免费文献传递   相关文献

Effects of experimental warming on CO2, CH4 and N2O fluxes of biological soil crust and soil system in a desert region

模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响


目前, 有关增温条件下荒漠生物土壤结皮(BSCs)-土壤系统与大气之间主要温室气体(CO2、CH4和N2O)通量变化的研究十分匮乏, 以致很难准确地评估荒漠生态系统温室气体通量对气候变暖的响应与反馈的方向和程度。该文选择腾格里沙漠东南缘天然植被区由藻类、藓类以及二者混生的3种类型的BSCs覆盖土壤为研究对象, 以开顶式生长室(OTC)为增温方式模拟全球变暖, 采用静态箱-气相色谱法探究了2012年7月至2013年6月增温和不增温处理下CO2、CH4和N2O通量的变化特征。结果表明: 增温和结皮类型对CO2、CH4和N2O通量没有显著影响。采样日期、结皮类型与采样日期, 以及增温与结皮类型和采样日期的互作显著影响CO2和CH4通量, 增温和采样日期互作显著影响CH4通量。BSCs-土壤系统的CO2、CH4和N2O年通量及其增温潜能在增温和不增温处理下的差异均不显著。CO2通量与5 cm深度的土壤温度呈显著的指数正相关关系, 与10 cm深度的土壤湿度呈线性正相关关系; 藓类、混生结皮的CH4通量与5 cm深度的土壤温度和10 cm深度的土壤湿度均呈显著的线性负相关关系; 3种结皮类型的N2O通量与5 cm深度的土壤温度均无相关关系, 藓类结皮的N2O通量与10 cm深度的土壤湿度呈显著的线性负相关关系。藓类结皮的CO2和CH4在增温和不增温两种处理下的通量差异与5 cm深度的土壤温度差异呈显著的负线性相关, 藻类结皮N2O的通量差异与温度差异呈近似正相关关系(p = 0.051)。以上结果说明: 在全球变暖的背景下, 荒漠BSCs-土壤系统主要温室气体通量不会有明显的变化, 意味着荒漠生态系统温室气体的排放可能对气候变暖没有明显的反馈。

Aims The objectives of this study were to investigate the effects of experimental warming on the fluxes of CO2, CH4 and N2O of biological soil crusts (BSCs) and soil system, and to determine the relationships of the greenhouse gas fluxes with soil temperature and soil moisture.
Methods We used open top chamber to imitate climate warming. Intact soil columns covered with three types of biological soil crusts, including moss, algae and mixed crusts of moss and algae, were collected at the southeast fringe of the Tengger Desert. The fluxes of CO2, CH4 and N2O under warming and non-warming treatments were measured using static chamber and gas chromatography method during the period from July 2012 to June 2013.
Important findings Warming and BSCs types had no significant effects on the fluxes of CO2, CH4 and N2O. The CO2 and CH4 fluxes were significantly affected by sampling date as well as interactions between crust type and sampling date and among warming treatment, crust type and sampling date. An interaction between warming treatment and sampling date also significantly affected the CH4 flux. However, no difference was found in the annual CO2, CH4 and N2O fluxes and global warming potentials (GWP) in the three BSC types between the warming and non-warming treatments. CO2 flux had a significant and positive exponential correlation with soil temperature at 5 cm depth and a significant and negative linear correlation with soil moisture at 10 cm depth. The CH4 fluxes of moss and mixed crusts were significantly and negatively correlated with both soil temperature at 5 cm depth and soil moisture at 10 cm depth. No relationship was found between the N2O flux and soil temperature, while the N2O flux of moss crust was significantly and negatively correlated with soil moisture at 10 cm depth. Differences in CO2 and CH4 fluxes of moss crust between the warming and non-warming treatments were significantly and negatively correlated with the difference of soil temperature at 5 cm depth between the two treatments; whereas the difference in N2O flux of algae crust was marginally and positively correlated (p = 0.051) with the difference in soil temperature. All results mentioned above suggest that the fluxes of greenhouse gases would not experience a significant change for the BSCs-soil system under global warming, meaning that the feedback of greenhouse gases in the desert ecosystem to climate warming would not be large in the future.


