免费文献传递   相关文献

水朝阳旋覆花化学成分的研究(英文)



全 文 :天然产物研究与开发 Nat Prod Res Dev 2012,24:291-297,328
文章编号:1001-6880(2012)03-0297-08
Received October 9,2011;Accepted December 14,2011
Foundation Item:This research project was supported by program NCET
Foundation,NSFC (81102778) and the Scientific Foundation of
Shanghai China (No. 09dZ1972200).
* Corresponding author Tel:86-21-34205989;Email:kimhz@ sjtu. edu.
cn;wdzhangy@ hotmail. com
水朝阳旋覆花化学成分的研究
常睿洁1,覃江江1,成向荣1,金慧子1
*
,张卫东1,2
*
1上海交通大学药学院,上海 200240;2 第二军医大学药学院,上海 200433
摘 要:从水朝阳旋覆花(Inula helianthus-aquatica)地上部分分离得到 24 个化合物,经波谱数据分析分别鉴定
为 aromaticin(1) ,8-epi-helenalin(2) ,bigelovin(3) ,2,3-dihydroaromaticin(4) ,carpesiolin(5) ,ergolide(6) ,
inuchinenolide C(7) ,6α-acetoxy-isoinuviscolide (8) ,8-epi-inuviscolide(9) ,inuchinenolide B(10) ,tomentosin(11) ,
11α,13-dihydrotomentosin(12) ,inuchinenolide A(13) ,4H-tomentosin(14) ,11β,13-dihydro-4H-tomentosin(15) ,11-
epi-sundiversifolide(16) ,sundiversifolide(17) ,8 9,10-三羟基百里香酚(18) ,10-羟基-8,9-双氧亚异丙基百里香酚
(19) ,8 10-二羟基-9-异丁酰百里香酚(20) ,8-羟基-9,10-二异丁酰百里香酚(21) ,8-羟基-9-异丁酰-10-(2-甲基
丁酰)百里香酚(22) ,8 9-环氧-9,10-二异丁酰百里香酚(23)和 8,9-环氧-3-异丁酰-10-(2-甲基丁酰)百里香酚
(24)。除了化合物 1 ~ 6 外,其他化合物均为首次从该植物中分离得到。
关键词:旋覆花属;水朝阳旋覆花;倍半萜;单萜
中图分类号:R284. 1;Q946. 91 文献标识码:A
Chemical Constituents from Inula helianthus-aquatica
CHANG Rui-jie1,QIN Jiang-jiang1,CHENG Xiang-rong1,JIN Hui-zi1* ,ZHANG Wei-dong1,2*
1School of Pharmacy,Shanghai Jiao Tong University,Shanghai 200240,China;
2School of Pharmacy,Second Military University,Shanghai 200433,China
Abstract:Twenty-four compounds were isolated from the aerial parts of Inula helianthus-aquatica. On the basis of spec-
tral data,their structures were identified as aromaticin (1) ,8-epi-helenalin (2) ,bigelovin (3) ,2 3-dihydroaromaticin
(4) ,carpesiolin (5) ,ergolide (6) ,inuchinenolide C (7) ,6α-acetoxy-isoinuviscolide (8) ,8-epi-inuviscolide (9) ,
inuchinenolide B (10) ,tomentosin (11) ,11α,13-dihydrotomentosin (12) ,inuchinenolide A (13) ,4H-tomentosin
(14) ,11β,13-dihydro-4H-tomentosin (15) ,11-epi-sundiversifolide (16) ,sundiversifolide (17) ,8 9,10-trihydroxythy-
mol (18) ,10-hydroxy-8,9-dioxyisopropylidenethymol (19) ,8 10-dihydroxy-9-isobutyryloxythymol (20) ,8-hydroxy-9,
10-diisobutyryloxythymol (21) ,8-hydroxy-9-isobutyryloxy-10-(2-methylbutanoyl)thymol (22) ,8,9-epoxy-3,10-di-
isobutyryloxythymol (23) ,and 8,9-epoxy-3-isobutyryloxy-10-(2-methylbutanoyl)thymol (24). All the compounds ex-
cept 1-6 were isolated from this plant for the first time.
Key words:Inula;Inula helianthus-aquatica;sesquiterpene;monoterpenes
Introduction
Inula helianthus-aquatica,a perennial plant belonging
to the Asteraceae family,is widely distributed in Yun-
nan,Sichuan,Gansu and Guizhou province of China
growing at 1200-3000 m above sea level [1]. It has
been used as a previous folk medicine to treat some
cancers in Yunnan [2]. So far,only 7 compounds have
been reported from this plant [3-5]. In order to make fur-
ther investigations on the aerial parts of I. helianthus-
aquatica,we isolated and identified twenty-four com-
pounds from an EtOAc extract of the whole plant,in-
cluding aromaticin (1) ,8-epi-helenalin (2) ,bigelovin
(3) ,2 3-dihydroaromaticin (4) ,carpesiolin (5) ,erg-
olide (6) ,inuchinenolide C (7) ,6α-acetoxy-isoinuvis-
colide (8) ,8-epi-inuviscolide (9) ,inuchinenolide B
(10) ,tomentosin (11) ,11α,13-dihydrotomentosin
(12) ,inuchinenolide A (13) ,4H-tomentosin (14) ,
11β,13-Dihydro-4H-tomentosin (15) ,11-epi-sundi-
versifolide (16) ,sundiversifolide (17) ,8,9,10-tri-
hydroxythymol (18) ,10-hydroxy-8,9-dioxyisopropyli-
denethymol (19) ,8,10-dihydroxy-9-isobutyryloxythy-
mol (20 ) ,8-hydroxy-9,10-diisobutyryloxythymol
(21 ) ,8-hydroxy-9-isobutyryloxy-10-(2-methylbu-
tanoyl)thymol (22) ,8,9-epoxy-3,10-diisobutyryloxy-
thymol (23) ,and 8,9-epoxy-3-isobutyryloxy-10-(2-
methylbutanoyl)thymol (24). All the compounds ex-
cept compounds 1-6 were isolated from this plant for
the first time.
Experimental
Instruments
The normal phase silica gel (200-300 mesh,Yantai,
China) ,MCI gel (CHP20P 75-150 μm,Mitsubishi
Chemical Co.,Japan) ,and Sephadex LH-20 (GE
Healthcare Bio-Sciences AB,Sweden)were used for
column chromatography,and precoated silica HSGF254
plates were used for TLC (Yantai,China). HPLC and
preparative HPLC were performed with SHIMADZU LC
2010AHT,Agilent Technologies 1200 series and SHI-
MADZU LPD-20A. J. T. Baker Acetonitrile (ACN)
was used as HPLC Solvent. Melting points were meas-
ured with an RY-2 micromelting point apparatus and
are uncorrected. ESI-MS were recorded on Q-TOF mi-
cro mass spectrometer. 1H and 13C NMR spectra were
measured on a Bruker DRX-500 spectrometer and
Bruker Avance DRX-400 spectrometer. Chemical shift
(δ)were given in ppm relative to TMS as internal ref-
erence and coupling constants (J)in Hz.
