全 文 :植物生态学报 2010, 34 (6): 741–752 doi: 10.3773/j.issn.1005-264x.2010.06.013
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2008-10-08 接受日期Accepted: 2009-04-23
* E-mail: heh@iae.ac.cn
森林可燃物及其管理的研究进展与展望
贺红士1,2* 常 禹1 胡远满1 刘志华1,3
1中国科学院沈阳应用生态研究所, 沈阳 110016; 2School of Natural Resources, University of Missouri, Columbia MO 65211 USA; 3中国科学院研究生院,
北京 100049
摘 要 森林可燃物是森林生态系统的基本组成部分, 是影响林火发生及火烧强度的重要因素之一, 因此, 受到国内外学者
的广泛关注。该文从以下4个方面综述了国内外可燃物研究的最新进展: 森林可燃物特性, 森林可燃物类型与火行为, 森林可
燃物类型、载量的调查与制图, 森林可燃物管理。同时提出了我国森林可燃物今后的研究方向: 开展多尺度可燃物研究; 可
燃物类型与火行为的研究; 把以试验观测为基础的静态研究与以空间技术和生态模型为基础的动态预测相结合, 研究可燃物
处理效果; 全球气候变化背景下可燃物处理与碳收支。
关键词 林火, 森林可燃物, 可燃物管理
Contemporary studies and future perspectives of forest fuel and fuel management
HE Hong-Shi1,2*, CHANG Yu1, HU Yuan-Man1, and LIU Zhi-Hua1,3
1Shenyang Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; 2School of Natural Resources, University of Missouri, Colum-
bia MO 65211 USA; and 3Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
Fuel is the basic component of forest ecosystems. It is one of the most important factors that influence forest fire
ignition and fire severity. Hence, it has drawn much attention from researchers worldwide. We reviewed the cur-
rent status of forest fuel studies from four aspects: 1) forest fuel properties, including physical and chemical prop-
erties, and flammability of forest fuels, 2) fuel models and fire behaviors, 3) methodologies for inventory and
mapping of fuel types and fuel loads, and 4) forest fuel management. We also discuss the future direction in forest
fuel studies, including 1) forest fuel studies at site, regional, and country-wide scales, 2) fuel models and fire be-
haviors, 3) combining observational and experimental studies with computer simulation and spatial analysis tech-
nologies for long-term predictions of fuel treatment effects over large landscapes, and 4) fuel treatment and carbon
budget under global climate change. There are significant implications for forest fire management and forest fuel
research in China.
Key words forest fire, forest fuel, forest fuel management
自然火是森林生态系统的重要组成部分, 它以
从地表火(surface fire)到树冠火(crown fire)的多种
形态调整森林生态系统的树种组成、年龄结构和空
间(景观)格局(Pringle & Marstall, 1995; 徐化成 ,
1998; 舒立福等 , 1999a; Johnson & Miyanishi,
2001)。地表火清除林下堆积物, 调整林分结构, 为
存活树木创造成材的环境。树冠火烧掉整片林木,
为早期演替树种创造生长条件, 使空间上存在着不
同年龄镶嵌的异质森林景观结构(Johnson, 1996;
Turner et al., 2003a; Romme et al., 2005)。林火作用
下产生的林分与景观结构既能有效地抵抗森林病
虫害的传播(Sullivan et al., 2003; Whitney & Irwin,
2005), 又为野生动物提供了宝贵的生境(王瑞君,
2005; Parker et al., 2006; Greenberg et al., 2007;
Hood et al., 2007)。要科学地理解林火对森林生态系
统的综合作用, 就必须对林火发生规律及行为进行
充分研究。
森林可燃物是林火发生和燃烧的物质基础, 森
林可燃物的研究是上述研究的重要基础。森林可燃
物管理是从根本上解决林火安全问题、改善森林结
构、提高森林健康水平的途径。国内外学者早就认
识到森林可燃物在林火管理中的重要性, 在森林可
742 植物生态学报 Chinese Journal of Plant Ecology 2010, 34 (6): 741–752
www.plant-ecology.com
燃物研究领域做了许多基础工作, 主要集中在以下
4个方面: 森林可燃物特性, 森林可燃物类型与火
行为, 森林可燃物类型、载量的调查与制图, 森林
可燃物管理研究。本文主要介绍西方发达国家(包括
北美、澳大利亚和欧洲国家)和我国在森林可燃物方
面的最新研究进展, 并提出可燃物的未来研究展
望, 以期为我国的林火管理提供科学依据。
1 森林可燃物研究进展
1.1 森林可燃物特性
森林可燃物的特性包括森林可燃物的理化性
质和空间组合特征。可燃物的理化性质描述可燃物
植物部分的特性, 包括可燃物的化学性质以及密
度、燃点、热值、含水率等物理性质, 主要用来解
释燃烧现象(能量释放大小、火线强度和火焰长度
等); 可燃物空间组合特征描述可燃物组合的各种
特性, 包括可燃物的数量、大小、形状、密实度及
连续性等, 主要影响火行为(扩散速率与强度)。在国
外一些发达国家, 森林可燃物的特性研究在20世纪
中期就基本完成, 主要进行了森林可燃物热值测定
(Byram, 1959; Anderson, 1970)、林木抽提物和灰分
含量随林木年龄和季节变化规律的探讨、可燃物的
水分含量(Blackmarr & Flanner, 1968)和载量估算
(Brown, 1974)等; 从20世纪末至今, 我国学者针对
中国森林生态系统的特点也开展了森林可燃物特
性的研究, 主要包括森林可燃物含水量、燃点、灰
分、热值、抽提物(油脂)含量等的分析测定(刘自强
等, 1993a, 1993b; 何忠秋和李长胜, 1995; 寇晓军
等, 1997; 高成德等, 2005; 刘菲和胡海清, 2005)。这
些研究一般以林型(胡海清, 1995; 王刚等, 1996)或
树种(单延龙等, 2003)为对象。研究结果表明, 森林
可燃物的理化性质对其燃烧性有明显的影响是确
定可燃物易燃性等级划分的基础(胡海清, 1995; 高
国平和王月, 2004)。
1.2 森林可燃物类型与火行为
森林可燃物种类复杂, 根据研究目的的不同,
森林可燃物类型的划分方法主要有下面几种(单延
龙等, 2004): 1)按物种类别可以将可燃物分为死地
被物、地衣、苔藓、草本植物、灌木、乔木、森林
杂乱物等; 2)按可燃物分布的空间位置可以将可燃
物分为地下、地表和空中可燃物; 3)按易燃程度可分
为易燃可燃物、燃烧缓慢可燃物和难燃可燃物; 4)
按燃烧时可燃物消耗可分为有效可燃物、剩余可燃
物和总可燃物; 5)按可燃物挥发性将可燃物分为高
挥发性可燃物、低挥发性可燃物和中挥发性可燃物;
6)按生活力将森林可燃物分为活可燃物和死可燃
物。根据含水量时滞的死可燃物分类是目前国际通
用的死可燃物分类方法, 根据死可燃物含水率的恢
复时间又分为1、10、100、1 000 h时滞的死可燃物
等。
森林可燃物类型划分研究的目的之一是预测
火行为(fire behavior) (扩散速率与强度), 进而推测
火效果及确定防火措施。还可以通过与地形因子和
气象因子耦合, 划分森林火险等级指数, 进行森林
火险等级预报; 准确估算不同森林可燃物类型的载
量和空间分布, 还可为可燃物管理提供指导, 保证
林火安全。然而森林可燃物不是单一的燃料, 而是
一个复杂的多层体系(图1), 由地表到林冠包括半腐
殖质层、细可燃物层、粗可燃物层、草本层、灌木
层和乔木层 , 每一层都有其独特的结构特征
(Sandberg et al., 2007)。由于可燃物在层次、形态、
数量及理化特征上的巨大变异性, 难以对其进行全
面的描述。因此将相类似的可燃物(体系)分为可燃
物类型(fuel type)是可燃物分类的普遍方法, 每一
种可燃物类型都与一套描述可燃物的标准参数或
属性相对应, 通常将这些具有标准参数或属性的可
燃物类型称为可燃物模型(fuel model), 火行为模型
根据可燃物模型、气象和地形等来预测林火类型、
扩散速率与强度, 管理部门据此信息来确定反应时
间和扑救措施。可燃物模型的建立一直是可燃物研
究的重要问题(Cheney & Sullivan, 1997; Sandberg,
2001), 美国 (Albini, 1976)、加拿大 (Flannigan &
Wotton, 1989, 1992)和澳大利亚(Cheney & Sullivan,
1997)等国家都已完成这项工作。
早在20世纪30年代, 美国林火管理者就开始了
可燃物类型的研究。最早的可燃物类型是根据着火
后的初始反应时间(监测)与扑灭的困难程度(如防
火道建立)建立的。根据火的扩散速度及灭火的难易
程度进行了可燃物类型的定性划分, 这一可燃物类
型延用了近40年。70年代初, Rothermel (1972)建立
了火行为(又称火蔓延)数学模型, 结束了火行为的
经验估计时代。火行为模型需要标准的可燃物参数
与气象参数来计算火的扩散速度和燃烧强度, 所以
对可燃物模型有了更高的要求。Albini (1976)根据
贺红士等: 森林可燃物及其管理的研究进展与展望 743
doi: 10.3773/j.issn.1005-264x.2010.06.013
图1 森林可燃物的层次体系结构(改自Sandberg, 2001)。梯子可燃物表示介于林冠和地表之中的可燃物层, 地表火可以通过
燃烧梯子可燃物点燃林冠可燃物, 从而使地面火转化为树冠火。常见的梯子可燃物如较高的草丛、灌木和树枝。
Fig. 1 The strata structures of forest fuels (modified from Sandberg, 2001). A ladder fuel is forest fuels that existed between forest
floor and crown. A surface fire can translate into crown fire by climbing up from the landscape or forest floor into the tree canopy.