全 文 :植物生态学报 2014, 38 (8): 809–820 doi: 10.3724/SP.J.1258.2014.00076
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2013-12-30 接受日期Accepted: 2014-04-14
* 通讯作者Author for correspondence (E-mail: huyig@lzb.ac.cn)
模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4
和N2O通量的影响
徐冰鑫1,2 胡宜刚1* 张志山1 陈永乐1,2 张 鹏1 李 刚1,2
1中国科学院寒区旱区环境与工程研究所沙坡头沙漠研究试验站, 兰州 730000; 2中国科学院大学, 北京 100049
摘 要 目前, 有关增温条件下荒漠生物土壤结皮(BSCs)-土壤系统与大气之间主要温室气体(CO2、CH4和N2O)通量变化的研
究十分匮乏, 以致很难准确地评估荒漠生态系统温室气体通量对气候变暖的响应与反馈的方向和程度。该文选择腾格里沙漠
东南缘天然植被区由藻类、藓类以及二者混生的3种类型的BSCs覆盖土壤为研究对象, 以开顶式生长室(OTC)为增温方式模
拟全球变暖, 采用静态箱-气相色谱法探究了2012年7月至2013年6月增温和不增温处理下CO2、CH4和N2O通量的变化特征。
结果表明: 增温和结皮类型对CO2、CH4和N2O通量没有显著影响。采样日期、结皮类型与采样日期, 以及增温与结皮类型和
采样日期的互作显著影响CO2和CH4通量, 增温和采样日期互作显著影响CH4通量。BSCs-土壤系统的CO2、CH4和N2O年通量
及其增温潜能在增温和不增温处理下的差异均不显著。CO2通量与5 cm深度的土壤温度呈显著的指数正相关关系, 与10 cm深
度的土壤湿度呈线性正相关关系; 藓类、混生结皮的CH4通量与5 cm深度的土壤温度和10 cm深度的土壤湿度均呈显著的线性
负相关关系; 3种结皮类型的N2O通量与5 cm深度的土壤温度均无相关关系, 藓类结皮的N2O通量与10 cm深度的土壤湿度呈
显著的线性负相关关系。藓类结皮的CO2和CH4在增温和不增温两种处理下的通量差异与5 cm深度的土壤温度差异呈显著的
负线性相关, 藻类结皮N2O的通量差异与温度差异呈近似正相关关系(p = 0.051)。以上结果说明: 在全球变暖的背景下, 荒漠
BSCs-土壤系统主要温室气体通量不会有明显的变化, 意味着荒漠生态系统温室气体的排放可能对气候变暖没有明显的
反馈。
关键词 生物土壤结皮, 荒漠, 模拟增温, 温室气体
Effects of experimental warming on CO2, CH4 and N2O fluxes of biological soil crust and soil
system in a desert region
XU Bing-Xin1,2, HU Yi-Gang1*, ZHANG Zhi-Shan1, CHEN Yong-Le1,2, ZHANG Peng1, and LI Gang1,2
1Shapotou Desert Research and Experimental Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sci-
ences, Lanzhou 730000, China; and 2University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
Aims The objectives of this study were to investigate the effects of experimental warming on the fluxes of CO2,
CH4 and N2O of biological soil crusts (BSCs) and soil system, and to determine the relationships of the green-
house gas fluxes with soil temperature and soil moisture.
Methods We used open top chamber to imitate climate warming. Intact soil columns covered with three types of
biological soil crusts, including moss, algae and mixed crusts of moss and algae, were collected at the southeast
fringe of the Tengger Desert. The fluxes of CO2, CH4 and N2O under warming and non-warming treatments were
measured using static chamber and gas chromatography method during the period from July 2012 to June 2013.
Important findings Warming and BSCs types had no significant effects on the fluxes of CO2, CH4 and N2O. The
CO2 and CH4 fluxes were significantly affected by sampling date as well as interactions between crust type and
sampling date and among warming treatment, crust type and sampling date. An interaction between warming
treatment and sampling date also significantly affected the CH4 flux. However, no difference was found in the
annual CO2, CH4 and N2O fluxes and global warming potentials (GWP) in the three BSC types between the
warming and non-warming treatments. CO2 flux had a significant and positive exponential correlation with soil
temperature at 5 cm depth and a significant and negative linear correlation with soil moisture at 10 cm depth. The
CH4 fluxes of moss and mixed crusts were significantly and negatively correlated with both soil temperature at 5
cm depth and soil moisture at 10 cm depth. No relationship was found between the N2O flux and soil temperature,
810 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (8): 809–820

