量化森林土壤呼吸及其组分对温度的响应对准确评估未来气候变化背景下陆地生态系统的碳平衡极其重要。该文通过对神农架海拔梯度上常绿阔叶林、常绿落叶阔叶混交林、落叶阔叶林以及亚高山针叶林4种典型森林土壤呼吸的研究发现: 4种森林类型的年平均土壤呼吸速率和年平均异养呼吸速率分别为1.63、1.79、1.74、1.35 μmol CO2·m-2·s-1和1.13、1.12、1.12、0.80 μmol CO2·m-2·s-1。该地区的土壤呼吸及其组分呈现出明显的季节动态, 夏季最高, 冬季最低。4种森林类型中, 阔叶林的土壤呼吸显著高于针叶林, 但阔叶林之间的土壤呼吸差异不显著。土壤温度是影响土壤呼吸及其组分的主要因素, 二者呈显著的指数关系; 土壤含水量与土壤呼吸之间没有显著的相关关系。4种典型森林土壤呼吸的Q10值分别为2.38、2.68、2.99和4.24, 随海拔的升高土壤呼吸对温度的敏感性增强, Q10值随海拔的升高而增加。
Aims Quantifying forest soil respiration (Rs), its components of heterotrophic respiration (RH) and autotrophic respiration (RA), and their responses to temperature are vital to accurately evaluate response of the terrestrial carbon balance to future climate change. Our specific objectives were to (1) compare patterns of soil respiration of four types of forests, (2) evaluate relationships among soil respiration and temperature and water content and (3) find the regulation of Q10 value in relation to elevation. Methods Four types of forests along an elevational gradient at Shennongjia were investigated. The trenching plot approach was used to partition soil respiration into autotrophic respiration and heterotrophic respiration. Rates of soil respiration were measured twice a month from July 2009 to June 2010. Soil temperature and soil water content were measured at the same time. Important findings Annual soil respiration of the four types of forests was 1.63, 1.79, 1.74 and 1.35 μmol CO2·m-2·s-1, and annual heterotrophic respiration was 1.13, 1.12, 1.12, 0.80 μmol CO2·m-2·s-1. Soil respiration and its components displayed obvious seasonal dynamics, with maximum values in summer and minimum values in winter. The soil respiration flux of broad-leaved forest was significantly higher than that of coniferous forests, but there was no obvious differentiation between broad-leaved forests. Soil temperature was the main factor that affected soil respiration and its components, and there were significant exponential relationships between them. There was no significant relationship between soil water content and soil respiration flux, except in broad-leaved forest with a mild inhibition phenomenon. Q10 values of four types of forests were 2.38, 2.68, 2.99 and 4.24. Soil respiration was more sensitive to temperature along the elevation gradient, while Q10 value increased with elevation increase.
全 文 :植物生态学报 2011, 35 (7): 722–730 doi: 10.3724/SP.J.1258.2011.00722
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2011-03-07 接受日期Accepted: 2011-04-16
* 通讯作者Author for correspondence (E-mail: Xie@ibcas.ac.cn)
神农架海拔梯度上4种典型森林的土壤呼吸组分及
其对温度的敏感性
罗 璐1,2,3 申国珍1,3 谢宗强1,3* 周利光4
1中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093; 2中国科学院研究生院, 北京 100049; 3湖北神农架森林生态系统国家野外科
学观测研究站, 湖北兴山 443700; 4内蒙古大学生命科学学院, 呼和浩特 010021
摘 要 量化森林土壤呼吸及其组分对温度的响应对准确评估未来气候变化背景下陆地生态系统的碳平衡极其重要。该文通
过对神农架海拔梯度上常绿阔叶林、常绿落叶阔叶混交林、落叶阔叶林以及亚高山针叶林4种典型森林土壤呼吸的研究发现:
4种森林类型的年平均土壤呼吸速率和年平均异养呼吸速率分别为1.63、1.79、1.74、1.35 μmol CO2·m–2·s–1和1.13、1.12、1.12、
0.80 μmol CO2·m–2·s–1。该地区的土壤呼吸及其组分呈现出明显的季节动态, 夏季最高, 冬季最低。4种森林类型中, 阔叶林的
土壤呼吸显著高于针叶林, 但阔叶林之间的土壤呼吸差异不显著。土壤温度是影响土壤呼吸及其组分的主要因素, 二者呈显
著的指数关系; 土壤含水量与土壤呼吸之间没有显著的相关关系。4种典型森林土壤呼吸的Q10值分别为2.38、2.68、2.99和4.24,
随海拔的升高土壤呼吸对温度的敏感性增强, Q10值随海拔的升高而增加。
关键词 自养呼吸, 异养呼吸, Q10值, 土壤含水量, 土壤温度
Components of soil respiration and its temperature sensitivity in four types of forests along an
elevational gradient in Shennongjia, China
LUO Lu1,2,3, SHEN Guo-Zhen1,3, XIE Zong-Qiang1,3*, and ZHOU Li-Guang4
1State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; 2Graduate Univer-
sity of Chinese Academy of Sciences, Beijing 100049, China; 3National Field Station for Forest Ecosystem in Shennongjia, Hubei, Xingshan, Hubei 443700,
China; and 4College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
Abstract
Aims Quantifying forest soil respiration (Rs), its components of heterotrophic respiration (RH) and autotrophic
respiration (RA), and their responses to temperature are vital to accurately evaluate response of the terrestrial car-
bon balance to future climate change. Our specific objectives were to (1) compare patterns of soil respiration of
four types of forests, (2) evaluate relationships among soil respiration and temperature and water content and (3)
find the regulation of Q10 value in relation to elevation.