Common ladders fuels include tall grasses, shrubs, and tree branches, both living and dead.
地表可燃物的特性建立了13种可燃物模型, 后来被
扩展为20种(Deeming et al., 1977)。Andrews (1986)
在该可燃物模型的基础上, 建立了BEHAVE火行为
模型, 将可燃物模型与火行为模型融为一体。管理
人员可以利用BEHAVE火行为模型计算火在不同生
态系统中的蔓延速度, 确定反应时间及灭火方案。
然而, 由于火行为模型和可燃物模型过于简化, 没
有包括可燃物层次、载量和树冠火, 所以对林火行
为的预测有时候会出现较大偏差(Rothermel, 1983,
1991)。
直到90年代中期, 出现了以FARSITE (Finney,
2001)为代表的新一代火行为模型, 对可燃物垂直
结构及载量有了更高的要求, 同时出现了新的可燃
物类型划分方法。Scott和Burgan (2005)在原来13种
可燃物模型的基础上增加了43种可燃物模型, Lutes
等(Ryan et al., 2006)建立了可燃物载量模型, 定量
预测不同层次的可燃物载量, Sandberg (2001)建立
了可燃物特征分类系统(fuel characterization classi-
fication system, 简称FCCS)。FCCS提出了可燃物描
述与分类的新概念, 既能提供可燃物床(fuelbed)的
定量信息用于火效果预测, 又能为可燃物类型的检
验提供标准(Berg, 2007; Ottmar et al., 2007)。
加拿大森林火险等级系统(Canadian Forest Fire
Danger Rating System, CFFDRS)主要由两个子系统
组成 : 加拿大火气象指数(Canadian Fire Weather
Index, FWI)系统和加拿大火行为预测(Canadian Fire
Behaviour Prediction, FBP)系统。FBP利用划分出的
16种可燃物类型(Lawson et al., 1985), 结合地形数
据和FWI输出, 预测火扩散速率、可燃物消耗率和
林火强度; 澳大利亚的林火预报主要采用McArthur
(1967)建立的火险等级系统, 在这一系统中, 只划
分出2种可燃物类型, 相关的可燃物模型正在建立
中(Arroyo et al., 2008); 在欧洲, 通过对美国北方林
火实验室(Northern Forest Fire Laboratory, NFFL)的
森林可燃物类型体系进行简化和修改, 形成了适合
地中海气候的新的可燃物类型体系 , 例如
Prometheus系统, 该可燃物类型体系包括7种可燃
物类型(Riaño et al., 2002)。瑞士采用美国林署的地
表可燃物模型 , 划分了 6种可燃物类型 , 通过
Rothermel (1972)的火行为模型来预测林火的效果
(Harvey et al., 1997); 葡萄牙(Fernandes et al., 2006)
和英国(Kitchen et al., 2006)的森林火险等级系统正
744 植物生态学报 Chinese Journal of Plant Ecology 2010, 34 (6): 741–752
www.plant-ecology.com
在建立中。国内一些学者也在可燃物类型方面进行
过有意义的探索, 如郑焕能(1988)和骆介禹(1992)
曾提出可燃物的划分方法如下: 1)直接估计法; 2)根
据植物群落划分法; 3)根据可燃物模型划分法; 4)根
据照片划分法; 5)利用遥感卫星图片划分法; 6)可燃
物检索表划分法。但总的来说, 我国的森林可燃物
研究还处于起步阶段, 尚没有国家和地区水平上的
可燃物类型标准(袁春明和文定元, 2001)。
1.3 森林可燃物类型、载量的调查与制图
森林可燃物类型、载量的调查与制图是在深入
理解可燃物与生物和环境因子的关系的基础上进
行的。森林可燃物载量的研究一般采用机械布点法,
设置样地, 实测不同级别可燃物的重量, 实测结果
与林分因子(林龄、郁闭度、平均树高和胸径等)及
环境因子(海拔、坡度和坡向等)建立回归方程来推
测不同时滞级别(1 h、10 h、100 h)可燃物载量(邸学
颍和王宏良, 1993; 陈宏伟等, 2007)。金森(2006)综
述了利用遥感估测森林可燃物载量的研究进展, 胡
海清等(2007)和胡海清和魏云敏(2007)利用遥感影
像和林分因子对森林可燃物载量进行了估测。魏云
敏和鞠琳(2006)综述了森林可燃物研究的方法, 并
指出了遥感方法存在的不足。
随着森林可燃物类型与火行为研究的不断深
入, 可燃物制图方法也从野外调查法和遥感调查
法, 发展到环境梯度-生物物理模拟法(Ohmann &
Spies, 1998; Franklin et al., 2000; Keane et al., 2001;
Rollins et al., 2004)。野外调查法是最准确的方法,
但是耗费高, 覆盖面积小, 适合于小区域(如保护
区)、高精度森林可燃物管理工作。遥感调查法能在
大面积上获取林型信息, 但不能直接探测到森林结
构和林冠下的可燃物层, 从而需要通过相关信息推
测下层可燃物。该方法的推测精度有限, 适合区域
性森林可燃物调查制图。最近建立的环境梯度-生物
物理模拟法综合了3S技术和计算机模型, 能有效地
用于多尺度(从细到粗)可燃物制图(Morgan et al.,
2001; Rollins et al., 2004)。
环境梯度-生物物理模拟法通过建立环境梯度
(如气候和地形)以及生态系统动态(演替阶段)与可
燃物载量的关系, 进行可燃物类型与载量制图。这
一方法的价值在于环境梯度提供了理解、探索和预
测可燃物载量动态的生态学框架(比如, 低可燃物
载量可能与低降水量高蒸发量有关) (Keane et al.,
2001)。环境梯度-生物物理模拟法是一个综合空间
技术与生态学原理的方法, 需要依靠遥感技术获取
林型及其演替阶段的空间信息, 再以GIS为依托,
建立林型 + 演替阶段 + 可燃物载量与环境梯度
的关系 , 来预测可燃物类型与载量的空间分布
(Lasaponara et al., 2006)。
美国LANDFIRE项目以环境梯度-生物物理模
拟法为基础, 以30 m空间分辨率, 对全美陆地生态
系统可燃物与火状况进行了调查与制图(Hann &
Bunnell, 2001; Holsinger et al., 2006; Keane et al.,
2007), 该系统与新一代火行为模型连接, 管理人员
可以通过该系统查询任何空间位置的潜在火险、火
扩散速度和强度, 从而迅速确定反应时间及扑救方
案, 比我国完全依靠气象条件建立的火险预测先
进。
1.4 森林可燃物管理研究
20世纪的森林管理理念将林火视为森林生态
系统的外来干扰, 森林管理中普遍采用灭火措施
(Pedley, 1957; Wuerthner, 2006)。灭火的直接效益是
保护了现有林木、人类和基础设施的安全。但大量
的研究表明, 长期灭火, 改变林火的频率、大小及
强度, 会导致一系列生态后果:
1)在以树冠火为主的寒温带针叶林区, 长期灭
火使可燃物过量堆积、过火面积增大、林火强度增