Plant material
The aerial parts of I. helianthus-aquatica were collected
from Nujiang river of Yunnan Province,China in Au-
gust,2007 and identified by Prof. Huang Bao-kang,De-
partment of Pharmacognosy,School of Pharmacy,Sec-
ond Military Medical University. A voucher specimen
(No. 200708XHFSCY)has been deposited at School
of Pharmacy,Shanghai Jiao Tong University.
Extraction and isolation
The air-dried and powdered aerial parts of I. helian-
thus-aquatica (1. 0 kg) were extracted with 95%
EtOH for three times at room temperature. After con-
centration of the combined extracts under reduced pres-
sure,the residue (86. 1 g)was suspended in H2O and
then partitioned successively with petroleum ether,EtO-
Ac and n-butanol,yielding 12. 1 g,14. 3 g and 11. 2 g,
respectively. The EtOAc fraction was chromatographed
on a silica gel column eluting with CH2Cl2-MeOH
(100∶ 1 to 10 ∶ 1)to obtain 5 fractions (A1-A5). A1
(1. 5 g)was applied to MCI gel column chromatogra-
phy (MeOH-H2O,9∶ 1)and purified by Sephadex LH-
20 (MeOH) ,yielding compounds 1 (5. 9 mg) ,2 (4. 0
mg) ,3 (4. 4 mg) ,4 (8. 7 mg). A2 (4. 1 g)was then
subjected to silica gel column again and eluted with
CH2Cl2-MeOH from 50∶ 1 to 10 ∶ 1 to give 5 sub-frac-
tions,the sub-fraction 2,3 were separated by prepara-
tive HPLC (RP18,210 nm,50% ACN)to give com-
pounds 5(14. 5 mg,tR = 19. 2 min) ,6(4. 0 mg,tR =
22. 4 min) ,7(5. 5 mg,tR = 25. 0 min) ,8(2. 9 mg,tR
= 27. 5 min) ,9 (2. 7 mg,tR = 30. 2 min) ,10 (15. 1
mg,tR = 35. 9 min) ,11 (17. 8 mg,tR = 41. 3 min) ,
12 (9. 5 mg,tR = 47. 5 min) ,13 (7. 6 mg,tR = 48. 8
min)and 14 (10. 8 mg,tR = 55. 2 min). Compound
15 (7. 7 mg,tR = 22. 5 min) ,16 (5. 8 mg,tR = 27. 2
min)and 17 (3. 4 mg,tR = 30. 3 min)were obtained
after the purifications of A3 (1. 3 g)by preparative
HPLC (RP18,210 nm,50% ACN). A4 (1. 7 g)was
chromatographed on MCI gel (MeOH-H2O,9 ∶ 1)and
Sephadex LH-20 (MeOH) ,and purified by preparative
HPLC (RP18,210 nm,40% ACN)to yield compounds
19 (2. 8 mg,tR = 30. 2 min) ,22 (5. 1 mg,tR = 34. 5
min)23 (3. 6 mg,tR = 48. 0 min)and 24 (6. 0 mg,
tR = 50. 5 min). A5 (2. 0 g)was also subjected to
MCI gel (MeOH-H2O,9 ∶ 1) ,Sephadex LH-20
(MeOH)chromatography,and purified by preparative
HPLC (RP18,210 nm,35% ACN)to give compounds
18(30. 8 mg,tR = 32. 8 min) ,20(12. 3 mg,tR = 36. 0
min)and 21(8. 5 mg,tR = 40. 4 min).
Structure identification
Aromaticin (1) white amorphous power;C15H18O3;
ESI-MS (positive)m/z 269 [M + Na]+;ESI-MS
(negative)m/z 245 [M-H]-;1H NMR (CDCl3,500
MHz)δ:2. 76 (1H,brd,H-1) ,7. 64 (1H,dd,J =
6. 0,1. 5 Hz,H-2) ,6. 13 (1H,dd,J = 6. 0,3. 0 Hz,H-
3) ,2. 49 (1H,dd,J = 14. 5,4. 5 Hz,H-6a) ,1. 64
(1H,dd,J = 14. 5,11. 0 Hz,H-6b) ,2. 90 (1H,m,H-
7) ,4. 50 (1H,ddd,J = 12. 0,10. 0,3. 0 Hz,H-8) ,
292 Nat Prod Res Dev Vol. 24
2. 53 (1H,ddd,J = 13. 0,3. 5,3. 5 Hz,H-9a) ,1. 45
(1H,q,J = 12. 0 Hz,H-9b) ,2. 14 (1H,m,H-10) ,
6. 18 (1H,d,J = 3. 5 Hz,H-13a) ,5. 52 (1H,d,J =
3. 0 Hz,H-13b) ,1. 26 (3H,d,J = 6. 5 Hz,H3-14) ,
1. 19 (3H,s,H3-15) ;
13C NMR (CDCl3,125 MHz)δ:
54. 1 (C-1) ,161. 5 (C-2) ,130. 2 (C-3) ,213. 6 (C-
4) ,55. 1 (C-5) ,32. 0 (C-6) ,46. 4 (C-7) ,79. 5 (C-
8) ,44. 1 (C-9) ,27. 1 (C-10) ,140. 3 (C-11) ,169. 5
(C-12) ,120. 0 (C-13) ,19. 8 (C-14) ,27. 9 (C-15)
. The NMR and MS data were in accordance with those
reported in the literature [6],and identified 1 as aroma-
ticin.
8-Epi-helenalin (2) white amorphous powder;C15
H18O4;ESI-MS (positive)m/z 285[M + Na]
+;ESI-
MS (negative)m/z 261 [M-H]-;1H NMR (CDCl3,
500 MHz)δ:3. 00 (1H,brd,J = 10. 8 Hz,H-1) ,7. 76
(1H,dd,J = 6. 0,1. 5 Hz,H-2) ,6. 14 (1H,dd,J =
6. 0,3. 0 Hz,H-3) ,4. 15 (1H,d,J = 8. 3 Hz,H-6) ,
2. 92 (1H,m,H-7) ,4. 53 (1H,ddd,J = 11. 5,11. 5,
3. 0 Hz,H-8) ,2. 52 (1H,ddd,J = 13. 0,3. 5,3. 5 Hz,
H-9a) ,1. 51 (1H,q,J = 12. 0 Hz,H-9b) ,2. 05 (1H,
m,H-10) ,6. 23 (1H,d,J = 3. 5 Hz,H-13a) ,6. 01
(1H,d,J = 3. 2 Hz,H-13b) ,1. 28 (3H,d,J = 6. 6
Hz,H3-14) ,1. 18 (3H,s,H3-15) ;
13 C NMR (CDCl3,
125 MHz)δ:51. 1 (C-1) ,164. 6 (C-2) ,130. 8 (C-
3) ,213. 5 (C-4) ,58. 2 (C-5) ,74. 0 (C-6) ,53. 8
(C-7) ,75. 9 (C-8) ,44. 1 (C-9) ,27. 1 (C-10) ,
138. 7 (C-11) ,169. 3 (C-12) ,121. 6 (C-13) ,19. 8
(C-14) ,23. 7 (C-15). The NMR and MS data were in
accordance with those reported in the literature [7],and
identified 2 as 8-epi-helenalin.