Methods Four types of forests along an elevational gradient at Shennongjia were investigated. The trenching
plot approach was used to partition soil respiration into autotrophic respiration and heterotrophic respiration.
Rates of soil respiration were measured twice a month from July 2009 to June 2010. Soil temperature and soil
water content were measured at the same time.
Important findings Annual soil respiration of the four types of forests was 1.63, 1.79, 1.74 and 1.35 μmol
CO2·m–2·s–1, and annual heterotrophic respiration was 1.13, 1.12, 1.12, 0.80 μmol CO2·m–2·s–1. Soil respiration and
its components displayed obvious seasonal dynamics, with maximum values in summer and minimum values in
winter. The soil respiration flux of broad-leaved forest was significantly higher than that of coniferous forests, but
there was no obvious differentiation between broad-leaved forests. Soil temperature was the main factor that af-
fected soil respiration and its components, and there were significant exponential relationships between them.
There was no significant relationship between soil water content and soil respiration flux, except in broad-leaved
forest with a mild inhibition phenomenon. Q10 values of four types of forests were 2.38, 2.68, 2.99 and 4.24. Soil
respiration was more sensitive to temperature along the elevation gradient, while Q10 value increased with eleva-
tion increase.
罗璐等: 神农架海拔梯度上 4种典型森林的土壤呼吸组分及其对温度的敏感性 723
doi: 10.3724/SP.J.1258.2011.00722
Key words autotrophic respiration (RA), heterotrophic respiration (RH), Q10 value, soil water content, soil tem-
perature
土壤碳储量是陆地植被碳库的2–3倍、大气碳
库的2倍(Schlesinger, 1990)。森林作为陆地生态系统
的主体, 维持着全球86%的植被碳库和73%的土壤
碳库(Tans et al., 1990; Dixon et al., 1994)。森林土壤
碳储量的较小波动都可能对大气CO2浓度产生显著
的影响, 进而影响全球气候变化。
土壤呼吸(soil respiration, RS)是陆地生态系统
向大气释放CO2的第二大途径(Wan et al., 2007), 每
年由RS释放到大气中的CO2是化石燃料燃烧释放的
10倍以上(Raich & Potter, 1995)。森林RS是植物固定
的碳释放到大气中的主要途径(Högberg & Read,
2006; Gaumont-Guay et al., 2009), 受土壤温度
(Lloyd & Taylor, 1994; Zhou et al., 2007)、土壤含水
量(Davidson et al., 2000; Liu et al., 2009)及本底物质
(Högberg et al., 2001; Bahn et al., 2008)的影响。RS
主要由自养呼吸(autotrophic respiration, RA, 根系和
根际微生物呼吸)和异养呼吸(heterotrophic respira-
tion, RH, 微生物和土壤动物呼吸)两个组分组成。预
测RS过程对环境变化的反馈, 需要清楚地掌握RA和
RH分别占RS的比例(Lee et al., 2004), 因为RS的不同
组分涉及不同的生物学和生态学过程, 且不同组分
对环境变化的响应不同(Boone et al., 1998; Bhupin-
derpal et al., 2003; Lee et al., 2003)。因此, 将RS划分
为RA和RH是从机制上理解RS对环境变化响应的关
键步骤(Luo & Zhou, 2006)。
目前, 对RS及其组分的温度敏感性的研究结果
存在较大的差异。有研究发现, RA的温度敏感性大
于 RH (Boone et al., 1998; Epron et al., 2001;
Bhupinderpal et al., 2003; Lavigne et al., 2003), 也有
研究发现RA的温度敏感性小于RH (Rey et al., 2002;
Hartley et al., 2007); 一些研究表明, 土壤含水量对
RS具有显著的影响(Wang et al., 2001; Scott-Denton
et al., 2006), 另一些研究则表明, 土壤含水量对RS
的影响微不足道(Raich et al., 2002; Bond-Lamberty
et al., 2004)。那么, 在不同的植被类型和气候条件
下, RS及其组分与土壤温度和土壤含水量的关系将
发生怎样的变化?海拔梯度在较小的空间范围内
浓缩了不同的生态系统和环境类型, 是研究RS随气