大(Turner et al., 2003b; Wang et al., 2007; Chang et
al., 2007, 2008), 导致灾害性森林大火, 如1987年的
大兴安岭火灾。
2)在以地表火为主的暖温带落叶阔叶林区, 灭
火虽不会导致灾难性大火, 但会造成可燃物过量堆
积, 新种子不能萌发, 林分更新困难, 森林质量下
降(林木生长过密、材质低、优质林被劣质林取代)
(Shifley et al., 2006; 田晓瑞等, 2007)。
扭转灭火负效应的首要工作是森林可燃物的
管理, 因为森林可燃物是影响林火发生的自然因素
中(气象、地形)人类能控制的林火因子, 森林可燃物
管理是解决林火安全问题和恢复森林健康的根本
途径(Payne et al., 1996; Arno & Fiedler, 2005)。森林
可燃物管理的研究工作主要包括试验性和模型研
究两方面。
1.4.1 森林可燃物试验研究
林火管理思想出现于20世纪60年代, 而直到过
去的二三十年, 才真正将可燃物管理纳入到林火管
贺红士等: 森林可燃物及其管理的研究进展与展望 745
doi: 10.3773/j.issn.1005-264x.2010.06.013
理实践中。发达国家的林火管理已从单一的灭火发
展到森林可燃物管理, 包括计划火烧、机械清除、
林分疏透和自然火利用、增加防火林带、城市-野外
交界处(wildland-urban interface, WUI)可燃物的处
理(Agee & Skinner, 2005; Walker et al., 2007)。计划
火烧是指在人为控制下, 烧除森林地表细可燃物;
机械清除是指用机械方法将粗可燃物粉碎分解, 或
移出森林生态系统; 林分疏透是指用采伐的方法清
除一部分林木(活可燃物), 保持林冠间的距离, 防
止树冠火的蔓延; 自然火利用是指在不危害人类和
基础设施安全的前提下, 让林火自然蔓延和熄灭,
发挥自然火的生态功能(Agee & Skinner, 2005); 防
火林带主要是指人为清除一定宽度内的可燃物以
阻止林火蔓延; 城市-野外交界处可燃物的处理主
要是通过公众教育和交接处可燃物去除来降低林
火发生频率。
大量小尺度上的实验研究表明, 科学的可燃物
管理可以促进森林更新、提高森林质量、降低火险,
扭转长期灭火的负效应(Schoennagel et al., 2004;
Stephens & Moghaddas, 2005a, 2005b; Apigian et al.,
2006; Goodman & Hungate, 2006; Fernandes & Ri-
golot, 2007; Shang et al., 2007; 田晓瑞等, 2007)。
Apigian等(2006)在美国内华达Sierran森林生态系统
进行了可燃物处理与森林质量的研究; Sierran森林
生态系统的自然火特征是以大量的低强度地表火
为主。20世纪的灭火使灾害性林火大为增加。
Apigian等用计划火、林冠疏透等方法进行了可燃物
处理, 并用益虫数量作为评价森林生态系统健康的
指标。他们发现处理后林分结构得到改善, 益虫数
量增加; Finney等(2005)评价了美国西部亚利桑那
州针叶林两起大火对可燃物处理的响应, 发现在
1–9年的计划火处理区, 火烧严重程度均低于周围
的非计划火区, 火强度随计划火烧时间增加而增
加, 遥感分析显示可燃物处理显著影响了火扩散行
为, 降低了人类居住区的火险; Goodman和Hungate
(2006)在加拿大南阿拉斯加地区研究了高强度计划
火烧对害虫控制及云杉(Picea mariana)更新的影
响。该地区长期灭火导致云杉林分过密, 害虫扩散
造成大量成熟林死亡, 云杉林的火险增加, 更新困
难。研究表明高强度计划火烧对害虫控制及云杉更
新最为有效。Fernandes和Rigolot (2007)研究了欧洲
地中海盆地计划火烧对保护Mantime松(Pinus pi-
naster)的影响。研究表明, 进一步灭火难以保证
Mantime松的安全, 采用不同强度的计划火, 烧除
下层和中层可燃物是防止Mantime松树冠火发生的
有效手段。Bradstock等(2006)研究了南澳大利亚易
燃的半干旱油桉(Callitris verrucosa) (mallee)灌木生
态系统, 发现计划火强度与空间分配影响了自然火
的大小。自然火大小随计划火强度增加而减低, 计
划火对降低自然火险和保持油桉灌木生态系统主
要建群种有重要作用; McCaw等(2002)在南澳大利
亚桉树(Eucalyptus diversicolor)林的研究表明, 灭
火导致林床可燃物载量高于该森林生态系统的正
常水平, 计划火烧是降低可燃物载量的重要措施,
计划火烧时间应取决于林分演替阶段及其他可燃
物管理措施(如商业性的林分疏松)。目前, 许多国家
已将可燃物管理纳入到森林管理规划中, 取得了一
些成功经验(Bradstock et al., 2006; Keane et al.,
2007)。
1.4.2 森林可燃物模型研究
然而, 小尺度上试验研究的结果并不能满足大
尺度(景观尺度)上可燃物处理的需求。在景观尺度
上, 可燃物处理效果的预测通常超过了野外观测
(时间)与野外试验(空间)的能力, 因此森林景观模
型成为展开可燃物处理试验、预测可燃物处理效果
的有效工具(He et al., 2008)。过去的15年, 森林景观
模型的研究取得了重要进展(Gardner et al., 1999;
Mladenoff & Baker, 1999; Keane et al., 2004; Sturte-
vant et al., 2004; Perry & Enright, 2006; Scheller et
al., 2007; He, 2008)。这些模型大体上分为非空间模
型与空间模型。
非空间模型如BEHAVE (Andrews, 1986; An-
drews & Chase, 1989; Andrews & Collin, 1999)、
CONSUME (Ottmar et al., 1993)、FOFEM (Reinhardt
et al., 1998)和FVS-FEE (Beukema et al., 1999;
Reinhardt & Crookston, 2003), 一般用于林分尺度
(空间 < 10 hm2), 有较高的时间分辨率(hours to
days)。这些模型或预测可燃物和其他因子(如地形
和气象)对火行为的影响, 或预测火对可燃物耗损
的影响。BEHAVE模拟可燃物对火行为的影响 ,
CONSUME模拟火对地表层、枯枝落叶层和母质层
可燃物耗损的影响, FOFEM模拟火对树木死亡、可
燃物耗损、烟排放和土壤加热等效应。上述模型属
于经验模型, 不模拟植被动态以及植被与可燃物分
746 植物生态学报 Chinese Journal of Plant Ecology 2010, 34 (6): 741–752
www.plant-ecology.com
解与积累的关系。FVS-FEE (Beukema et al., 1999;
Reinhardt & Crookston, 2003)代表了非空间模型的
最新进展。FVS-FEE模拟林分的植被动态及其与可
燃物的分解与积累的关系, 同时直接模拟不同可燃
物处理对植被及火行为的效果。
非空间模型的优点在于使用简单(除FVS-FEE),