Bigelovin (3) white amorphous powder;C17 H20 O5;
ESI-MS (positive)m/z 327 [M + Na]+;ESI-MS
(negative)m/z 303 [M-H]-;1H NMR (CDCl3,500
MHz)δ:3. 03 (1H,brd,J = 11. 0 Hz,H-1) ,7. 71
(1H,d,J = 6. 0 Hz,H-2) ,6. 11 (1H,dd,J = 6. 0,2. 5
Hz,H-3) ,5. 60 (1H,d,J = 7. 5 Hz,H-6) ,3. 08 (1H,
m,H-7) ,4. 61 (1H,ddd,J = 12. 5,12. 5,3. 0 Hz,H-
8) ,2. 57 (1H,ddd,J = 13. 0,3. 5,3. 5 Hz,H-9a) ,
1. 55 (1H,q,J = 12. 5 Hz,H-9b) ,2. 06 (1H,m,H-
10) ,6. 22 (1H,d,J = 3. 5 Hz,H-13a) ,5. 92 (1H,d,
J = 3. 0 Hz,H-13b) ,1. 29 (3H,d,J = 6. 5 Hz,H3-
14) ,1. 21 (3H,s,H3-15) ,1. 96 (3H,s,H3-2) ;
13 C
NMR (CDCl3,125 MHz)δ:52. 2 (C-1) ,162. 5 (C-
2) ,130. 8 (C-3) ,209. 1 (C-4) ,56. 2 (C-5) ,73. 1
(C-6) ,53. 9 (C-7) ,76. 1 (C-8) ,44. 4 (C-9) ,27. 2
(C-10) ,137. 2 (C-11) ,168. 9 (C-12) ,122. 0 (C-
13) ,19. 7 (C-14) ,22. 6 (C-15) ,169. 5 (C-1) ,21. 1
(C-2). The NMR and MS data were in accordance
with those reported in the literature [8],and identified 3
as bigelovin.
2,3-Dihydroaromaticin (4) white amorphous pow-
der;C15 H20 O3;ESI-MS (positive)m/z 271[M +
Na]+;ESI-MS (negative) m/z 247 [M-H]-;1H
NMR (CDCl3,400 MHz)δ:1. 92 (1H,m,H-1) ,2. 10
(1H,m,H-2a) ,1. 61 (1H,m,H-2b) ,2. 50 (1H,m,
H-3a) ,1. 51 (1H,m,H-3b) ,2. 47 (1H,m,H-6a) ,
2. 18 (1H,m,H-6b) ,2. 80 (1H,m,H-7) ,4. 28 (1H,
ddd,J = 12. 0,9. 2,2. 9 Hz,H-8) ,2. 43 (1H,m,H-
9a) ,1. 42 (1H,m,H-9b) ,1. 95 (1H,m,H-10) ,6. 18
(1H,d,J = 3. 5 Hz,H-13a) ,5. 50 (1H,d,J = 3. 2
Hz,H-13b) ,1. 09 (3H,d,J = 5. 8 Hz,H3-14) ,1. 03
(3H,s,H3-15) ;
13C NMR (CDCl3,100 MHz)δ:48. 7
(C-1) ,24. 1 (C-2) ,34. 5 (C-3) ,222. 5 (C-4) ,50. 0
(C-5) ,35. 2 (C-6) ,44. 7 (C-7) ,80. 8 (C-8) ,44. 1
(C-9) ,29. 6 (C-10) ,140. 3 (C-11) ,169. 8 (C-12) ,
120. 0 (C-13) ,20. 0 (C-14) ,22. 0 (C-15). The NMR
and MS data were in accordance with those reported in
the literature [9],and identified 4 as 2,3-dihydroaroma-
ticin.
Carpesiolin (5) white amorphous powder;C15 H20
O4;ESI-MS (positive)m/z 287 [M + Na]
+;ESI-MS
(negative)m/z 263 [M-H]-;1H NMR (CDCl3,400
MHz)δ:2. 27 (1H,m,H-1) ,2. 17 (1H,m,H-2a) ,
1. 46 (1H,m,H-2b) ,2. 43 (1H,m,H-3a) ,2. 14
(1H,m,H-3b) ,4. 02 (1H,d,J = 8. 7 Hz,H-6) ,3. 04
(1H,brs,6-OH) ,2. 89 (1H,m,H-7) ,4. 39 (1H,
ddd,J = 12. 0,10. 0,2. 8 Hz,H-8) ,20. 48 (1H,m,H-
9a) ,1. 50 (1H,m,H-9b) ,1. 84 (1H,m,H-10) ,6. 21
(1H,d,J = 3. 5 Hz,H-13a) ,5. 99 (1H,d,J = 3. 2
Hz,H-13b) ,1. 10 (3H,d,J = 6. 5 Hz,H3-14) ,1. 03
(3H,s,H3-15) ;
13C NMR (CDCl3,100 MHz)δ:45. 1
(C-1) ,24. 5 (C-2) ,37. 6 (C-3) ,223. 8 (C-4) ,57. 7
(C-5) ,75. 3 (C-6) ,52. 0 (C-7) ,76. 0 (C-8) ,44. 1
(C-9) ,30. 1 (C-10) ,138. 9 (C-11) ,169. 6 (C-12) ,
121. 8 (C-13) ,20. 0 (C-14) ,19. 0 (C-15). The NMR
392Vol. 24 CHANG Rui-jie,et al:Chemical Constituents from Inula helianthus-aquatica
and MS data were in accordance with those reported in
the literature [10],and identified 5 as Carpesiolin.
Ergolide (6) white amorphous powder;C17 H22 O5;
ESI-MS (positive)m/z 329 [M + Na]+;ESI-MS
(negative)m/z 305 [M-H]-;1H NMR (CDCl3,400
MHz)δ:2. 30 (1H,ddd,J = 11. 5,11. 5,6. 0 Hz,H-
1) ,2. 19 (1H,m,H-2a) ,1. 45 (1H,m,H-2b) ,2. 42
(1H,m,H-3a) ,2. 13 (1H,m,H-3b) ,5. 50 (1H,d,J
= 7. 5 Hz,H-6) ,3. 03 (1H,m,H-7) ,4. 49 (1H,ddd,
J = 13. 0,11. 0,2. 5 Hz,H-8) ,2. 51 (1H,ddd,J =
13. 0,3. 0,3. 0 Hz,H-9a) ,1. 51 (1H,q,J = 12. 0 Hz,
H-9b) ,1. 86 (1H,m,H-10) ,6. 20 (1H,d,J = 3. 5
Hz,H-13a) ,5. 85 (1H,d,J = 3. 5 Hz,H-13b) ,1. 12
(3H,d,J = 6. 5 Hz,H3-14) ,1. 08 (3H,s,H3-15) ,
1. 97 (3H,s,H3-2) ;
13C NMR (CDCl3,100 MHz)δ:
46. 7 (C-1) ,24. 4 (C-2) ,37. 9 (C-3) ,218. 4 (C-
4) ,56. 0 (C-5) ,74. 7 (C-6) ,52. 6 (C-7) ,76. 2 (C-
8) ,44. 3 (C-9) ,30. 0 (C-10) ,137. 3 (C-11) ,169. 1
(C-12) ,122. 0 (C-13) ,19. 9 (C-14) ,18. 4 (C-15) ,
169. 3 (C-1) ,21. 1 (C-2). The NMR and MS data
were in accordance with those reported in the litera-
ture[3],and identified 6 as ergolide.