候变化的理想场所。本研究以我国北亚热带神农架
海拔梯度上4种典型森林为研究对象, 探讨海拔梯
度上不同森林类型的RS及其组分的季节变化以及
RS的温度敏感性, 以期为准确地预测环境变化与RS
之间的关系提供理论依据。
1 研究区概况和研究方法
1.1 研究区自然概况
研究地点位于湖北神农架森林生态系统国家
野外科学观测研究站(简称“神农架站”), 地处我国
鄂西地区, 属大巴山脉东延之余脉, 地理位置为
109°56′–110°58′ E, 31°15′–31°57′ N。该地区为中亚
热带向北亚热带的过渡带, 气候主要受东南季风影
响。年平均气温10.6 ℃, 年降水量1 306.2–1 722.0
mm, 降水多集中于夏季, 冬季较少。本研究在神农
架山体上海拔780–2 680 m依次选择了4种典型森
林: 常绿阔叶林、常绿落叶阔叶混交林、落叶阔叶
林和亚高山针叶林为研究对象。各森林类型的立地
状况见表1。
1.2 样地设置
在4种类型森林的典型地段随机设置3个区组,
每个区组10 m × 20 m, 将其划分为8个5 m × 5 m的
小区。每个区组内随机选择4个小区进行挖壕沟处
理, 其余保持原状, 即每个区组内(挖壕沟+不挖壕
沟) 2种处理, 4次重复, 每个小区内设置一个1 m × 1
m的小样方。2008年9–10月, 在小区内按处理挖1 m
× 1 m的壕沟, 壕沟深至基岩或无根系位置、宽10
cm。用硬质海绵填埋壕沟, 以此把壕沟内的小区与
周围土壤隔离, 并回填土壤; 贴地面剪除小区的地
面植被, 尽量减少对地表土壤的扰动。所有挖壕沟
小区内定期清除地表植被。
1.3 研究方法
1.3.1 土壤呼吸的测定
2008年11月, 在每个小区的1 m × 1 m小样方内
安置一个内径20 cm、高11 cm的PVC环。将PVC环
的一端削尖沿坡面压入土中约8 cm深, 尽量减少布
置PVC环对土壤的镇压作用, PVC环在整个测量期
间位置保持不变。2009年5月–2010年7月 , 用
LI-8100便携式土壤呼吸测定仪(LI-COR, Nebraska,
USA)测量RS。生长季(5–11月)每月测量2次, 非生长
724 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (7): 722–730
www.plant-ecology.com
表1 神农架海拔梯度上4种典型森林的立地特征
Table 1 Site characteristics of four typical forests along an elevational gradient in Shennongjia, Hubei
森林类型
Forest type
位置
Location
海拔
Elevation
(m)
坡度
Slope
降水量
Precipitation
(mm)
平均胸径
Mean diameter at
breast hight (cm)
建群种
Constructive species
土壤类型
Soil type
常绿阔叶林
Evergreen broad-
leaved forest
31°21′ N
110°30′ E
780 41.5° 850 7.90 川钓樟 Lindera strychnifolia
var. hemsleyana
宜昌楠 Phoebe zhennan yi-
chang
青冈 Cyclobalanopsis glauca
山地黄壤
Mountain yellow
earth
常绿落叶阔叶混交林
Mixed evergreen and
deciduous broad-
leaved forest
31°19′ N
110°29′ E
1 670 21.0° 1 200 13.34 米心水青冈 Fagus engleriana
青冈 Cyclobalanopsis glauca
山地黄棕壤
Mountain yellow
brown earth
落叶阔叶林
Deciduous broad-
leaved forest
31°18′ N
110°30′ E
1 970 19.0° 1 050 17.59 锐齿槲栎 Quercus aliena var.
acutiserrata
四照花 Cronus japonica var.
chinensis
山地黄棕壤
Mountain yellow-
brown earth
亚高山针叶林
Sub-alpine
coniferous forest
31°28′ N
110°18′ E
2 570 22.0° 1 100 24.82 巴山冷杉 Abies fargesii
杜鹃 Rhododendron simsii
山地暗棕壤
Mountain dark
yellow earth
季每月测量1次。
1.3.2 土壤温度和含水量的测定
10 cm深处的土壤温度及土壤含水量由LI-8100
便携式土壤呼吸测定仪配带的两个探头同步测量。
同时每个样地长期安放HOBOware自计数据采集器
(HOBO, Onset, USA), 用于自动采集土壤温度和含
水量数据, 每2 min记录一次。
1.3.3 各径级根碳含量和根分解速率的测定
2008年9–10月, 在每个森林类型内设置破坏性
样地, 挖取5个1 m × 1 m样方, 深度至基岩或无根
系位置。收集破坏性样地内的根, 按径级(直径< 2
mm为细根, 直径≥2 mm为粗根)用清水洗净, 60 ℃
烘干至恒重, 各样地各径级分别称重, 然后除以5
得到各样地各径级根的生物量。用电子天平称取
5.00 g烘干的根置于孔径为l mm的分解袋中, 分解
袋埋于土壤20 cm深处。于2009年的5、7、9、11月
和2010年的3、5、7月, 每月随机取回5个网袋, 放
入清水中快速漂洗, 去除粘附的泥土, 晾干后在
40–60 ℃烘干至恒重, 测失重率。
根系质量损失速率的计算: X/X0 = ae–kt, 其中X0
为根分解的初始质量, X是时间t时的根残留量, t是时
间(以年为单位), k是根系的相对损失速率常数, 即各
径级根系随时间分解的回归曲线的斜率, a为截距。
1.3.4 数据分析和处理
1.3.4.1 土壤呼吸各组分的计算 本研究利用挖壕
沟法划分RA和RH (Lee et al., 2003)。挖壕沟法相对来
说比较简单, 可合理估计森林生态系统的根呼吸。
用挖壕沟处理的RS值估算RH, 用原状RS与挖壕沟RS
的差值来估算RA。因为挖壕沟会导致RH的本底物质
分解增加, 甚至会改变土壤的温度和含水量, 从而
导致所估算的RH值偏大, RA值偏小, 因此我们采用
细根分解速率来减小这种方法导致的误差(Lee et
al., 2003)。
RA = Rcontrol – (Rtrench – RD) (1)