www.plant-ecology.com
while the N2O flux of moss crust was significantly and negatively correlated with soil moisture at 10 cm depth.
Differences in CO2 and CH4 fluxes of moss crust between the warming and non-warming treatments were signifi-
cantly and negatively correlated with the difference of soil temperature at 5 cm depth between the two treatments;
whereas the difference in N2O flux of algae crust was marginally and positively correlated (p = 0.051) with the
difference in soil temperature. All results mentioned above suggest that the fluxes of greenhouse gases would not
experience a significant change for the BSCs-soil system under global warming, meaning that the feedback of
greenhouse gases in the desert ecosystem to climate warming would not be large in the future.
Key words biological soil crust, desert, experimental warming, greenhouse gases

全球气候变暖已被越来越多的各种观测记录和
研究报道所证实(IPCC, 2007, 2013)。据IPCC (2013)
报道, 1880–2010年全球平均气温增加了0.85 , ℃ 预
计到21世纪末还将增加0.3–4.8 ℃。大气中以CO2、
CH4和N2O为主的温室气体浓度的增加所带来的温
室效应是导致气候变暖的直接原因(Solomon et al.,
2007; Gleick et al., 2010)。2011年全球大气中的CO2、
CH4和N2O浓度分别为391.000、1.803和0.319 μmol·
mol–1, 分别比工业革命(1750年)前的CO2、CH4和
N2O浓度增加了40%、150%和20% (IPCC, 2013)。大
气中的CO2、CH4和N2O在生物圈和大气圈之间进行
着复杂的交换, 其“源-汇”关系决定着生态系统对气
候变暖的响应与反馈的方向和程度 (Fearnside,
2000)。因此, 在全球气候变暖的背景下, 有关各类
生态系统温室气体通量变化的研究已成为科学研究
的焦点和热点问题。目前, 众多国内外学者已开展
了生态系统CO2、CH4和N2O通量的多种监测研究
(Keller et al., 1986; Christensen et al., 1996; Du et al.,
2006), 并通过各种模拟增温试验 , 如: 被动式增
温、开顶式生长室(OTC)、红外线辐射器等(Aronson
& McNulty, 2009)模拟气候变暖, 研究增温条件下
不同生态系统与大气CO2、CH4和N2O之间交换的变
化规律 (Rustad & Fernandez, 1998; Chimner &
Welker, 2005; Oberbauer et al., 2007)。然而, 大多数
研究集中在冻原、高寒草甸和温带草原等地区
(Welker et al., 2004; Wan et al., 2005; Xia et al., 2009;
Lin et al., 2011), 而对荒漠地区生态系统CO2、CH4
和N2O通量的相关报道并不多见, 增温条件下的长
期监测试验更是十分缺乏。
生物土壤结皮(biological soil crusts, BSCs)是荒
漠生态系统的重要构建者和组成成分, 占荒漠地表
活体覆盖的40%以上(李新荣等, 2009)。BSCs是由隐
花植物如蓝细菌、藻类、地衣、藓类和土壤微生物,
以及相关的其他生物体通过菌丝体、假根和分泌物
等与土壤表层颗粒胶结形成的十分复杂的复合体
(Belnap & Lange, 2001), 在维持荒漠生态系统的稳
定、碳氮循环和生态平衡等方面均具有重要的意义
(李新荣等, 2009)。目前, 关于自然状态和气候变暖
背景下, BSCs覆盖的荒漠土壤与大气CO2、CH4和
N2O之间交换的研究报道相当匮乏。本文拟采用
OTC增温方式来模拟气候变暖, 通过对腾格里沙漠
藓类、藻类以及二者混生的3种典型的BSCs所覆盖
的土壤温室气体通量的监测, 试图弄清该系统在自
然状态下的CO2、CH4和N2O通量大小, 增温条件下
CO2、CH4和N2O通量的变化, CO2、CH4和N2O通量
与土壤温度和土壤湿度之间的关系, 为准确地评估
荒漠系统温室气体通量对气候变暖的响应与反馈的
方向和程度提供科学依据。
1 材料和方法
1.1 研究区概况
本研究依托中国科学院沙坡头沙漠研究试验站
(简称沙坡头站)。沙坡头站(37.53° N, 105.03° E)位于
腾格里沙漠东南缘, 海拔1 300–1 350 m, 年平均气
温9.6 , 1℃ 月平均气温为–6.9 , 7℃ 月平均气温为
24.3 ; 1956℃ –2002年平均年降水量186.5 mm, 降水
主要集中在5–9月; 年蒸发量为2 300–2 500 mm, 平
均风速2.6 m·s–1。试验样品采自位于距沙坡头站以
西46.5 km的一碗泉天然植被区(37.42° N, 104.60°
E)。该区土壤基质为松散贫瘠的流沙, 土壤含水量
为2%–3%, 主要土壤类型为灰钙土和风沙土。灌木、
半灌木主要有柠条锦鸡儿(Caragana korshinskii)、红
砂 (Reaumuria songarica)、白刺 (Nitraria tanguto-
rum)、珍珠猪毛菜 (Salsola passerina)、黑沙蒿
(Artemisia ordosica)等 , 优势草本植物有茵陈蒿
(Artemisia capillaris)、冷蒿(Artemisia frigida)、无芒
隐 子 草 (Cleistogenes songorica) 和 寸 草 (Carex
duriuscula)等(冯丽等, 2011)。
徐冰鑫等: 模拟增温对荒漠生物土壤结皮-土壤系统 CO2、CH4和 N2O通量的影响 811