管理人员可以通过查表, 迅速地找出可燃物管理对
火行为的影响 (BEHAVE), 或火对可燃物的影响
(CONSUME, FOFEM); 这些模型均不直接模拟可
燃物处理, 可燃物处理效果可以通过不同可燃物输
入间接地估测。非空间模型由于它们的非空间性,
不能模拟火发生、扩散等空间过程, 不适合区域尺
度上的可燃物管理规划。
Cary (1998)为南澳大利亚桉树林建立了
FIRESCAPE空间模型。FIRESCAPE能模拟可燃物
处理的不同空间位置、格局(如分散处理或集中处
理)、频率与时间跨度对火的影响。该模型虽为空间
模型但不包括森林采伐与造林等与可燃物处理密
切相关的景观过程, FIRESCAPE不直接模拟植被动
态对火的反馈效应。King等(2006)将FIRESCAPE与
基于植被动态过程的SWTAS模型联系起来共同模
拟计划火对桉树林的影响, 该研究找出了计划火强
度与自然火大小及发生次数的关系。
大多数森林景观模型只模拟一个空间过程(如
火或采伐 )。可模拟多个景观过程的模型 , 如
SIMMPPLE (Chew et al., 2004) 和 LANDSUM
(Keane et al., 2002, 2006), 不能直接模拟可燃物动
态与管理。LANDIS是目前少数几个能模拟可燃物
处理与其他景观过程相互作用的空间直观森林景
观模型(He & Mladenoff, 1999; He et al., 2005)。He
等(2004)设计了LANDIS模型可燃物模块, 该模块
模拟细可燃物与粗可燃物的分解与积累, 及常用的
可燃物处理方法, 包括计划火、粗可燃物清除和活
可燃物疏松等; Shang等(2004, 2007)用LANDIS研究
了美国中部硬木阔叶林高火险区可燃物处理对火
险的影响, 结果表明计划火烧结合粗可燃物清除能
有效地降低火险。
国内学者在可燃物处理方面也做了一些基础
研究, 包括计划火烧对树木生长(杨道贵等, 1992)和
可燃物管理(段向阁和刘利, 1997)的影响, 认识到可
燃物管理在森林可持续管理中的重要性(舒立福等,
1998, 1999b)。但与国外发达国家相比, 在森林可燃
物管理方面的工作还处于起步阶段, 各级政府需要
加大资金投入来开展森林可燃物的基础研究, 以期
在短期内与发达国家的研究接轨。
2 研究展望
森林可燃物管理涉及不同时空尺度的基础科
学问题。在空间上, 不同森林类型、环境条件、采
伐、造林和干扰会导致不同的可燃物类型, 这些因
子错综复杂的相互作用, 造成了森林可燃物的空间
复杂性(He et al., 2004; Riccardi et al., 2007); 在时
间上, 即使是同一林型, 不同演替阶段(如老龄林与
幼龄林 )可燃物类型也会不同 (McKenzie et al.,
2007)。此外, 可燃物随生态系统演替的变化(累积与
分解)以及可燃物处理对树种组成、年龄结构乃至景
观格局的影响 , 是几十年到几百年的动态过程
(Sturtevant et al., 1997; Trofymow et al., 2002)。因此
需要解决的科学问题包括: 1)如何根据可燃物的时
间变化规律进行可燃物处理, 使处理效果接近自然
火对森林生态系统的影响效果; 2)如何通过不同可
燃物处理的频率(时间)和面积(空间)搭配来确保不
只是在某一时段, 而是在长的时间尺度上(100–300
年)降低或去除灾难性火, 保证林火安全。
解决这一问题需要建立可燃物类型、载量与森
林类型、非生物因子、采伐、造林与自然干扰的关
系, 在区域水平上预测森林可燃物处理的效果。需
要综合空间技术与生态学原理, 利用遥感技术获取
可燃物空间信息, 利用生态模型明确地定义各种生
态因子及其相互作用的数学和逻辑关系, 评价可燃
物处理的各种方案, 从而回答野外试验无法回答的
问题(He et al., 2004)。
今后森林可燃物研究可能围绕以下几方面:
开展多尺度可燃物研究。目前大都在样点尺度
上(如林型)上研究可燃物类型、载量与环境因子的
关系(郑焕能和胡海清, 1990; 田晓瑞等, 2006; 胡海
清等, 2007, 胡海清和魏云敏, 2007; 张敏和刘东明,
2007), 为景观、区域与国家尺度的可燃物分类制图
提供基础数据; 但在区域尺度上(如温带针阔混交
林)可燃物的空间变异和在国家尺度上完善基于森
林可燃物的森林火险预报(易浩若等, 2004)的研究
还有待进一步加强。
可燃物类型与火行为的研究。目前很多国家(包
括我国)缺乏统一的森林可燃物类型划分标准, 火
贺红士等: 森林可燃物及其管理的研究进展与展望 747
doi: 10.3773/j.issn.1005-264x.2010.06.013
行为模型的开发与应用受到了限制, 落后于发达国
家近20年(袁春明和文定元, 2001; 金森, 2006)。在
全球气候变暖、极端气候频繁、火险不断增加的21
世纪(Flannigan et al., 1998; 田晓瑞等, 2003; Soja et
al., 2007), 此项研究工作迫切需要开展。
森林可燃物处理效果评价。森林可燃物处理效
果评价是当前国际火生态学研究的前沿, 可燃物处
理对森林更新、森林质量和森林火险的长期影响还
缺乏系统的评价研究, 限制了可燃物处理方案的制
定与实施(Agee & Skinner, 2005)。可把以试验观测
为基础的静态研究与以空间技术和生态模型为基
础的动态预测相结合, 研究可燃物处理效果。研究
如何通过可燃物处理来改进森林结构与自然更新,
保持森林健康与持续发展, 在高火险区寻找可燃物
处理的有效方案(时机、面积和方法), 减少国家在林
火监控和灭火中的大量投资, 取得事半功倍的效果
(Ohlson et al., 2006)。
多数气候变化模拟结果表明, 全球气候将趋向
干暖。气候变得干暖将会增加可燃物的数量, 延长
火烧季节(fire season), 增加火烧的面积、强度和频
度。还可能会引起森林碳源-汇功能的变化, 从而会
引起森林生态系统碳收支(carbon budget)的变化
(Flannigan & van Wagner, 1991)。全球气候变化背景
下可燃物管理如何降低火险?如何影响森林生态
系统的碳收支?也是今后的重要研究方向之一。
3 结语
森林可燃物管理是从根本上解决林火安全问
题、改善森林结构和提高森林健康的途径。森林可
燃物管理研究是火行为研究和林火调控的基础工
作, 这些工作为从当前以监控和灭火为主的林火管
理方针转为新时期以可燃物处理为主的林火管理
方针提供理论基础。但是, 我国在森林可燃物基础
研究方面还不够系统和深入, 需要加大投入, 尽快
建立我国森林可燃物分类体系和森林火险等级系
统, 使我国的林火管理迈上新的台阶。
参考文献
Agee JK, Skinner CN (2005). Basic principles of forest fuel
reduction treatments. Forest Ecology and Management,
211, 83–96.
Albini FA (1976). Estimating wildfire behavior and effects.
USDA Forest Service, Intermountain Forest and Range
Experiment Station, General Technical Report INT-30.