其中Rcontrol为原状土壤呼吸, Rtrench为挖壕沟土壤呼
吸, RD为由于挖壕沟导致的残留根系分解而引起的
碳释放。
Rd = Br (ae–v(t – 1) – ae–vt) (2)
Rd为单位时间内各径级残留根系分解导致的土壤
碳释放, Br为各径级根的碳含量(g C·m–2), v为根系
分解速率, RD为各径级Rd的和(RD = ∑Rd)。
v = 0.64k (3)
RH = Rcontrol – RA (4)
1.3.4.2 Q10值的计算
RS = aebT (5)
RS为土壤呼吸(μmol CO2·m–2·s–1), T为10 cm深的土
壤温度, a为0 ℃时的呼吸速率。b为RS的温度反应
系数。
Q10 = e10b (6)
利用SPSS 16.0单因素方差分析方法(One-way
ANOVA)比较不同森林类型的土壤温度、土壤含水
量及RS之间的差异。动态曲线及相关图形用
罗璐等: 神农架海拔梯度上 4种典型森林的土壤呼吸组分及其对温度的敏感性 725
doi: 10.3724/SP.J.1258.2011.00722
SigmaPlot 10.0和Microsoft Excel 2003软件绘制。
3 结果
3.1 4种森林类型的土壤呼吸及异养呼吸
常绿阔叶林、常绿落叶阔叶混交林、落叶阔叶
林以及亚高山针叶林的RS和RH的季节变化与土壤
温度的季节变化趋势相同, 在夏季达到最大(分别
为3.37、3.47、3.89、3.57和2.49、2.31、2.63、2.18
μmol CO2·m–2·s–1), 冬季降到最低 (分别为0.48、
0.43、0.46、0.24和0.19、0.11、0.10、0.13 μmol
CO2·m–2·s–1) (图1)。4种森林类型中, 常绿落叶阔叶
混交林的年平均RS最大, 但阔叶林之间的RS差异不
显著, 阔叶林的RS显著大于针叶林(p < 0.05, 表2)。
在4种森林类型中, 挖壕沟显著降低了RS (表2)。
3.2 4种类型森林自养呼吸的季节变化
常绿阔叶林、常绿落叶阔叶混交林、落叶阔叶
林以及亚高山针叶林的RA呈现出明显的季节动态,
其最大值出现在7月(图2), 分别为1.10、1.34、1.27
和1.22 μmol CO2·m–2·s–1。4种类型森林的年平均RA
之间没有明显的差异(表2)。RA占土壤总呼吸的比率
分别为35.65%、42.99%、36.03%和40.76%。
3.3 土壤呼吸及其组分与土壤温度和含水量的关
系
4种类型森林的RS与土壤温度呈极显著的相关
关系(p < 0.01), 与土壤含水量没有明显的相关关系
(表3)。由此可见, 在该地区土壤温度是影响RS的主
要因素; 在常绿阔叶林、常绿落叶阔叶混交林和落叶
阔叶林中土壤含水量对RS表现为轻微的抑制作用。
4种类型森林的RS及其组分与土壤温度呈极显
著的指数关系, RS 88%–92%的变化是由土壤温度引
起的, Q10值分别为2.38、2.68、2.99和4.24 (图3)。同
时, 随着海拔的升高、年平均气温的降低及森林类
图1 土壤呼吸和异养呼吸的季节变化(平均值±标准误差, n = 4)。CF, 亚高山针叶林; DBF, 落叶阔叶林; EBF, 常绿阔叶林;
MF, 常绿落叶阔叶混交林。
Fig. 1 Seasonal changes of soil respiration (RS) and heterotrophic respiration (RH) (mean ± SE, n = 4). CF, sub-alpine coniferous
forest; DBF, deciduous broad-leaved forest; EBF, evergreen broad-leaved forest; MF, mixed evergreen and deciduous broad-leaved
forest.
726 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (7): 722–730
www.plant-ecology.com
表2 神农架海拔梯度上4种典型森林原状与挖壕沟处理的土壤呼吸及自养呼吸和异养呼吸(平均值±标准误差)
Table 2 Soil respiration of the control (RS) and trenched plots (Rtren), autotrophic respiration (RA) and heterotrophic respiration (RH)
of four typical forests along an elevational gradient in Shennongjia, Hubei (mean ± SE)
森林类型
Forest type
原状土壤呼吸RS
(μmol CO2·m–2·s–1)
挖壕沟土壤呼吸Rtren
(μmol CO2·m–2·s–1)
异养呼吸RH
(μmol CO2·m–2·s–1)
自养呼吸RA
(μmol CO2·m–2·s–1)
常绿阔叶林 Evergreen broad-leaved forest 1.627 ± 0.068a 1.308 ± 0.042a 1.125a 0.502
常绿落叶阔叶混交林
Mixed evergreen and deciduous broad-leaved forest
1.789 ± 0.059a 1.324 ± 0.073a 1.116a 0.673
落叶阔叶林 Deciduous broad-leaved forest 1.738 ± 0.134a 1.429 ± 0.098a 1.170a 0.568
亚高山针叶林 Sub-alpine coniferous forest 1.355 ± 0.059b 0.885 ± 0.017b 0.798b 0.557
不同字母表示不同森林类型间差异显著(p < 0.05)。
Different letters indicate significant differences among different forest types (p < 0.05).
图2 自养呼吸的季节变化。CF, 亚高山针叶林; DBF, 落叶阔叶林; EBF, 常绿阔叶林; MF, 常绿落叶阔叶混交林。
Fig. 2 Seasonal changes of autotrophic respiration. CF, sub-alpine coniferous forest; DBF, deciduous broad-leaved forest; EBF,
evergreen broad-leaved forest; MF, mixed evergreen and deciduous broad-leaved forest.
