665nmand649nmwavelengthsbyusing
anUVGVisspectrophotometer(TUG1810Model,GenG
eralAnalysisInstrumentCo.,Ltd.ofBeijing)(Wang,
2006).Concentrationsofchlorophyla(CA),chloroG
phylb(CB)andthetotalchlorophyl(CT)werecalG
culatedusingtheequationsas:
CA=13.7D665-5.76D649
CB=25.8D649-7.6D665
CT=CA+CB-6.10D665+20.04D649
WhereD665 andD649 weretheopticaldensity
(OD)valuesofchlorophylat665nmand649nm,reG
spectively.
1.3Measurementofleafrelativeelectricconductivity(LC)
Theleafsamplewasrinsed3timeswithdeionized
water,thendrainedthesurfacewaterwithfilterpaper;
20leafdiscseachin0.5cmdiametertakenwithan
holepuncherwereimmersedin20mLdeionizedwater
for3hours.Theelectricalconductivity(EC)(recorded
asC1)ofthewateraftertheleafimmersionwasmeasG
ured.Theleafsamplewasboiledfor15minandthe
EC(C2)wasmeasuredagainafterthewatercooled
downtotheroomtemperatureandreplenishedto20
mLwithdeionizedwater(Huangetal.,1990).
Theleafcel membranepermeability(LC)was
calculatedas:
LC(%)=100×(C1/C2)
9164期 李翠芬等:甲醛胁迫下四种盆栽植物的生理动态反应
Table1 ChangeofFDHconcentrationperdayinthechamber(mgmG3)
.
Species
Daysafterbeingtreated
1d 2d 3d 4d
Dralaenafragrans 15.00±0 13.98±0.072 8.87±0.062 5.45±0.049
Neottopterisnidus 9.56±0.296 4.05±0.056 2.06±0.026 0.75±0.032
Sansevieriatrifasciata 15.00±0 13.83±0.071 9.23±0.052 4.29±0.036
Aglaonemacommutatum 15.00±0 13.86±0.073 10.98±0.067 2.54±0.068
CK 15.00±0 14.12±0.021 13.56±0.038 9.57±0.057
1.4MeasurementofMalondialdehyde(MDA)
TheleafsamplecutintopieceswastohomogeniG
zeswith10mL5% Trichloroaceticacid(TCA)and
fewersilicasand,andthencentrifuged10minat4000
rminG1.The2mLsupernatantextractwasshook
wel added with2 mL0.6% Thiobarbituricacid
(TBA),boiled10minafterthesmalbubblearosein
thetestedtuber,keptcool,centrifuged15minat3000
rminG1,then,thesupernatantextractwasmeasured
at450nm,532nmand600nmwavelengthsusingan
UVGVisspectrophotometer(TUG1810Model,General
AnalysisInstrumentCo.,Ltd.ofBeijing)(Wang,
2006).TheleafMDAcontentwascalculatedas:
C (μmolLG1)=6.45(A532-A600)-0.56A450
WhereA532,A600andA450weretheopticaldensity
(OD)valuesofMDAat450nm,532nmand600nm,
respectively.
MDAcontent(μmolgG1)=MDAconcentration
(μmolLG1)×extractedvolume(mL)/freshweight
(g)
1.5Othermeasurements
Aftertheexperimentbegan,theFDAconcentraG
tioninthechamberwasmeasuredforeveryday.The
freshabovegroundparttakenfromtheplantwas
weighedasfresh mass.Then,thesematerialswere
driedinthemicrowaveovenfordrymassdeterminaG
tion(Anetal.,2010).Therelativedatawereanalyzed
withSASS16.0statisticalanalysissoftware.
2 ResultsandAnalysis
2.1ChangeofFDHconcentrationbyfourpotedplants
TheconcentrationofFDHinthechambershowed
adecreasingchange,thequickestdecreasewasgeneralG
lyatthe2nddayandatthe3rdday.AlthoughalspeG
ciespottedplantswereefectivepurificationonFDH,
buttherewerediferenceamongthem,alongwiththe
stresstimeofFDH,thefastestabsorptionwasfoundin
Neotopterisnidus,folowedbyAglaonemacommutaG
tumandSansevieriatrifasciata,whilethelowestone
wasfoundinDralaenafragrans(Table1).