Ogden, UT. 74. http://firemodels.fire.org/downloads/be-
haveplus/publications/Albini_INT-30_1976.pdf. Cited 15
Aug. 2008.
Anderson H (1970). Forest fuel ignitibility. Fire Technology, 6,
312–319.
Andrews PL (1986). BEHAVE: Fire behavior prediction and
fuel modeling system-BURN subsystem, part 1. General
Technical Report INT-194. U.S. Department of Agricul-
ture, Forest Service, Intermountain Research Station.
Ogden, UT. http://firemodels.fire.org/downloads/behave-
plus/publications/Andrews_and_Chase_PMES-439-3_NF
ES-0227_1989_ocr.pdf. Cited 15 Aug. 2008.
Andrews PL, Chase CH (1989). BEHAVE: fire behavior pre-
diction and fuel modeling system-BURN subsystem, part
2. General Technical Report. INT-260. U.S. Department
of Agriculture, Forest Service, Intermountain Research
Station. Ogden, UT. http://firemodels.fire.org/downloads/
behaveplus/publications/Andrews_and_Chase_PMES-
439-3_NFES-0227_1989_ocr.pdf. Cited 15 Aug. 2008.
Andrews PL, Collin DB (1999). BEHAVE fire modeling sys-
tem: redesign and expansion. Fire Management Notes, 59,
16–19.
Apigian CH, Ragu-Nathan BS, Ragu-Nathan TS (2006).
Strategic profiles and internet performance: an empirical
investigation into the development of a strategic internet
system. Information & Management, 43, 455–468.
Arno SF, Fiedler CE (2005). Mimicking Nature’s Fire: Restor-
ing Fire-Prone Forests in the West. Island Press, Wash-
ington, DC.
Arroyo LA, Pascual C, Manzanera JA (2008). Fire models and
methods to map fuel types: the role of remote sensing.
Forest Ecology and Management, 256, 1239–1252.
Berg E (2007). Characterizing and classifying complex fu-
els — a new approach. Canadian Journal of Forest Re-
search, 37, 2381–2382.
Beukema SJ, Reinhardt ED, Kurz WA, Crookston NL (1999).
An overview of the fire and fuels extension to the forest
vegetation simulator. Proceedings of Joint Fire Sciences
Workshop. Boise ID, USA.
Blackmarr WH, Flanner WB (1968). Seasonal and diurnal
variation in moisture content of six species of Pocosin
shrubs. USDA Forest Service Research Paper Se-33, 11.
http://md1.csa.com/partners/viewrecord.php?requester=gs
&collection=ENV&recid=6905331. Cited 15 Aug. 2008.
Bradstock RA, Bedward M, Cohn JS (2006). The modelled
effects of differing fire management strategies on the
conifer Callitris verrucosa within semi-arid mallee vege-
tation in Australia. Journal of Applied Ecology, 43,
281–292.
Brown JK (1974). Handbook for inventorying downed woody
material. USDA Forest Service INT-GTR-16. Intermoun-
tain Forest and Range Experiment Station, Ogden, UT.
http://www.treesearch.fs.fed.us/pubs/28647. Cited 15 Aug.
748 植物生态学报 Chinese Journal of Plant Ecology 2010, 34 (6): 741–752
www.plant-ecology.com
2008.
Byram GM (1959). Forest Fire Control and Use. McGraw Hill
Book Company, New York.
Cary GJ (1998). Predicting Fire Regimes and Their Ecological
Effects in Spatially Complex Landscapes. PhD disserta-
tion, The Australian National University, Canberra, Aus-
tralia.
Chang Y, He HS, Bishop I, Hu Y, Bu R, Xu C, Li X (2007).
Long-term forest landscape responses to fire suppression
in Great Xing’an Mountains, China. International Journal
of Wildland Fire, 16, 34–44.
Chang Y, He HS, Hu Y, Bu R, Li X (2008). Historic and cur-
rent fire regimes in the Great Xing’an Mountains, north-
eastern China: implications for long-term forest manage-
ment. Forest Ecology and Management, 254, 445–453.
Chen HW (陈宏伟), Chang Y (常禹), Hu YM (胡远满), Liu
ZH (刘志华), Zhou R (周锐), Jing GZ (荆国志), Zhang
HX (张红新), Hu CH (胡长河), Zhang CM (张长蒙)
(2007). Analysis of loading capacity and factors affecting
forest surface dead fuel of Huzhong area, Mountain,
Daxing’anling. Chinese Journal of Ecology (生态学杂志),
27, 50–55. (in Chinese with English abstract)
Cheney P, Sullivan A (1997). Grassfires: Fuel, Weather and
Fire Behavior. Commonwealth Scientific and Industrial
Research Organization. Collingwood, Australia. http://www.
publish.csiro.au/samples/Grassfires%20sample.pdf. Cited
15 Aug. 2008.
Chew JD, Stalling C, Moeller K (2004). Integrating knowledge
for simulating vegetation change at landscape scales.
Western Journal of Applied Foresters, 19, 102–108.
Deeming JE, Burgan RE, Cohen JD (1977). The national fire
danger rating system. Report No. GTR INT-39. USDA
Forest Service, Intermountain Forest and Range Experi-
ment Station, Ogden, UT. http://www.treesearch.fs.fed.
us/pubs/959. Cited 15 Aug. 2008.
Di XY (邸学颍), Wang HL (王宏良) (1993). Forest Fire Pre-
diction (森林防火). Northeast Forestry University Press,
Harbin, China. (in Chinese)
Duan XG (段向阁), Liu L (刘利) (1997). The influence of
prescribed burn on fuel management. Forest Fire
Prevention (森林防火), (3), 25–27. (in Chinese)
Fernandes P, Luz A, Loureiro C, Ferreira-Godinho P, Botelho
H (2006). Fuel modelling and fire hazard assessment
based on data from the Portuguese National Forest Inven-
tory. Forest Ecology and Management, 234, S229–S229.
Fernandes PM, Rigolot E (2007). The fire ecology and man-
agement of maritime pine (Pinus pinaster Ait.). Forest
Ecology and Management, 241, 1–13.
Finney MA (2001). Design of regular landscape fuel treatment
patterns for modifying fire growth and behavior. Forrest
Science, 47, 219–228.
Finney MA, McHugh CW, Grenfell IC (2005). Stand- and
landscape-level effects of prescribed burning on two Ari-
zona wildfires. Canadian Journal of Forest Research, 35,
1714–1722.
Flannigan MD, Bergeron Y, Engelmark O, Wotton BM (1998).
Future wildfire in circumboreal forests in relation to
global warming. Journal of Vegetation Science, 9,
469–476.
Flannigan MD, van Wagner CE (1991). Climate change and
wildfire in Canada. Canadian Journal of Forest Research,
21, 66–72.
Flannigan M, Wotton B (1989). A study of interpolation meth-
ods for forest fire danger rating in Canada. Canadian
Journal of Forest Research, 19, 1059–1066.
Franklin J, Woodcock CE, Warbington R (2000). Digital vege-
tation maps of forest lands in California: integrating satel-
lite imagery, GIS modeling, and field data in support of
resource management. Photogrammetric Engineering and
Remote Sensing, 66, 1209–1217.
Gao CD (高成德), Tian XR (田晓瑞), Shu LF (舒立福)
(2005). Forest fuel classification and combustibility at
Tieshanping in Chongqing. Forest Fire Prevention (森林
防火), (2), 29–30. (in Chinese)
Gao GP (高国平), Wang Y (王月) (2004). Combustible ground
cover and combustibility of forest in eastern Liaoning.
Journal of Shenyang Agricultural University (沈阳农业大
学学报), 35(1), 24–28. (in Chinese with English abstract)
Gardner RH, Romme WH, Turner MG (1999). Effects of
scale-dependent processes on predicting patterns of forest
fires. In: Mladenoff DJ, Baker WL eds. Advances in Spa-
tial Modeling of Forest Landscape Change: Approaches
and Applications. Cambridge University Press, Cam-
bridge, UK.