表3 土壤呼吸及其组分与土壤温度(ST)和含水量(SWC)的相关关系(r)
Table 3 Relationship between soil respiration and its components with soil temperature (ST) and soil water content (SWC) (r)
常绿阔叶林
Evergreen broad-
leaved forest
常绿落叶阔叶混交林
Mixed evergreen and de-
ciduous broad-leaved forest
落叶阔叶林
Deciduous broad-leaved
forest
亚高山针叶林
Sub-alpine coniferous
forest
ST SWC ST SVC ST SVC ST SVC
原状土壤呼吸
Soil respiration of untrenched plot
0.956* –0.205 0.987* –0.059 0.955* –0.097 0.949* 0.346
挖壕沟土壤呼吸
Soil respiration of trenched plot
0.927* –0.145 0.984* –0.073 0.962* 0.242 0.915* 0.405
异养呼吸
Heterotrophic respiration
0.959* –0.074 0.990* –0.039 0.964* 0.358 0.909* 0.395
自养呼吸
Autotrophic respiration
0.800* –0.024 0.953* –0.038 0.906* 0.507 0.923* 0.427
*, p < 0.01.
型的更替, 土壤呼吸速率的Q10值呈现出递增的趋
势(图3)。
4 讨论
4.1 土壤呼吸组分的划分
挖壕沟样方内的土壤温度和含水量略高于对
照(表4), 这主要是因为样方内根系死亡后减少了对
水分的吸收, 并对土壤温度产生影响(Lee et al.,
2003), 但是与对照样方没有显著差异(p > 0.05)。挖
壕沟处理的RS显著低于原状RS (表2), 这表明挖壕
沟显著降低了根系呼吸活力。虽然不能直接检测挖
壕沟样方内根系的活力, 但发现在挖壕沟2–3个月
罗璐等: 神农架海拔梯度上 4种典型森林的土壤呼吸组分及其对温度的敏感性 727
doi: 10.3724/SP.J.1258.2011.00722
图3 土壤呼吸与土壤温度的拟合曲线。CF, 亚高山针叶林;
DBF, 落叶阔叶林; EBF, 常绿阔叶林; MF, 常绿落叶阔叶混
交林。
Fig. 3 Fitting curve of soil respiration with soil temperature.
CF, sub-alpine coniferous forest; DBF, deciduous broad-leaved
forest; EBF, evergreen broad-leaved forest; MF, mixed ever-
green and deciduous broad-leaved forest.
后样方内根系变黑并开始分解(Lee et al., 2003)。本
研究中RH的测量是在挖壕沟(2008年9–10月) 7个月
后开始进行的。因此, 本研究中挖壕沟样方内的根
系已经全部死亡, RS主要为RH。挖壕沟切断植物根
系的同时, 增加了小样方内的分解底物(表5), 无疑
会增加RH的比例(Lee et al., 2003; Bond-Lamberty et
al., 2004)。因此, 本研究采用根分解方法对其进行
校正, 发现挖壕沟样方内根系分解所产生的CO2占
样 方 内 RS 的 14.59%–25.39%, 占 总 RS 比 率 的
10.98%–21.90%。
4.2 土壤呼吸及其组分
本研究中, 各森林类型的年平均RS及其组分小
于同类型森林(Rodeghiero & Cescatti, 2005; Wang et
al., 2006; Wang & Yang, 2007; Zimmermann et al.,
2010), 这可能是由于本研究考虑了冬季的RS, 同时
林龄较大, Saiz等(2006)发现年平均RS随林龄增大而
降低。RA占土壤总呼吸的比率为35.65%–42.99%,
这与大多数研究结果一致(Hanson et al., 2000; Lee
et al., 2003; Bond-Lamberty et al., 2004; Zimmerm-
ann et al., 2010)。随着海拔高度的变化, RA占土壤总
呼吸的比率没有明显的变化趋势, 即森林类型间没
表4 神农架海拔梯度上4种典型森林原状与挖壕沟处理的土壤温度与土壤含水量
Table 4 Mean soil temperature (ST) and soil water content (SWC) at control and trenched plots of four typical forests along an ele-
vational gradient in Shennongjia, Hubei
土壤温度 ST ( )℃ 土壤含水量 SWC (%) 森林类型
Forest type 原状
Control
挖壕沟
Trenched
原状
Control
挖壕沟
Trenched
常绿阔叶林 Evergreen broad-leaved forest 13.23a 13.74a* 22.74ab 23.25bc
常绿落叶阔叶混交林 Mixed evergreen and deciduous broad-leaved forest 9.56b 9.67b 24.49a 25.53a
落叶阔叶林 Deciduous broad-leaved forest 9.01b 9.01b 24.62a 24.85ab
亚高山针叶林 Sub-alpine coniferous forest 5.37c 5.23c 21.45b 22.36c
不同字母表示不同森林类型间差异显著(p < 0.05), *表示原状与挖壕沟处理之间差异显著(p < 0.05)。
Different letters indicate significant differences among different forest types (p < 0.05). * indicates significant difference between the control plot and
trenched plot (p < 0.05).