2.2AbsorptionofFDHbypotedplants
AsitwasshowninFig.1,4speciespottedplants
alhavetheabilitytopurifyFDHintheair.In4days
stressofFDH,plantswhichhadabsorptionpeakof
FDHatthe3rddaywereNeotopterisnidusandDraG
laenafragrans,whileSansevieriatrifasciatahadslowG
lyincreasingabsorption,butAglaonemacommutatum
hadquicklyincreasingabsorptionafter3rdday.Among
4speciespottedplants,Neotopterisnidushadthe
highestFDHabsorption,butDralaenafragranshad
thelowestone.
Fig.1 ChangesofFDHabsorptionper
drymatterfromfourspecies
2.3Changesinleafrelativeelectricconductivity(REC)
Thecelmembraneofplantmaybedamagedand
causedincreasingofcelmembranepermeabilityunder
thestressofFDH.Theplantwouldhassmalerdegree
ofchangeofcel membranepermeabilityifthereisa
026 广 西 植 物 35卷
strongerresistancetoFDH.Amongthe4daysstress
ofFDH,Dralaenafragrans,Sansevieriatrifasciata
andAglaonemacommutatumhadnoobviousincreasG
ingofREC,butNeotopterisnidushadsignificantinG
creasing.Therefor,itwasindictedthatN.niduswas
themostsensitivetoFDHstressingamong4species
pottedplants(Fig.2).
Fig.2 Changesofleafrelativeelectric
conductivity(REC)fromfourspecies
2.4ChangesinMDAcontent
Asweknow,plantsoftenoccurredmembranelipG
idperoxidationwhenbeingsuferedinjuryunderthe
stressconditions,MDAwasjustalipidperoxidation
product,thecontentofMDAwasoftenusedasaninG
dicatorofmembranedamage,andcanbedescribedthe
resistantofplanttoFDH.AsitwasshowninFig.3,
among4species,Dralaenafragranshadthehighest
MDAcontentandincreasingchange,butNeotopteris
nidushadthelowestone.
Fig.3 ChangesofMDAcontentfromfourspecies
2.5Changesintotalchlorophylconcentration
Theplantwouldoccurblockingofleafchlorophyl
synthesis,acceleratingdecomposition,andfinalylead
todecreasethecontentofchlorophyl whenitwas
stressed.InfourdaysofFDHstress,alspecieshad
decreasedtheleafchlorophylcontent,andhadthe
maximumreducingatthe1stday.Amongthe4speG
cies,Aglaonemacommutatum hadthehighestleaf
chlorophylcontentanddecreasingchange,butSanseG
vieriatrifasciatahadthelowestone,thespecieswhich
hadthemaximumdecreasingrateofleafchlorophyl
contentwereNeotopterisnidus(Fig.4).
Fig.4 Changesoftotalchlorophyl
concentrationfromfourspecies
3 Discussion
Ithasbeendemonstratedthatmanyofindoor
pottedplantscanabsorbmoreorlessFDHairpoluG
tantinourearlierresearch(Zhouetal.,2011,2012;
Ouetal.,2012).ThepurificationofFHDmaybeinG
cludedseveralaspects,suchasassimilationbystemor
byleavesofplants,transformationandmetabolismby
celsofplants,degradationbythemicroorganismsin
therhizospherearea(Ralphetal.,2004),andbythe
others.
Theresultssuggestedthatthere maybethree
waysforpottedplantsresponsetoFDHstress.The
firstwayshowedobvioushurtmorphologywithhigh
absorptionbutweakresistance,suchasNeotopteris
nidus,havingthemostcontentoftheunitdrymatter
forFDHabsorption,andthehighestrelativeelectric
conductivity,andthelowestMDA.Thesecondway
showedweakabsorptionbutstrongresistancewith
1264期 李翠芬等:甲醛胁迫下四种盆栽植物的生理动态反应
normalmorphologybytakingavoidancestrategyto
protectitself,suchasDralaenafragrans ,havingthe
leastcontentoftheunitdrymatterforFDHabsorpG
tionandthehighestMDA.ThethirdwayshowedabG
sorptionandtransformingabilitywithmoreorless
hurtresponses,suchasAglaonemacommutatum,havG
ingmoderatedegreeoftheseindexes.Inthisway,
FDHgaseousabsorbedbyChlorophytumcomosum
wasfoundtobeincorporatedintoorganicacids,amino
acids,freesugars,andlipidsaswelascelGwalcompoG
nents(Gieseetal.,1994).Thelight14Cfrom 14CG
FDHmaybeenteredintotheCalvincycleaftertwoG
stepoxidationprocessbyFDHdehydrogenaseandby
formatedehydrogenaseto become CO2 and H2O
(Schmitzetal.,2000).