Goodman LF, Hungate BA (2006). Managing forests infested
by spruce beetles in south-central Alaska: effects on ni-
trogen availability, understory biomass, and spruce regen-
eration. Forest Ecology and Management, 227, 267–274.
Greenberg CH, Tomcho AL, Lanham JD, Waldrop TA, Tom-
cho J, Phillps RJ, Simon D (2007). Short-term effects of
fire and other fuel reduction treatments on breeding birds
in a southern Appalachian upland hardwood forest. Jour-
nal of Wildlife Management, 71, 1906–1916.
Hann WJ, Bunnell DL (2001). Fire and land management plan-
ning and implementation across multiple scales. Interna-
tional Journal of Wildland Fire, 10, 389–403.
Harvey S, Rüegsegger M, Allgöwer B (1997). Fuel models for
Switzerland (Swiss National Park). Report No. BBW
Nr.94.0177.EC.EV5VCT-0570. Department of Geogra-
phy, Zurich.
He HS (2008). Forest landscape models, definition, characteri-
zation, and classification. Forest Ecology and Manage-
ment, 254, 484–498.
He HS, Keane RE, Iverson LR (2008). Forest landscape
贺红士等: 森林可燃物及其管理的研究进展与展望 749
doi: 10.3773/j.issn.1005-264x.2010.06.013
models, a tool for understanding the effect of the
large-scale and long-term landscape processes. Forest
Ecology and Management, 254, 371–374.
He HS, Li W, Sturtevant BR, Yang J, Shang BZ, Gustafson EJ,
Mladenoff DJ (2005). LANDIS, a spatially explicit model
of forest landscape disturbance, management, and succes-
sion—LANDIS 4.0 user’s guide. USDA Forest Service,
North Central Research Station General Technical Report.
NC-263. http://www.treesearch.fs.fed.us/pubs/13603. Cited
15 Aug. 2008.
He HS, Mladenoff DJ (1999). Spatially explicit and stochastic
simulation of forest landscape fire disturbance and succes-
sion. Ecology, 80, 81–99.
He HS, Shang ZB, Crow TR, Gustafson EJ, Shifley SR (2004).
Simulating forest fuel and fire risk dynamics across land-
scapes—LANDIS fuel module design. Ecological Model-
ling, 180, 135–151.
He ZQ (何忠秋), Li CS (李长胜), Zhang CG (张成刚), Ma LH
(马丽华),Yu L (于力),Duan XG (段向阁) (1995). The
study on forest fuel moisture content. Forest Fire Preven-
tion (森林防火), (2), 15–16. (in Chinese)
Holsinger L, Keane RE, Parsons R, Karau E (2006). Develop-
ment of biophysical gradient layers for the LANDFIRE
prototype project. In: Rollings MG, Frame C eds. The
LANDFIRE, Prototype Projects: Nationally Consistent
Locally Relevant Geospatial Data for Wildland Fire
Management, USDA, Forest Service Rocky Mountain Re-
search Station General Technical Report, RMRS- GTR-
175. http://www.treesearch.fs.fed.us/pubs/24645. Cited 15
Aug. 2008.
Hood GA, Bayley SE, Olson W (2007). Effects of prescribed
fire on habitat of beaver (Castor canadensis) in Elk Island
National Park, Canada. Forest Ecology and Management,
239, 200–209.
Hu HQ (胡海清) (1995). Measure and analysis of physico-
chemical properties for forest fuel in Daxing’an Mountain.
Forest Fire Prevention (森林防火), (1), 27–31. (in Chi-
nese)
Hu HQ (胡海清), Wei YM (魏云敏) (2007). Estimation of
forest fuel load using TM remote sensing image and stand
factor. Journal of Northeast Forestry University (东北林
业大学学报), 35(6), 18–20. (in Chinese with English ab-
stract)
Hu HQ (胡海清), Zhang J (张喆), Wu XW (吴学伟) (2007).
Type classification of forest fuel in Tahe Forestry Bureau
based on remote sensing. Journal of Northeast Forestry
University (东北林业大学学报), 35(7), 20–26. (in Chi-
nese with English abstract)
Jin S (金森) (2006). A review on estimating forest fuel loads
by remote sensing imagery. Scientia Silvae Sinicae (林业
科学), 42(12), 63–67. (in Chinese with English abstract)
Johnson EA (1996). Fire and Vegetation Dynamics: Studies
from the North American Boreal Forest, Cambridge Stud-
ies in Ecology. Press Syndicate of the University of Cam-
bridge, Northants, UK.
Johnson EA, Miyanishi K (2001). Forest Fires: Behaviour and
Ecological Effects. Academic Press, London.
Keane RE, Burgan R, van Wagtendonk J (2001). Mapping
wildland fuels for fire management across multiple scales:
integrating remote sensing, GIS, and biophysical model-
ing. International Journal of Wildland Fire, 10, 301–319.
Keane RE, Cary GJ, Davies ID, Flannigan MD, Gardner RH,
Lavorel S, Lenihan JM, Li C, Rupp TS (2004). A classifi-
cation of landscape fire succession models: spatial simula-
tions of fire and vegetation dynamics. Ecological Model-
ling, 179, 3–27.
Keane RE, Holsinger L, Pratt S (2006). Simulating historical
landscape dynamics using the landscape fire succession
model LANDSUM version 4.0. In: Rollins MG, Frame C
eds. The LANDFIRE Prototype Project: Nationally Con-
sistent and Locally Relevant Geospatial Data for Wildland
Fire Management. USDA Forest Service Rocky Mountain
Research Station General Technical Report RMRS- GTR-
175. http://www. tree-search.fs.fed.us/pubs/22355. Cited
15 Aug. 2008.
Keane RE, Parsons RA, Hessburg PF (2002). Estimating his-
torical range and variation of landscape patch dynamics:
limitations of simulation approach. Ecological Modelling,
151, 29–49.
Keane RE, Rollins M, Zhu ZL (2007). Using simulated his-
torical time series to prioritize fuel treatments on land-
scapes across the United States: the LANDFIRE prototype
project. Ecological Modelling, 204, 485–502.
King KJ, Cary GJ, Bradstock RA, Chapman J, Pyrket A, Jona-
thon B (2006). Simulation of prescribed burning strategies
in south west Tasmania, Australia: effects on unplanned
fires, fire regimes, and ecological management values. In-
ternational Journal of Wildland Fire, 15, 527–540.
Kitchen K, Marno P, Legg C, Bruce M, Davies GM (2006).
Developing a fire danger rating system for the United
Kingdom. Forest Ecology and Management, 234,
S21–S21.
Kou XQ (寇晓军), Hu YF (胡远方), Li JW (李继武) (1997).
Forest fuel and its combustibility in Maoer Mountain.
Forest Fire Prevention (森林防火), (1), 12–13. (in Chi-
nese)
Lasaponara R, Lanorte A, Pignatti S (2006). Multiscale fuel
type mapping in fragmented ecosystems: preliminary re-
sults from Hyperspectral MIVIS and Multispectral Land-
sat TM data. International Journal of Remote Sensing, 27,
587–593.
Lawson RD, Stocks BJ, Aleander ME, van Wagner CE (1985).
A system for predicting fire behavior in Canadian forest.
In: Eighteen Conference on Fire and Forest Meteorology.
750 植物生态学报 Chinese Journal of Plant Ecology 2010, 34 (6): 741–752
www.plant-ecology.com
Society of American Foresters, Detroit, USA. https: //
frames.nbii.gov/portal/server.pt/gateway/PTARGS_0_2_
3443_496_0_43/http%3B/depts.washington.edu/nwfire/
publication/VanNest_and_Alexander_1999.pdf. Cited 15
Aug. 2008.