表5 神农架海拔梯度上4种典型森林不同径级的根系生物量和根系分解速率
Table 5 Root biomass and root decay rate (k) in different root diameter classes in four typical forests along an elevational gradient
in Shennongjia, Hubei
根系生物量
Root biomass (g·m–2)
分解速率
Root decay rate (k) (year–1)
R2 森林类型
Forest type
d < 2 mm d ≥ 2 mm d < 2 mm d ≥ 2 mm d < 2 mm d ≥ 2 mm
常绿阔叶林 Evergreen broad-leaved forest 334.8 1 670.8 0.859 0.367 0.93 0.89
常绿落叶阔叶混交林
Mixed evergreen and deciduous broad-leaved forest
516.9 2 205.0 0.808 0.288 0.98 0.83
落叶阔叶林 Deciduous broad-leaved forest 711.0 2 151.0 0.858 0.371 0.85 0.91
亚高山针叶林 Sub-alpine coniferous forest 151.8 1 501.4 0.704 0.204 0.96 0.88
d, 直径。
d, diameter.
728 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (7): 722–730
www.plant-ecology.com
有明显差别, 这表明植被类型对RA占土壤总呼吸的
比率没有显著影响, 这与Lee等(2010)对朝鲜中部寒
温带森林的研究结果一致。
4种森林类型的RS及其组分都表现出明显的季
节性(图2, 图3), 且变化趋势相同, 但RA和RH对土
壤温度和含水量等的响应方式和程度不同(Epron et
al., 2001; Bhupinderpal et al., 2003; Lavigne et al.,
2003; Scott-Denton et al., 2006)。同时, RH控制着土
壤碳的储存和营养, RA反映了植物的活性及冠层供
给根有机复合物的量(Högberg et al., 2001; Bond-
Lamberty et al., 2004; Zhou et al., 2007)。
4.3 不同森林类型间的土壤呼吸
阔叶林的Rcont、Rtren和RH显著大于针叶林(表
2)。引起不同生态系统间的RS变异的原因有多种,
一个潜在的因素是物质的可用性 (Boone et al.,
1998; Ryan & Law, 2005), 阔叶林的凋落物比针叶
林的凋落物容易降解(Landsberg & Gower, 1997);
其次, 地下代谢, RS与细根生物量之间存在着显著
的正相关关系(Wang et al., 2006); 第三, RS与地上
部分代谢存在着显著的相关关系(Högberg et al.,
2001; Kuzyakov & Cheng, 2001; Campbell & Law,
2005)。
不同类型的森林通过对微环境的影响来影响
RS。植被结构和物种组成强烈影响土壤C的分配方
式(Wang et al., 2001), 如凋落物输入的量和质量
(Landsberg & Gower, 1997)、土壤结构和微气候
(Raich & Tufekcioglu, 2000; O’Connell et al., 2003)
以及RS。在本研究中, 阔叶林的RS显著大于针叶林,
这与Wang等(2006)对我国温带6种类型森林的研究
结果一致。然而, Hibbard等(2005)对不同的温带落
叶阔叶林和常绿针叶林年平均RS的综合分析却没
有发现显著差别(分别为2.40和2.42 μmol CO2·m–2·
s–1)。出现这种差异的潜在原因可能是试验点的生物
物理条件、测量方法、年平均RS的计算方法等不同。
不同研究的生物物理条件不可能一致, 例如, 本研
究中不同阔叶林的土壤温度不同(表2)。Wang等
(2006)报道的落叶阔叶林的土壤温度高于Hibbard
等(2005)报道的温度(分别为12.30和11.09 ℃)。许多
研究通过不连续的RS值计算年平均RS值(Hibbard et
al., 2005)。显然, 直接比较不同研究之间的瞬时土
壤呼吸速率是不太适合的。相反, 不同生态系统间
的年平均RS具有可比性(Wang et al., 2006)。本研究
的年平均RS与目前关于温带森林的研究结果一致
(Raich & Schlesinger, 1992; Bond-Lamberty et al.,
2004; Hibbard et al., 2005)。
4.4 土壤呼吸与温度
RS的温度敏感性是量化和预测生态系统和全
球C循环对气候变化响应的重要指标(Cox et al.,
2000; Kirschbaum, 2000; Reichstein et al., 2003;
Ryan & Law, 2005; Davidson & Janssens, 2006;
Davidson et al., 2006)。在生态系统尺度上, 温度是
控制RS的主要因子(Raich & Schlesinger, 1992), 在
神农架地区也得到相同的结果(表3)。虽然在不同的
森林生态系统中, 温度对RS的影响不同, 但是RS与
土壤温度间有强烈的正相关关系(图3, 表3), 这与
大多数的研究结果一致 , 尤其是温带森林的RS
(Davidson et al., 1998; Wang et al., 2002; Kang et al.,
2003), 这主要是因为大多数生物学过程与温度变
化一致(Janssens & Pilegaard, 2003)。Q10被广泛用于
估计RS的温度敏感性。在本研究中, 随着海拔的升
高、年平均气温的降低及森林类型的更替, 土壤呼
吸速率的Q10值呈现出递增的趋势 , 这与Lloyd和
Taylor (1994)以及Zheng等(2009)对Q10的研究结果
一致。
致谢 植被与环境变化国家重点实验室项目“成熟
林的重要功能过程对环境变化响应联网研究”、国
家自然科学基金(30870416)和中国科学院战略性先
导科技专项(XDA050203)共同资助。
参考文献
Bahn M, Rodeghiero M, Anderson-Dunn M, Dore S, Gimeno
G, Drösler M, Williams M, Ammann C, Berninger F,
Flechard C, Jones S, Balzarolo M, Kumar S, Newesely C,
Priwitzer T, Raschi A, Siegwolf R, Susiluoto S, Tenhunen
J, Wohlfahrt G, Cernusca A (2008). Soil respiration in
European grasslands in relation to climate and assimilate
supply. Ecosystems, 11, 1352–1367.