Inuchinenolide C (7) white amorphous powder;C19
H26O7;ESI-MS (positive)m/z 389[M + Na]
+;ESI-
MS (negative)m/z 365[M-H]-;1H NMR (CDCl3,
400 MHz)δ:2. 10 (1H,dd,J = 11. 4,6. 3 Hz,H-1) ,
4. 94 (1H,brt,J = 7. 8 Hz,H-2) ,2. 31 (1H,ddd,J =
14. 9,9. 7,9. 7 Hz,H-3a) ,1. 95 (1H,m,H-3b) ,5. 61
(1H,dd,J = 10. 7,8. 8 Hz,H-4) ,3. 53 (1H,d,J =
8. 3 Hz,H-6) ,2. 79 (1H,m,H-7) ,4. 46 (1H,ddd,J
= 12. 3,10. 3,2. 8 Hz,H-8) ,2. 40 (1H,ddd,J =
13. 2,4. 8,3. 0 Hz,H-9a) ,1. 41 (1H,q,J = 12. 3 Hz,
H-9b) ,1. 93 (1H,m,H-10) ,6. 20 (1H,d,J = 3. 5
Hz,H-13a) ,5. 98 (1H,d,J = 3. 1 Hz,H-13b) ,0. 99
(3H,d,J = 6. 4 Hz,H3-14) ,0. 92 (3H,s,H3-15) ,
2. 04 (3H,s,2-OAc) ,2. 14 (3H,s,4-OAc) ;13C NMR
(CDCl3,100 MHz)δ:49. 8 (C-1) ,74. 8 (C-2) ,35. 0
(C-3) ,75. 9 (C-4) ,52. 0 (C-5) ,74. 3 (C-6) ,53. 7
(C-7) ,75. 8 (C-8) ,44. 0 (C-9) ,30. 1 (C-10) ,
139. 3 (C-11) ,169. 7 (C-12) ,121. 4 (C-13) ,20. 6
(C-14) ,17. 1 (C-15) ,170. 5 (2-OCOCH3) ,21. 2
(2-OCOCH3 ) ,172. 9 (4-OCOCH3 ) ,21. 2 (4-
OCOCH3) ;The NMR and MS data were in accordance
with those reported in the literature [11],and identified
7 as inuchinenolide.
6α-Acetoxy-isoinuviscolide (8) white amorphous
powder;C17H22 O5;ESI-MS (positive)m/z 329 [M +
Na]+;ESI-MS (negative)m/z 305 [M-H]-;13 C
NMR (CDCl3,100 MHz)δ:51. 4 (C-1) ,28. 1 (C-
2) ,40. 3 (C-3) ,80. 3 (C-4) ,54. 9 (C-5) ,74. 9 (C-
6) ,44. 7 (C-7) ,80. 5 (C-8) ,124. 8 (C-9) ,135. 1
(C-10) ,139. 8 (C-11) ,170. 2 (C-12) ,118. 6 (C-
13) ,23. 2 (C-14) ,23. 7 (C-15) ,169. 6 (6-
OCOCH3) ,21. 1 (6-OCOCH3). The NMR and MS da-
ta were in accordance with those reported in the litera-
ture [12],and identified 8 as 6α-Acetoxy-isoinuviscol-
ide.
8-epi-inuviscolide (9) white amorphous powder;C15
H20O3;ESI-MS (positive)m/z 271[M + Na]
+;ESI-
MS (negative)m/z 247[M-H]-;1H NMR (CD3OD,
400 MHz)δ:6. 18 (1H,d,J = 2. 4 Hz,H-13a) ,5. 74
(1H,d,J = 2. 0 Hz,H-13b) ,4. 99 (1H,brs,H-14a) ,
4. 91 (1H,brs,H-14b) ,4. 85 (1H,ddd,J = 10. 6,
7. 4,5. 3 Hz,H-8) ,3. 12 (1H,m,H-7) ,1. 27 (3H,s,
H3-15) ;
13 C NMR (CD3OD,100 MHz)δ:49. 8 (C-
1) ,29. 1 (C-2) ,39. 3 (C-3) ,83. 7 (C-4) ,57. 1 (C-
5) ,35. 9 (C-6) ,44. 4 (C-7) ,82. 6 (C-8) ,32. 2 (C-
9) ,146. 4 (C-10) ,143. 7 (C-11) ,173. 0 (C-12) ,
123. 8 (C-13) ,116. 3 (C-14) ,25. 4 (C-15). The
NMR and MS data were in accordance with those re-
ported in the literature [13],and identified 9 as 8-epi-
inuviscolide.
Inuchinenolide B (10) white amorphous powder;
C17H22 O5;ESI-MS (positive)m/z 307 [M + H]
+;
ESI-MS (negative) m/z 305 [M-H]-;1H NMR
(CD3OD,400 MHz)δ:5. 45 (1H,t,J = 7. 6 Hz,H-
2) ,3. 35 (1H,m,H-7) ,4. 87 (1H,ddd,J = 12. 0,
8. 8,3. 0 Hz,H-8) ,6. 23 (1H,d,J = 3. 5 Hz,H-13a) ,
5. 73 (1H,d,J = 3. 1 Hz,H-13b) ,1. 66 (3H,s,H3-
14) ,0. 99 (3H,s,H3-15) ,2. 02 (3H,s,2-OAc) ;
13 C
NMR (CD3OD,100 MHz)δ:137. 8 (C-1) ,73. 8 (C-
2) ,47. 9 (C-3) ,77. 8 (C-4) ,53. 5 (C-5) ,26. 3 (C-
6) ,43. 5 (C-7) ,81. 0 (C-8) ,37. 7 (C-9) ,132. 8
(C-10) ,140. 7 (C-11) ,172. 3 (C-12) ,122. 8 (C-
492 Nat Prod Res Dev Vol. 24
13) ,22. 0 (C-14) ,22. 8 (C-15) ,172. 8 (2-
OCOCH3) ,21. 2 (2-OCOCH3). The NMR and MS da-
ta were in accordance with those reported in the litera-
ture [11],and identified 10 as inuchinenolide B.