Liu F (刘菲), Hu HQ (胡海清) (2005). A review on physico-
chemical properties and combustibility on forest fuel.
Forest Fire Prevention (森林防火), (1), 28–30. (in Chi-
nese)
Liu ZQ (刘自强), Li XF (李晓峰), Zhi XH (至相会) (1993a).
The study on test of forest fuel calorific value and its rela-
tion between moisture content in the Great Xing’an
Mountain. Forest Fire Prevention (森林防火), (2), 3–7.
(in Chinese)
Liu ZQ (刘自强), Wang JL (王丽俊), Wang JH (王剑辉)
(1993b). Determination of forest moisture content, igni-
tion point and ash on the flammability and combustibility
in the Great Xing’an Mountain. Forest Fire Prevention
(森林防火), (4), 9–12. (in Chinese)
Luo JY (骆介禹) (1992). Forest Combustion Energetics (森林
燃烧能量学 ). Northeast Forestry University Press,
Harbin, China. (in Chinese)
McArthur AG (1967). Fire behaviour in eucalypt forests. Aus-
tralian Forestry and Timber Bureau Leaflet, 107, 36.
McCaw WL, Neal JE, Smith RH (2002). Stand characteristics
and fuel accumulation in a sequence of even-aged Karri
(Eucalyptus diversicolor) stands in south-west Western
Australia. Forest Ecology and Management, 158,
263–271.
McKenzie D, Raymond CL, Kellogg LK, Norheim R, Andreu
A, Bayard A, Kopper K, Elman E (2007). Mapping fuels
at multiple scales: landscape application of the fuel char-
acteristic classification system. Canadian Journal of For-
est Research, 37, 2421–2437.
Mladenoff DJ, Baker WL (1999). Advances in Spatial Model-
ing of Forest Landscape Change: Approaches and Appli-
cations. Cambridge University Press, Cambridge, UK.
Morgan P, Hardy CC, Swetnam TW, Rollins MG (2001).
Mapping fire regimes across time and space: understand-
ing coarse and fine-scale fire pattern. International Jour-
nal of Wildland Fire, 10, 229–242.
Ohlson DW, Berry TM, Gray RW, Blackwell BA, Hawkes BC
(2006). Multi-attribute evaluation of landscape-level fuel
management to reduce wildfire risk. Forest Policy and
Economics, 8, 824–837.
Ohmann JL, Spies TA (1998). Regional gradient analysis and
spatial pattern of woody plant communities of Oregon
forest. Ecological Monograph, 68, 151–182.
Ottmar RD, Burns MF, Hall JN, Hanson AD (1993). CON-
SUME user’s guide. USDA Forest Service GTR-
PNW-304. http://www.treesearch.fs.fed.us/pubs/9049. Cited
15 Aug. 2008.
Ottmar RD, Sandberg DV, Riccardi CL, Prichard SJ (2007). An
overview of the fuel characteristics classification sys-
tem―quantifying, classifying, and creating fuelbeds for
resource planning. Canadian Journal of Forest Research,
37, 2383–2393.
Parker TJ, Clancy KM, Mathiasen RL (2006). Interactions
among fire, insects and pathogens in coniferous forests of
the interior western United States and Canada. Agricul-
tural and Forest Entomology, 8, 167–189.
Payne SJ, Andrews PL, Laven RD (1996). Introduction to
Wildland Fire. John Wiley and Sons, Somerset, New Jer-
sey, USA.
Pedley JA (1957). Handbook on Forest Fire Suppression for
Assistant Rangers, Patrolmen, and Suppression Crews.
Department of Lands and Forests, British Columbia Forest
Service, Canada.
Perry GLW, Enright NJ (2006). Spatial modelling of vegetation
change in dynamic landscapes: a review of methods and
applications. Progression in Physical Geography, 30,
47–72.
Pringle L, Marstall B (1995). Fire in the Forest: A Cycle of
Growth and Renewal. Fairbanks Museum and Planetar-
ium, New York.
Reinhardt E, Crookston NL (2003). The fire and fuels exten-
sion to the forest vegetation simulator. USDA Forest Ser-
vice, GTR-RMRS 116. http://www.treesearch.fs.fed.us/
pubs/5593. Cited 15 Aug. 2008.
Reinhardt ED, Keane RE, Brown JK (1998). FOFEM: a first
order fire effects model. Fire Management Notes, 58,
25–27.
Riaño D, Chuvieco E, Salas J, Palacios-Orueta A, Bastarrika A
(2002). Generation of fuel type maps from landsat TM
images and ancillary data in Mediterranean ecosystems.
Canadian Journal of Forest Research, 32, 1301–1315.
Riccardi CL, Ottmar RD, Sandberg DV, Andreu A, Elman E,
Kopper K, Long J (2007). The fuelbed: a key element of
the fuel characteristic classification system. Canadian
Journal of Forest Research, 37, 2394–2412.
Rollins MG, Keane RE, Parsons R (2004). Mapping ecological
attributes using gradient analysis and remote sensing.
Ecological Applications, 14, 75–95.
Romme WH, Turner MG, Tuskan GA, Reed RA (2005). Estab-
lishment, persistence, and growth of aspen (Populus
tremuloides) seedlings in Yellowstone National Park.
Ecology, 86, 404–418.
Rothermel RC (1972). A mathematical model for predicting
fire spread in wild land fuels. USDA Forest Service, Re-
search Paper INT-115. http://www.treesearch.fs.fed.us/
pubs/32533. Cited 15 Aug. 2008.
Rothermel RC (1983). How to predict the spread and intensity
of forest and range fires. USDA Forest Service, General
Technical Report INT-143. http://www.treesearch.fs.fed.
us/ pubs/24635. Cited 15 Aug. 2008.
贺红士等: 森林可燃物及其管理的研究进展与展望 751
doi: 10.3773/j.issn.1005-264x.2010.06.013
Rothermel RC (1991). Predicting behavior and size of crown
fires in the Northern Rocky Mountains. USDA Forest
Service, Research Paper INT-483. http://www.treese-
arch.fs.fed.us/pubs/26696. Cited 15 Aug. 2008.
Ryan KC, Lee KM, Rollings MG, Zhu Z, Smith J, Johnson D
(2006). Landfire: landscape fire and resource management
planning tools project. USDA Forest Service, Proceedings
RMRS-P-41. http://www.treesearch.fs.fed.us/pubs/25946.
Cited 15 Aug. 2008.
Sandberg DA (2001). Characterizing fuels in the 21st century.
International Journal of Wildland Fire, 10, 381–387.
Sandberg DV, Riccardi CL, Schaaf MD (2007). Fire potential
rating for wildland fuelbeds using the fuel characteristic
classification system. Canadian Journal of Forest Re-
search, 37, 2456–2463.
Scheller RM, Domingo JB, Sturtevant BR, Williams JS, Rudy
A, Gustafson EJ, Mladenoff DJ (2007). Design, develop-
ment, and application of LANDIS-II, a spatial landscape
simulation model with flexible temporal and spatial reso-
lution. Ecological Modelling, 201, 409–419.
Schoennagel T, Veblen TT, Romme WH (2004). The interac-
tion of fire, fuels, and climate across Rocky Mountain
forests. Bioscience, 54, 661–676.
Scott JH, Burgan RE (2005). Standard fire behavior fuel mod-
els: a comprehensive set for use with Rothermel’s surface
fire spread model. USDA Forest Service, General Techni-
cal Reprot-RMRS-GTR-1153. http://www.treesearch.fs.
fed.us/pubs/9521. Cited 15 Aug. 2008.
Shan YL (单延龙), Li H (李华), Qi QG (其其格) (2003). Ex-
perimental analysis of the burning and physicochemical
property of principal species in Daxing’an Mountain,
Heilongjiang Province. Fire Safety Science (火灾科学),
12(2), 74–78. (in Chinese)
Shan YL (单延龙), Zhang M (张敏), Yu YB (于永波) ( 2004).