Bhupinderpal S, Nordgren A, Löfvenius MO, Högberg MN,
Mellander PE, Högberg P (2003). Tree root and soil het-
erotrophic respiration as revealed by girdling of boreal
Scots pine forest: extending observations beyond the first
year. Plant, Cell & Environment, 26, 1287–1296.
Bond-Lamberty B, Wang CK, Gower ST (2004). A global rela-
tionship between the heterotrophic and autotrophic com-
ponents of soil respiration. Global Change Biology, 10,
1756–1766.
Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998). Roots
exert a strong influence on the temperature sensitivity of
罗璐等: 神农架海拔梯度上 4种典型森林的土壤呼吸组分及其对温度的敏感性 729
doi: 10.3724/SP.J.1258.2011.00722
soil respiration. Nature, 396, 570–572.
Campbell JL, Law BE (2005). Forest soil respiration across
three climatically distinct chronosequences in Oregon.
Biogeochemistry, 73, 109–125.
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000).
Acceleration of global warming due to carbon-cycle feed-
backs in a coupled climate model. Nature, 408, 184– 187.
Davidson EA, Belk E, Boone RD (1998). Soil water content
and temperature as independent or confounded factors
controlling soil respiration in a temperate mixed hardwood
forest. Global Change Biology, 4, 217–227.
Davidson EA, Verchot LV, Cattânio JH, Ackerman IL, Car-
valho JEM (2000). Effects of soil water content on soil
respiration in forests and cattle pastures of eastern Ama-
zonia. Biogeochemistry, 48, 53–69.
Davidson EA, Janssens IA (2006). Temperature sensitivity of
soil carbon decomposition and feedbacks to climate
change. Nature, 440, 165–173.
Davidson EA, Janssens IA, Luo Y (2006). On the variability of
respiration in terrestrial ecosystems: moving beyond Q10.
Global Chang Biology, 12, 154–164.
Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier
MC, Wisniewski J (1994). Carbon pools and flux of global
forest ecosystems. Science, 263, 185–190.
Epron D, Le Dantec V, Dufrence E, Granier A (2001). Sea-
sonal dynamics of soil carbon dioxide efflux and simu-
lated rhizosphere respiration in a beech forest. Tree Physi-
ology, 21, 145–152.
Gaumont-Guay D, Black TA, McCaughey H, Barr AG, Krish-
nan P, Jassal RS, Nesic Z (2009). Soil CO2 efflux in con-
trasting boreal deciduous and coniferous stands and its
contribution to the ecosystem carbon balance. Global
Change Biology, 15, 1302–1319.
Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000).
Separating root and soil microbial contributions to soil
respiration: a review of methods and observations. Bio-
geochemistry, 48, 115–146.
Hartley IP, Heinemeyer A, Evans SP, Ineson P (2007). The
effect of soil warming on bulk soil vs. rhizosphere respira-
tion. Global Change Biology, 13, 2654–2667.
Hibbard KA, Law BE, Reichstein M, Sulzman J (2005). An
analysis of soil respiration across northern hemisphere
temperate ecosystems. Biogeochemistry, 73, 29–70.
Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A,
Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ
(2001). Large-scale forest girdling shows that current
photosynthesis drives soil respiration. Nature, 411,
789–792.
Högberg P, Read DJ (2006). Towards a more plant physiologi-
cal perspective on soil ecology. Trends in Ecology &
Evolution, 21, 548–554.
Janssens IA, Pilegaard K (2003). Large seasonal changes in
Q(10) of soil respiration in a beech forest. Global Change
Biology, 9, 911–918.
Kang SY, Doh S, Lee D, Jin V, Kimball JS (2003). Topog-
raphic and climatic controls on soil respiration in six tem-
perate mixed-hardwood forest slopes, Korea. Global
Change Biology, 9, 1427–1437.
Kirschbaum MUF (2000). Will changes in soil organic carbon
act a positive or negative feedback on global warming?
Biogeochemistry, 48, 21–51.
Kuzyakov Y, Cheng W (2001). Photosynthesis controls of
rhizosphere respiration and organic matter decomposition.
Soil Biology & Biochemistry, 33, 1915–1925.
Landsberg JJ, Gower ST (1997). Applications of Physiological
Ecology to Forest Management. Academic Press, San
Diego, USA.
Lavigne MB, Boutin R, Foster RJ, Goodine G, Bernier PY,
Robitaille G (2003). Soil respiration responses to tem-
perature are controlled more by roots than by decomposi-
tion in balsam fir ecosystems. Canadian Journal of Forest
Research, 33, 1744–1753.
Lee MS, Nakane K, Nakatsubo T, Koizumi H (2003). Seasonal
changes in the contribution of root respiration to total soil
respiration in a cool-temperature deciduous forest. Plant
and Soil, 255, 311–318.
Lee NY, Koo JW, Noh JN, Kim J, Son Y (2010). Autotrophic
and heterotrophic respiration in needle fir and Quercus-
dominated stands in a cool-temperate forest, central Ko-
rea. Journal of Plant Research, 123, 485–495.