Tomentosin (11) white amorphous powder;C15 H20
O3;ESI-MS (positive)m/z 271[M + Na]
+;ESI-MS
(negative)m/z 247 [M-H]-;1H NMR (CDCl3,400
MHz)δ:2. 52 (2H,m,H2-2) ,1. 63 (2H,m,H2-3) ,
5. 44 (1H,m,H-5) ,2. 36 (2H,m,H2-6) ,3. 32 (1H,
m,H-7) ,4. 64 (1H,m,H-8) ,2. 25 (2H,m,H2-9) ,
2. 01 (1H,m,H-10) ,6. 27 (1H,d,J = 3. 0 Hz,H-
13a) ,5. 52 (1H,d,J = 2. 5 Hz,H-13b) ,1. 14 (3H,
d,J = 7. 0,H3-14) ,2. 16 (3H,s,H3-15) ;
13 C NMR
(CDCl3,100 MHz)δ:146. 4 (C-1) ,30. 7 (C-2) ,
42. 4 (C-3) ,208. 4 (C-4) ,122. 6 (C-5) ,29. 9 (C-
6) ,42. 4 (C-7) ,79. 5 (C-8) ,37. 0 (C-9) ,35. 7 (C-
10) ,139. 3 (C-11) ,170. 6 (C-12) ,122. 5 (C-13) ,
21. 2 (C-14) ,30. 1 (C-15). The NMR and MS data
were in accordance with those reported in the literature
[14],and identified 11 as tomentosin.
11α,13-Dihydrotomentosin (12) colorless oil;C15
H22O3;ESI-MS (positive)m/z 273[M + Na]
+;ESI-
MS (negative)m/z 249[M-H]-;1H NMR (CD3OD,
400 MHz)δ:2. 32 (1H,m,H-2a) ,2. 18 (1H,m,H-
2b) ,2. 60 (1H,dd,J = 9. 2,5. 6 Hz,H-3a) ,2. 50
(1H,dd,J = 8. 9,7. 0 Hz,H-3b) ,5. 50 (1H,dd,J =
9. 3,2. 3 Hz,H-5) ,2. 17 (1H,m,H-6a) ,1. 89 (1H,
ddd,J = 15. 7,9. 4,2. 8 Hz,H-6b) ,2. 68 (1H,m,H-
7) ,4. 69 (1H,ddd,J = 9. 5,6. 4,6. 4 Hz,H-8) ,2. 02
(2H,m,H2-9) ,2. 42 (1H,m,H-10) ,2. 90 (1H,m,
H-11) ,1. 10 (3H,d,J = 7. 5 Hz,H3-13) ,1. 14 (3H,
d,J = 7. 1 Hz,H3-14) ,2. 13 (3H,s,H3-15) ;
13C NMR
(CD3OD,100 MHz)δ:145. 9 (C-1) ,32. 5 (C-2) ,
43. 7 (C-3) ,211. 7 (C-4) ,124. 2 (C-5) ,23. 0 (C-
6) ,43. 8 (C-7) ,82. 7 (C-8) ,38. 4 (C-9) ,34. 2 (C-
10) ,40. 4 (C-11) ,182. 1 (C-12) ,11. 3 (C-13) ,
21. 9 (C-14) ,30. 1 (C-15). The NMR and MS data
were in accordance with those reported in the literature
[15],and identified 12 as 11α,13-dihydrotomentosin.
Inuchinenolide A (13) colorless oil;C17H22O5;ESI-
MS (positive)m/z 329 [M + Na]+;ESI-MS (nega-
tive)m/z 305[M-H]-;1H NMR (CDCl3,400 MHz)
δ:5. 60 (1H,brs,H-5) ,5. 08 (1H,dd,J = 10. 0,2. 0
Hz,H-6) ,3. 42 (1H,m,H-7) ,4. 64 (1H,m,H-8) ,
6. 28 (1H,d,J = 3. 0 Hz,H-13a) ,5. 71 (1H,d,J =
3. 0 Hz,H-13b) ,1. 15 (3H,d,J = 6. 5 Hz,H3-14) ,
2. 16 (3H,s,H3-15) ,1. 98 (3H,s,6-OAc) ,;
13 C
NMR (CDCl3,100 MHz)δ:142. 5 (C-1) ,30. 0 (C-
2) ,42. 2 (C-3) ,207. 0 (C-4) ,125. 5 (C-5) ,70. 0
(C-6) ,42. 2 (C-7) ,76. 7 (C-8) ,36. 9 (C-9) ,35. 0
(C-10) ,135. 6 (C-11) ,169. 5 (C-12) ,124. 7 (C-
13) ,20. 6 (C-14) ,30. 0 (C-15) ,168. 9 (6-
OCOCH3) ,21. 0 (6-OCOCH3). The NMR and MS da-
ta were in accordance with those reported in the litera-
ture [11],and identified 13 as inuchinenolide A.
4H-Tomentosin (14) colorless oil;C15 H22 O3;ESI-
MS (positive)m/z 273 [M + Na]+;ESI-MS (nega-
tive) m/z 249 [M-H]-;1H NMR (CD3OD,400
MHz)δ:1. 96 (2H,m,H2-2) ,1. 42 (2H,m,H2-3) ,
3. 31 (1H,m,H-4) ,5. 45 (1H,m,H-5) ,2. 36 (2H,
m,H2-6) ,3. 59 (1H,m,H-7) ,4. 65 (1H,m,H-8) ,
2. 15 (2H,m,H2-9) ,1. 88 (1H,m,H-10) ,6. 12
(1H,d,J = 2. 5 Hz,H-13a) ,5. 56 (1H,d,J = 2. 2
Hz,H-13b) ,1. 06 (3H,d,J = 6. 8 Hz,H3-14) ,1. 07
(3H,d,J = 7. 0 Hz,H3-15) ;
13 C NMR (CD3OD,100
MHz)δ:147. 5 (C-1) ,34. 6 (C-2) ,39. 8 (C-3) ,
69. 0 (C-4) ,121. 7 (C-5) ,28. 3 (C-6) ,44. 1 (C-
7) ,82. 0 (C-8) ,38. 4 (C-9) ,37. 0 (C-10) ,141. 6
(C-11) ,173. 1 (C-12) ,123. 4 (C-13) ,21. 8 (C-
14) ,23. 9 (C-15). The NMR and MS data were in ac-
cordance with those reported in the literature [14],and
identified 14 as 4H-tomentosin.