Current situation and developing trend of the study on
forest fuel. Journal of Beihua University (Natural Science)
(北华大学学报(自然科学版)), 5, 264–269. (in Chinese
with English abstract)
Shang BZ, He HS, Crow TR, Shifley SR (2004). Fuel load
reductions and fire risk in central hardwood forests of the
United States: a spatial simulation study. Ecological Mod-
elling, 180, 89–102.
Shang BZ, He HS, Lytle DE (2007). Modeling the long-term
effects of fire suppression on central hardwood forests in
Missouri Ozarks, using LANDIS. Forest Ecology and
Management, 242, 776–790.
Shifley SR, Thompson FR, Dijak WD, Larson MA, Millspaugh
JJ (2006). Simulated effects of forest management alterna-
tives on landscape structure and habitat suitability in the
Midwestern United States. Forest Ecology and Manage-
ment, 36, 1740–1748.
Shu LF (舒立福), Tian XR (田晓瑞), Kou XJ (寇晓军) (1998).
Application and research on prescribed fire. Fire Safety
Science (火灾科学), 7(3), 61–67. (in Chinese)
Shu LF (舒立福), Tian XR (田晓瑞), Ma LT (马林涛)
(1999a). The studies and application of forest fire ecology.
Forest Research (林业科学研究), 12, 422–427. (in Chi-
nese)
Shu LF (舒立福), Tian XR (田晓瑞), Xu ZC (徐忠忱)
(1999b). The research and application of the sustainable
management technique of forest fuel. Fire Safety Science
(火灾科学), 8(4), 18–24. (in Chinese)
Soja AJ, Tchebakova NM, French NHF, Flannigan MD,
Shugart HH, Stocks BJ, Sukhinin AI, Parfenova EI, Cha-
pin FS, Stackhouse PW (2007). Climate-induced boreal
forest change: predictions versus current observations.
Global and Planetary Change, 56, 274–296.
Stephens SL, Moghaddas JJ (2005a). Fuel treatment effects on
snags and coarse woody debris in a Sierra Nevada mixed
conifer forest. Forest Ecology and Management, 214,
53–64.
Stephens SL, Moghaddas JJ (2005b). Experimental fuel treat-
ment impacts on forest structure, potential fire behavior,
and predicted tree mortality in a California mixed conifer
forest. Forest Ecology and Management, 215, 21–36.
Sturtevant BR, Bissonette JA, Long JN, Roberts DW (1997).
Coarse woody debris as a function of age, stand structure,
and disturbance in boreal newfoundland. Ecological Ap-
plications, 7, 702–712.
Sturtevant BR, Zollner PA, Gustafson EJ, Cleland DT (2004).
Human influence on fuel connectivity and risk of catas-
trophic fires in mixed forest of northern Wisconsin. Land-
scape Ecology, 19, 235–253.
Sullivan BT, Fettig CJ, Otrosina WJ, Dalusky MJ, Berisford
CW (2003). Association between severity of prescribed
burns and subsequent activity of conifer-infesting beetles
in stands of longleaf pine. Forest Ecology and Manage-
ment, 185, 327–340.
Tian XR (田晓瑞), Dai XA (戴兴安), Wang MY (王明玉),
Shu LF (舒立福), Gao CD (高成德) (2006). Study on the
fuel types classification of forests in Beijing. Scientia Sil-
vae Sinicae (林业科学), 42(11), 76–80. (in Chinese with
English abstract)
Tian XR (田晓瑞), Wang MY (王明玉), Shu LF (舒立福)
(2003). Forest fire trend and prevention strategy under the
global change in China. Forest Fire Prevention (森林防
火), 16(3), 32–34. (in Chinese)
Tian XR (田晓瑞), Zhao FJ (赵风君), Li H (李红), Shu LF (舒
立福), Liu HD (刘焕达) (2007). Influence of low intensity
burning on Quercus mongolica forest in Changbai Moun-
tain Region. Journal of Natural Disasters (自然灾害学
报), 16(1), 66–70. (in Chinese with English abstract)
Trofymow JA, Moore TR, Titus B, Prescott C, Morrison I,
752 植物生态学报 Chinese Journal of Plant Ecology 2010, 34 (6): 741–752
www.plant-ecology.com
Siltanen M, Smith S, Fyles J, Wein R, Camiré C,
Duschene L, Kozak L, Kranabetter M, Visser S (2002).
Rates of litter decomposition over 6 years in Canadian
forest: influence of litter quality and climate. Canadian
Journal of Forest Research, 32, 789–804.
Turner MG, Collins SL, Lugo AE, Magnuson JJ, Rupp TS,
Swanson RJ (2003a). Disturbance dynamics and ecologi-
cal response: the contribution of long-term ecological re-
search. BioScience, 53, 46–56.
Turner MG, Romme WH, Tinker DB (2003b). Surprises and
lessons from the 1988 Yellowstone fires. Frontiers in
Ecology and the Environment, 1, 351–358.
Walker SH, Rideout DB, Loomis JB, Reich R (2007). Com-
paring the value of fuel treatment options in northern
Colorado’s urban and wildland interface areas. Forest
Policy and Economics, 9, 694–703.
Wang G (王刚), Bi XH (毕湘虹), Luo JY (骆介禹) (1996).
Chemical composition and combustibility of several forest
fuel for Great Xing’an mountains. Forest Fire Prevention
(森林防火), (1), 22–24. (in Chinese)
Wang RJ (王瑞君) (2005). The relation between forest fire and
insects. Protection Forest Science and Technology (防护
林科技), 3, 93–95. (in Chinese)
Wang X, He HS, Li X (2007). The long-term effects of fire
suppression and reforestation on a forest landscape in
Northeastern China after a catastrophic wildfire. Land-
scape and Urban Planning, 79, 84–95.
Wei YM (魏云敏), Ju L (鞠琳) (2006). The research summary
for forest fuel loads. Forest Fire Prevention (森林防火),
(4), 18–21. (in Chinese)
Whitney RD, Irwin RN (2005). Comparison of Armillaria root
disease on burned and unburned, harvested sites in On-
tario. Forestry Chronicle, 81, 56–60.
Wuerthner G (2006). The Wildfire Reader: a Century of Failed
Forest Policy. Island Press, Washington, DC.
Xu HC (徐化成) (1998). Da Xing’an Ling Mountains Forests
in China (中国大兴安岭森林). Science Press, Beijing. (in
Chinese)
Yang DG (杨道贵), Wang JY (王金钖), Ma ZG (马志贵), Mu
KH (牟克华) (1992). The effects of prescribed burn on the
growth of yunnan pine (Pinus yunnanesis Franch). Forest
Fire Prevention (森林防火), (1), 32–36. (in Chinese)
Yi HR (易浩若), Ji P (纪平), Qin XL (覃先林) (2004). The
study and operation for the national forest fire danger pre-
diction system. Scientia Silvae Sinicae (林业科学), 40,
203–207. (in Chinese with English abstract)
Yuan CM (袁春明), Wen DY (文定元) (2001). The status and
prospect of forest fuel classification and model. World
Forest Research (世界林业研究), 2, 29–33. (in Chinese)
Zhang M (张敏), Liu DM (刘东明) (2007). Fire behavior
model and situation of Larix olgensis combustibles in for-
est zone of Changbai Mountain. Journal of Natural Dis-
asters (自然灾害学报), 16, 127–132. (in Chinese with
English abstract)
Zheng HN (郑焕能) (1988). Forest Fire Management (林火管
理). Northeast Forestry University Press, Harbin, China.
(in Chinese)
Zheng HN (郑焕能), Hu HQ (胡海清) (1990). Study on forest
fuel types in Eastern Mountains of northeast China. Forest
Fire Prevention (森林防火), (4), 10–13. (in Chinese)
责任编委: 周广胜 实习编辑: 黄祥忠