Lee X, Wu HJ, Sigler J, Oishi C, Siccama T (2004). Rapid and
transient response of soil respiration to rain. Global
Change Biology, 10, 1017–1026.
Liu WX, Zhang Z, Wan SQ (2009). Predominant role of water
in regulating soil and microbial respiration and their re-
sponses to climate change in a semiarid grassland. Global
Change Biology, 15, 184–195.
Lloyd J, Taylor JA (1994). On the temperature dependence of
soil respiration. Functional Ecology, 8, 315–323.
Luo YQ, Zhou XH (2006). Soil Respiration and the Environ-
ment. Academic/Elsevier, San Diego, USA.
O’Connell KEB, Gower ST, Norman JM (2003). Net ecosys-
tem production of two contrasting boreal black spruce
forest communities. Ecosystems, 6, 248–260.
Raich JW, Potter CS (1995). Global pattern of carbon dioxide
emission from soil. Global Biochemical Cycles, 9, 23–36.
Raich JW, Potter CS, Bhagawati D (2002). Interannual vari-
ability in global soil respiration, 1980–1984. Global
Change Biology, 8, 800–812.
Raich JW, Schlesinger WH (1992). The global carbon dioxide
flux in soil respiration and its relationship to vegetation
and climate. Tellus B, 44, 81–99.
Raich JW, Tufekcioglu A (2000). Vegetation and soil respira-
tion: correlations and controls. Biogeochemistry, 48, 71–
90.
Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini J,
730 植物生态学报 Chinese Journal of Plant Ecology 2011, 35 (7): 722–730
www.plant-ecology.com
Banza J, Casals P, Cheng YF, Grunzweig JM, Irvine J,
Joffre R, Law BE, Loustau D, Miglietta F, Oechel W,
Ourcival JM, Pereira JS, Peressotti A, Ponti F, Qi Y,
Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V,
Tirone G, Xu M, Yakir D (2003). Modeling temporal and
large-scale spatial variability of soil respiration from soil
water availability, temperature and vegetation productivity
indices. Global Biogeochemical Cycles, 17, 1104, doi:
10.1029/2003GB002035.
Rey A, Pegoraro E, Tedeschi V, Parri LD, Jarvis PG, Valentini
R (2002). Annual variation in soil respiration and its
components in a coppice oak forest in Central Italy.
Global Change Biology, 8, 851–866.
Rodeghiero M, Cescatti A (2005). Main determinants of forest
soil respiration along an elevation/temperature gradient in
the Italian Alps. Global Change Biology, 11, 1024–1041.
Ryan MG, Law BE (2005). Interpreting, measuring, and mod-
eling soil respiration. Biogeochemistry, 73, 3–27.
Saiz G, Byrne KA, Butterbach-Bahl K, Kiese R, Blujdea V,
Farrell EP (2006). Stand age-related effects on soil respi-
ration in a first rotation Sitka spruce chronosequence in
central Ireland. Global Change Biology, 12, 1007–1020.
Schlesinger WH (1990). Evidence from chronosequence stud-
ies for a low carbon-storage potential of soil. Nature, 348,
232–234.
Scott-Denton LE, Rosenstiel N, Monson PK (2006). Differen-
tial controls by climate and substrate over the heterotro-
phic and rhizospheric components of soil respiration.
Global Change Biology, 12, 205–216.
Tans PP, Fung IY, Takahashi T (1990). Observational con-
straints on the global atmospheric CO2 budget. Science,
247, 1431–1438.
Wan SQ, Norby RJ, Ledford J, Weltzin JF (2007). Responses
of soil respiration to elevated CO2, air warming, and
changing soil water availability in a model old-field
grassland. Global Change Biology, 13, 2411–2424.
Wang C, Yang J (2007). Rhizospheric and heterotrophic com-
ponents of soil respiration in six Chinese temperate for-
ests. Global Change Biology, 13, 123–131.
Wang CK, Gower ST, Wang YH, Zhao HX, Yan P,
Bond-Lamberty BP (2001). The influence of fire on car-
bon distribution and net primary production of boreal
Larix gmelinii forests in north-eastern China. Global
Change Biology, 7, 719–730.
Wang CK, Bond-Lamberty B, Gower ST (2002). Soil surface
CO2 flux in a boreal black spruce fire chronosequence.
Journal of Geophysical Research-Atmospheres, 107, 8224,
doi: 10.1029/2001JD000861.
Wang CK, Yang JY, Zhang QZ (2006). Soil respiration in six
temperate forests in China. Global Change Biology, 12,
2013–2114.
Zheng ZM, Yu GR, Fu YL, Wang YS, Sun XM, Wang YH
(2009). Temperature sensitivity of soil respiration is af-
fected by prevailing climatic conditions and soil organic
carbon content: a trans-China based study. Soil Biology &
Biochemistry, 41, 1531–1540.
Zhou XH, Wan SQ, Luo YQ (2007). Source components and
inter-annual variability of soil CO2 efflux under experi-
mental warming and clipping in a grassland ecosystem.
Global Change Biology, 13, 761–775.
Zimmermann M, Meir P, Bird MI, Malhi Y, Ccahuana AJQ
(2010). Temporal variation and climate dependence of soil
respiration and its components along a 3000 m altitudinal
tropical forest gradient. Global Biogeochemical Cycles,
24, GB4012, doi:10.1029/2010GB003787
责任编委: 蒋高明 实习编辑: 黄祥忠