11β,13-Dihydro-4H-tomentosin (15) colorless
oil;C15 H24 O3;ESI-MS (positive)m/z 275[M +
Na]+;ESI-MS (negative) m/z 251 [M-H]-;1H
NMR (CDCl3,500 MHz)δ:2. 11 (1H,m,H-2a) ,
1. 98 (1H,m,H-2b) ,1. 56 (1H,m,H-3a) ,1. 48
(1H,m,H-3b) ,3. 78 (1H,m,H-4) ,5. 43 (1H,t,J =
6. 0 Hz,H-5) ,2. 29 (1H,m,H-6a) ,2. 18 (1H,m,H-
6b) ,2. 41 (1H,m,H-7) ,4. 47 (1H,m,H-8) ,1. 96
(1H,m,H-9a) ,1. 90 (1H,q,J = 12. 0 Hz,H-9b) ,
2. 38 (1H,m,H-10) ,2. 25 (1H,m,H-11) ,1. 22
(3H,d,J = 7. 5 Hz,H3-13) ,1. 14 (3H,d,J = 7. 0
Hz,H3-14) ,1. 20 (3H,d,J = 7. 0 Hz,H3-15) ;
13 C
592Vol. 24 CHANG Rui-jie,et al:Chemical Constituents from Inula helianthus-aquatica
NMR (CDCl3,125 MHz)δ:145. 6 (C-1) ,32. 7 (C-
2) ,38. 1 (C-3) ,67. 5 (C-4) ,119. 4 (C-5) ,26. 3
(C-6) ,45. 1 (C-7) ,79. 3 (C-8) ,35. 3 (C-9) ,35. 0
(C-10) ,39. 2 (C-11) ,179. 4 (C-12) ,13. 9 (C-13) ,
20. 6 (C-14) ,23. 8 (C-15). The NMR and MS data
were in accordance with those reported in the literature
[16],and identified 15 as 11β,13-dihydro-4H-tomento-
sin.
11-Epi-sundiversifolide (16) colorless oil;C13 H20
O3;ESI-MS (positive)m/z 247[M + Na]
+;ESI-MS
(negative)m/z 223 [M-H]-;1H NMR (CDCl3,400
MHz)δ:2. 15-2. 46 (7H,m,H-2,6,7,10,11) ,3. 66
(2H,m,H2-3) ,5. 46 (1H,dd,J = 8. 3,5. 9 Hz,H-
5) ,4. 50 (1H,ddd,J = 12. 0,8. 5,2. 8 Hz,H-8) ,1. 97
(1H,m,H-9a) ,1. 87 (1H,m,H-9b) ,1. 22 (3H,d,J
= 7. 0 Hz,H3-13) ,1. 16 (3H,d,J = 7. 0 Hz,H3-
14) ;13C NMR (CDCl3,100 MHz)δ:142. 3 (C-1) ,
39. 2 (C-2) ,61. 1 (C-3) ,121. 5 (C-5) ,26. 3 (C-
6) ,44. 9 (C-7) ,79. 3 (C-8) ,35. 1 (C-9) ,35. 2 (C-
10) ,39. 4 (C-11) ,179. 7 (C-12) ,13. 8 (C-13) ,
20. 5 (C-14). The NMR and MS data were in accord-
ance with those reported in the literature [17,18],and i-
dentified 16 as 11-epi-sundiversifolide.
Sundiversifolide (17) colorless oil;C13 H20 O3;ESI-
MS (positive)m/z 247[M + Na]+;ESI-MS (nega-
tive)m/z 223[M-H]-;1H NMR (CDCl3,400 MHz)
δ:2. 40 (1H,m,H-2a) ,2. 28 (1H,m,H-2b) ,3. 72
(1H,m,H-3a) ,3. 60 (1H,m,H-3b) ,5. 54 (1H,brd,
J = 6. 9 Hz,H-5) ,2. 19 (1H,dd,J = 14. 5,7. 2 Hz,H-
6a) ,1. 92 (1H,ddd,J = 15. 8,9. 4,2. 6 Hz,H-6b) ,
2. 72 (1H,m,H-7) ,4. 64 (1H,ddd,J = 10. 2,6. 2,
6. 2 Hz,H-8) ,2. 08 (2H,m,H2-9) ,2. 45 (1H,m,H-
10) ,2. 81 (1H,m,H-11) ,1. 16 (3H,d,J = 7. 0 Hz,
H3-13) ,1. 17 (3H,d,J = 7. 3 Hz,H3-14) ;
13 C NMR
(CDCl3,100 MHz)δ:142. 0 (C-1) ,40. 2 (C-2) ,
61. 0 (C-3) ,124. 6 (C-5) ,22. 0 (C-6) ,42. 3 (C-
7) ,80. 6 (C-8) ,36. 9 (C-9) ,32. 6 (C-10) ,39. 0
(C-11) ,179. 3 (C-12) ,10. 8 (C-13) ,21. 5 (C-14)
. The NMR and MS data were in accordance with those
reported in the literature [19],and identified 17 as sun-
diversifolide.
8,9,10-Trihydroxythymol (18) colorless oil;C10
H14O4;ESI-MS (positive)m/z 221[M + Na]
+;ESI-
MS (negative)m/z 197[M-H]-;1H NMR (CD3OD,
500 MHz)δ:6. 58 (1H,d,J = 0. 8 Hz,H-2) ,7. 16
(1H,d,J = 8. 0 Hz,H-5) ,6. 62 (1H,dd,J = 8. 0,0. 8
Hz,H-6) ,2. 22 (3H,s,H3-7) ,3. 85 (4H,m,H2-9,
H2-10) ;
13C NMR (CD3OD,125 MHz)δ:134. 0 (C-
1) ,118. 2 (C-2) ,157. 4 (C-3) ,124. 8 (C-4) ,128. 9
(C-5) ,121. 5 (C-6) ,21. 3 (C-7) ,80. 2 (C-8) ,66. 9
(C-9,C-10). The NMR and MS data were in accord-
ance with those reported in the literature [20],and iden-
tified 18 as 8,9,10-trihydroxythymol.
10-Hydroxy-8,9-dioxyisopropylidenethymol (19)
colorless oil;C13H18O4;ESI-MS (positive)m/z 261[M
+ Na]+;ESI-MS (negative)m/z 237 [M-H]-;1H
NMR (CD3OD,400 MHz)δ:6. 58 (1H,brs,H-2) ,
7. 31 (1H,d,J = 7. 8 Hz,H-5) ,6. 63 (1H,brd,J =
7. 8 Hz,H-6) ,2. 23 (3H,s,H3-7) ,4. 40 (1H,d,J =
9. 0 Hz,H-9a) ,4. 16 (1H,d,J = 9. 0 Hz,H-9b) ,3. 73
(1H,d,J = 11. 5 Hz,H-10a) ,3. 61 (1H,d,J = 11. 5
Hz,H-10b) ,1. 27 (3H,s,H3-2) ,1. 52 (3H,s,H3-
3) ;13C NMR (CD3OD,100 MHz)δ:139. 8 (C-1) ,
117. 4 (C-2) ,154. 9 (C-3) ,127. 6 (C-4) ,128. 8 (C-
5) ,121. 2 (C-6) ,21. 4 (C-7) ,86. 8 (C-8) ,72. 6
(C-9) ,67. 6 (C-10) ,110. 9 (C-1) ,27. 5 (C-2) ,
26. 2 (C-3). The NMR and MS data were in accord-
ance with those reported in the literature [21],and iden-
tified 19 as 10-hydroxy-8,9-dioxyisopropylidenethy-
mol.