Therefore,onlyarethesegroupplantswhichhad
lowerresistancetoFDH wouldhaveabsorbedhigh
contentofhighapplyingvalue.Itstilneedsforfurther
researchonthemechanismsofFDHpurificationwith
pottedplants.
4 Conclusions
TheresultsindicatedthatinfourdaysofFDHinG
timidation,themostandleastcontentsoftheunitdry
matterforFDHabsorptionwereNeotopterisnidus
andDralaenafragransrespectively.TherelativeelecG
tricconductivity(REC)andmalondialdehyde(MDA)
contentsforthefourspeciesincreasedwiththeraiseof
FDHstresstime,thehighestandlowestRECwere
NeotopterisnidusandSansevieriatrifasciatarespecG
tively,thehighestandlowestMDA wereDralaena
fragransandNeotopterisnidusrespectively.Theleaf
chlorophylcontentforthefourspeciesdecreasedwith
theincreasingofFDHstresstime,thefastestandlowG
estwidthdegreewereAglaonemacommutatum and
Sansevieriatrifasciatarespectively.
Acknowledgements Thisprojectwassupported
bytheTechnologyandInformationBureauofGuangG
zhou,GuangdongProvince,China.Theauthorsthank
Ms.ZhangWanGFeng,Ms.WangFei,Ms.HeQinGQin
andMs.ZouChunGYanfromZhongkaiUniversityof
AgricultureandEngineering,fortheirgeneroushelp
andtechnicalassistance.
References:
AnX,LiX,PanH,etal.2010.Thecapacityof16ornamental
plantsonpurifyingindoorformaldehydepolutionandtheir
physiologicalresponsetoformaldehydestress[J].EcolEnviron
Sci,19(2):379-384
DingZ,LingP,LüYS,etal.2003.PurificationandcontroloninG
doorformaldehydeGpolutedair[J].JPublicHealth,19(8):
998-1000
GieseM,BauerDU,LangebartelsC,etal.1994.Detoxificationof
formaldehydebythespiderplant(ChlorophytumcomosumL.)
andbysoybean(GlycinemaxL.)celGsuspensioncultures[J].
PlantPhysiol,104(4):1301-1309
HauptmannM,LubinJH,StewartPA,etal.2004.Mortalityfrom
solidcancersamongworkersinformaldehydeindustries[J].
AmJEpidemiol,159(12):1117-1130
HeQQandZhouJH.2014.Researchadvanceinpurificationof
formaldehydeGpolutedindoorairbypottedplants[J].ActaAgG
ricJiangxi,26(2):44-48
HuangXL,ChenRZandZhangBZ.1990.SeedPhysiologyLaboG
ratoryManual[M].Beijing:AgriculturePress:122-124
OuJQ,ZhouJH,ChenSJ,etal.2012.PurificationofformaldeG
hydeGpolutedairbyseveralpottedplants[J].NorthernHorG
tic,22:57-60
RalphL,OrwelRL,WoodJT,etal.2004.Removalofbenzeneby
theindoorplant/substratemicrocosmandimplicationsforair
quality[J].WaterAirSoilPoll,157:193-207
SchmitzH,HilgersU,WeidnerM.2000.AssimilationandmetabG
olismofformaldehydebyleavesappearunlikelytobeofvalue
forindoorairpurification[J].NewPhytol,147(2):307-315
WangXQ.2006.Principlesandtechniquesforplantphysiologyand
biochemicalexperiment[M].2nded.Beijing:HighEducation
Press:134-136
WolvertonBC.1993.Plantsandsoilmicroorganisms:removalof
formaldehyde,xylene,andammoniafromtheindoorenvironG
ment[J].JMississippiAcadSci,38(2):11-15
WolvertonBC,DonaldRCandMesickHH.1985.Foliageplants
fortheindoorremovaloftheprimarycombustiongasescarbon
monoxideandnitrogenoxides[J].JMississippiAcadSci,30:
1-8
YuGLandTangHY.2005.InvestigationandanalysisoftheinG
doorenvironmentofthenewbuildinginGuangzhouCity[J].
ChinJHealthInspection,15(3):350-364
ZhouJH,QinFF,SuJ,etal.2011.PurificationofformaldehydeG
polutedairbyindoorplantsofAraceae,AgavaceaeandLiliG
aceae[J].JFoodAgric&Environ,9(3&4):1012-1018
ZhouJH,YueBC,ChenSJ,etal.2012.Indoorpottedplantsof
MarantaceaeandPteridophytesforpurificationofformaldehyde
polutedair[J].Guihaia,32(6):781-787
226 广 西 植 物 35卷