8,10-Dihydroxy-9-isobutyryloxythymol (20) col-
orless oil;C14H20O5;ESI-MS (positive)m/z 291[M +
Na]+;ESI-MS (negative) m/z 267 [M-H]-;1H
NMR (CD3OD,500 MHz)δ:6. 60 (1H,d,J = 1. 0
Hz,H-2) ,7. 16 (1H,d,J = 8. 0 Hz,H-5) ,6. 64 (1H,
dd,J = 8. 0,1. 0 Hz,H-6) ,2. 23 (3H,s,H3-7) ,4. 56
(1H,d,J = 11. 0 Hz,H-9a) ,4. 40 (1H,d,J = 11. 5
Hz,H-9b) ,3. 91 (1H,d,J = 11. 5 Hz,H-10a) ,3. 84
(1H,d,J = 11. 5 Hz,H-10b) ,2. 49 (1H,m,H-2) ,
1. 06 (3H,d,J = 7. 0 Hz,H3-3) ,1. 03 (3H,d,J =
7. 0 Hz,H3-4) ;
13 C NMR (CD3OD,125 MHz) δ:
139. 9 (C-1) ,118. 0 (C-2) ,156. 6 (C-3) ,123. 9 (C-
4) ,128. 6 (C-5) ,121. 1 (C-6) ,21. 0 (C-7) ,78. 7
(C-8) ,68. 2 (C-9) ,66. 6 (C-10) ,178. 8 (C-1) ,
35. 1 (C-2) ,19. 2 (C-3) ,19. 1 (C-4). The NMR
692 Nat Prod Res Dev Vol. 24
and MS data were in accordance with those reported in
the literature [21],and identified 20 as 8,10-dihydroxy-
9-isobutyryloxythymol.
8-Hydroxy-9,10-diisobutyryloxythymol (21) col-
orless oil;C18H26O6;ESI-MS (positive)m/z 361[M +
Na]+;ESI-MS (negative)m/z 337[M-H]-;1H NMR
(CDCl3,500 MHz)δ:6. 69 (1H,d,J = 1. 0 Hz,H-
2) ,6. 91 (1H,d,J = 8. 0 Hz,H-5) ,6. 65 (1H,dd,J
= 8. 0,1. 0 Hz,H-6) ,4. 46 (each 2H,dd,J = 19. 0,
11. 9 Hz,H2-9,10) ,2. 56 (each H,m,H-2,2) ,
2. 27 (3H,s,H3-7) ,1. 12 (each 3H,d,J = 7. 0 Hz,
H3-3,3,4,4) ;
13 C NMR (CDCl3,125 MHz)δ:
140. 0 (C-1) ,118. 5 (C-2) ,156. 4 (C-3) ,119. 0 (C-
4) ,126. 5 (C-5) ,120. 5 (C-6) ,20. 9 (C-7) ,78. 5
(C-8) ,67. 2 (C-9,10) ,177. 5 (C-1,1) ,33. 9 (C-
2,2) ,18. 8 (C-3,3,4,4). The NMR and MS
data were in accordance with those reported in the lit-
erature [21],and identified 21 as 8-hydroxy-9,10-di-
isobutyryloxythymol.
8-Hydroxy-9-isobutyryloxy-10-(2-methylbutanoyl)
thymol (22) colorless oil;C19H28O6;ESI-MS (posi-
tive)m/z 375[M + Na]+;ESI-MS (negative)m/z
351[M-H]-;1H NMR (CDCl3,500 MHz)δ:6. 70
(1H,d,J = 1. 0 Hz,H-2) ,6. 89 (1H,d,J = 8. 0 Hz,
H-5) ,6. 64 (1H,dd,J = 8. 0,1. 0 Hz,H-6) ,2. 27
(3H,s,H3-7) ,4. 45 (each 2H,m,H2-9,10) ,2. 56
(1H,m,H-2) ,2. 40 (1H,m,H-2) ,1. 62 (1H,m,
H-3a) ,1. 44 (1H,m,H-3b) ,1. 13 (each 3H,d,J
= 7. 0 Hz,H3-3,4) ,1. 10 (3H,d,J = 7. 0 Hz,H3-
5) ,0. 83 (3H,m,H3-4) ;
13 C NMR (CDCl3,125
MHz)δ:140. 1 (C-1) ,118. 7 (C-2) ,156. 7 (C-3) ,
118. 7 (C-4) ,126. 5 (C-5) ,120. 5 (C-6) ,21. 0 (C-
7) ,78. 9 (C-8) ,67. 3 (C-9) ,67. 4 (C-10) ,177. 5
(C-1) ,33. 9 (C-2) ,18. 8 (C-3,4) ,177. 2 (C-
1) ,41. 0 (C-2) ,16. 5 (C-3) ,26. 6 (C-4) ,
11. 43 (C-5). The NMR and MS data were in accord-
ance with those reported in the literature [22],and iden-
tified 22 as 8-hydroxy-9-isobutyryloxy-10-(2-methylbu-
tanoyl)thymol.
8,9-Epoxy-3,10-diisobutyryloxythymol (23) col-
orless oil;C18H24O5;ESI-MS (positive)m/z 343[M +
Na]+;ESI-MS (negative) m/z 319 [M-H]-;1H
NMR (CDCl3,400 MHz)δ:6. 87 (1H,brs,H-2) ,
7. 35 (1H,d,J = 7. 8 Hz,H-5) ,7. 05 (1H,brd,J =
7. 8 Hz,H-6) ,2. 35 (3H,s,H3-7) ,3. 03 (1H,d,J =
5. 3 Hz,H-9a) ,2. 79 (1H,d,J = 5. 3 Hz,H-9b) ,4. 57
(1H,d,J = 12. 2 Hz,H-10a) ,4. 19 (1H,d,J = 12. 2
Hz,H-10b) ,2. 52 (1H,m,H-2) ,1. 09 (3H,d,J =
7. 6 Hz,H3-3) ,1. 11 (3H,d,J = 7. 6 Hz,H3-4) ,
2. 85 (1H,m,H-2) ,1. 32 (3H,d,J = 7. 2 Hz,H3-
3) ,1. 32 (3H,d,J = 7. 2 Hz,H3-4). The NMR and
MS data were in accordance with those reported in the
literature [23],and identified 23 as 8,9-epoxy-3,10-di-
isobutyryloxythymol.
8,9-Epoxy-3-isobutyryloxy-10-(2-methylbutanoyl)
thymol (24) colorless oil;C19H26O5;ESI-MS (posi-
tive)m/z 357 [M + Na]+;ESI-MS (negative)m/z
333[M-H]-;1H NMR (CDCl3,400 MHz)δ:6. 87
(1H,brs,H-2) ,7. 36 (1H,d,J = 8. 0 Hz,H-5) ,7. 05
(1H,brd,J = 7. 6 Hz,H-6) ,2. 35 (3H,s,H3-7) ,
3. 04 (1H,d,J = 5. 2 Hz,H-9a) ,2. 79 (1H,d,J =
5. 2 Hz,H-9b) ,4. 59 (1H,d,J = 12. 4 Hz,H-10a) ,
4. 21 (1H,d,J = 12. 4 Hz,H-10b) ,2. 35 (1H,m,H-
2) ,1. 61 (1H,m,H-3 a) ,1. 42 (1H,m,H-3 b) ,
0. 85 (3H,t,J = 7. 2 Hz,H3-4) ,1. 08 (3H,d,J =
7. 2 Hz,H3-5) ,2. 85 (1H,m,H-2) ,1. 33 (3H,d,J
=7. 2 Hz,H3-3) ,1. 33 (3H,d,J = 7. 2 Hz,H3-4)
. The NMR and MS data were in accordance with those
reported in the literature [23],and identified 24 as 8,9-
epoxy-3-isobutyryloxy-10-(2-methylbutanoyl)thymol.
References
1 Flora of China Editorial Committee(中国植物志编委会) ,
Chinese Academy of Sciences(中国科学院). Flora of China
(中国植物志) ,Beijing:Science Press,2005,75:259-260.
2 Zeng GZ,Tan NH,Ji CJ,et al. Apoptosis inducement of bige-
lovin from Inula helianthus-aquatica on human leukemia
U937 cells. Phytother Res,2009,23:885-891.
3 Wang Q,Zhou BN,Zhang RW,et al. Cytotoxicity and NMR
spectral assignments of ergolide and bigelovin. Planta Med,
1996,62:166-168.
4 Zhang RW(张人伟) ,Lin YY(林咏月) ,Qi YF(戚育芳) ,
et al. Studies on the anticancer constituents of Inula helian-
thus-aquatica C. Y. Wu Ex Ling. Nat Pro Res Dev(天然产物
研究与开发) ,1998,10:31-33.
(下转第 328 页)
792Vol. 24 CHANG Rui-jie,et al:Chemical Constituents from Inula helianthus-aquatica
Bazhen Tang. Chin Tradit Patent Med,2003,25(11) :22-24.
2 Jiang N,Luo X,Chen DH. The effect of Bazhen decoction on
cytokines in mice. J Sichuan Univ,2003,40:159-162.
3 Guo DP,Xie RL,Liang QB. Clinical observation of bazhen
decoction in treating stable SLE anemia. J Emerg Tradit Chin
Med,2008,33:58-62.
4 Wen HM,Guo KJ,Xing WL,et al. A study into components
of ingested into blood of rats and rabbits. J Nanjing Tradit
Chin Med Univ,2007,23(2) :96-99.
5 Yang L,Xu SJ,Zeng X,et al. In vivo rat metabolism studies
of ginsenoside-Rb1 . Chem J Chin Univ,2006,6:1042-1044.
6 Yang L,Xu SJ,Zeng X,et al. Determination of ginsenoside
Rd and itsmetabolites in rat urine by LC-MS. Acta Pharm
Sin,2006,41:742-746.
7 Guo FQ,Huang LF,Zhou SY. Headspace solid-phase micro-
extraction-gas chromatography-mass spectrometry for analysis
of volatile components from Atractlodes macrocephala Koidz.
Chin J Chromatogr,2007,25:43-47.
8 Liu Y,Shi RB,Liu B,et al. Variation of chemical composi-
tions in body fluid of rats after taking decoction of Rhizoma
Chuanxiong medicinal slices orally. J Beijing Univ Tradit
Chin Med,2008,31:334-337.
9 Zhang L,Xu DS,Feng Y. Study on adscription of plasma ef-
fective constituents of rat after administrated with Paeonia
lacliflora and Glycyrrhiza uralensis compound. China J Chin
Mater Med,2007,32:
櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵
1789-1791.
(上接第 297 页)
5 Huang HQ(黄火强) ,Piao XL(朴香兰) ,Yan MN(闫美
娜) ,et al. Seven sesquiterpene lactones from flower of Inula
helianthus-aquatica. Chin J Exp Tradit Med Formul(中国实
验方剂学杂志) ,2011,17:112-115.
6 Romo J,Joseph-Nathan P,Diaz AF. The constituents of Hele-
nium aromaticum(HOOK)Bailey,the structure of aromatin
and aromaticin. Tetrahedron,1964,20:79-85.
7 Bohlmann F,Misra LN,Jakupovic J. Pseudoguaianolides and
carabrone derivatives from Loxothysanus sinuatus. Phytochem-
istry,1985,24:1021-1026.
8 Parker BA,Geissman TA. The sesquiterpenoid lactones of
Helenium bigelovii Gray. J Org Chem,1962,27:4127-4132.
9 Bohlmann F,Mahanta PK. Zwei neue pseudoguaianolide aus
Telekia speciosa. Phytochemistry,1979,18:887-888.
10 Maruyama M,Omura S. Carpesiolin from Carpesium abro-
tanoides. Phytochemistry,1977,16:782-783.
11 Ito K,Iida T. Seven sesquiterpene lactones from Inula britan-
nica var. Chinensis. Phytochemistry,1981,20:271-273.
12 Rustaiyan A,Zare K,Biniyaz T,et al. A seco-guaianolides
and other sesquiterpene lactones from Postia bombycina. Phy-
tochemistry,1989,28:3127-3129.
13 Zdero C,Bohlmann F,King RM,et al. Sesquiterpene lactones
from Bedfordia arborescens. Phytochemistry,1987,26:1207-
1209.
14 Bohlmann F,Mahanta PK,Jakupovic J,et al. New sesquiter-
pene lactones from Inula species. Phytochemistry,1978,17:
1165-1172.
15 Jakupovic J,Zdero C,Grenz M,et al. Twenty-one acylphloro-
glucinol derivatives and further constituents from south Afri-
can Helichrysum species. Phytochemistry,1989,28:1119-
1131.
16 Spring O,Vargas D,Fischer NH. Sesquiterpene lactones and
benzofurans in glandular trichomes of three Pappobolus spe-
cies. Phytochemistry,1991,30:1861-1867.
17 Kuo YH,Lin BY. A new dinorxanthane and chromone from
the root of Tithonia diversifolia. Chem Pharm Bull,1999,47:
428-429.
18 Matsuo K,Yokoe H,Shishido K,et al. Synthesis of diversifol-
ide and structure revision. Tetrahedron Lett,2008,49:4279-
4281.
19 Shuji O,Kaori TY,Seiji K,et al. A species-selective allelo-
pathic substance from germinating sunflower(Helianthus ann-
uus L.)seeds. Phytochemistry,2001,56:577-581.
20 Monache GD,Monache FD,Becerra J,et al. Thymol deriva-
tives from Eupatorium glechonophyllum. Phytochemistry,
1984,23:1947-1950.
21 Liang HX,Bao FK,Dong XP,et al. Antibacterial thymol de-
rivatives isolated from Centipeda minima. Molecules,2007,
12:1606-1613.
22 Su BN,Takaishi Y,Yabuuchi T,et al. Sesquiterpenes and
monoterpenes from the bark of Inula macrophylla. J Nat
Prod,2001,64:466-471.
23 Mossa JS,El-Feraly FS,Muhammad I,et al. Sesquiterpene
lactones and thymol esters from Vicoa pentanema. J Nat
Prod,1997,60:550-555.
823 Nat Prod Res Dev Vol. 24