doi: 10.3724/SP.J.1258.2014.00076
1.2 研究方法
2012年6月初, 在一碗泉天然植被区, 用直径为
20 cm的PVC管采集由藻类、藓类以及二者混生的3
种不同类型的BSCs覆盖的原状土壤样品(直径×深
度= 20 cm × 20 cm), 每种结皮类型样品采集6份,
共18个原状土样带回沙坡头站开展增温试验。藓类、
藻类和混生结皮的盖度分别为95.1%、90.3%和
91.3%, 其中, 混生结皮中藓类、藻类和地衣结皮的
盖度分别为57.5%、30.8%和2.92%。每种BSCs类型
分增温和不增温两种处理, 每种处理3个重复。2010
年在沙坡头站水分平衡观测场西边建立了3个OTC
用于增温试验, 每个OTC为边长1. 3 m、高2 m的等
边八边体(张鹏等, 2012)。各BSCs类型的3个样品埋
放在OTC中作为增温处理(W), 另外3个样品埋放于
OTC外作为不增温处理(NW), 埋放时确保原状土
壤样品与地表齐平。安置完毕后, 将直径为25 cm带
有水槽的底座安装于地表, 使原状土芯处于底座的
中心位置。增温处理和不增温处理均安装气象站
(HOBO U30, Onset Computer Corporation, Cape
Cod, USA) 1套, 每0.5 h自动测定并储存5 cm深度的
土壤温度和10 cm深度的土壤湿度。
每月中下旬用静态箱法采集气体样品, 采样时
间为9:00–11:00。采集气体样品时, 将顶箱(高度×直
径= 40 cm × 25 cm)合扣在预先安装在土壤中的底
座上, 底座预先在水槽中装有约1/3深的水, 用来密
封顶箱。顶箱内装有风扇, 使箱内气体混合均匀。
在密封后的第0、10、20和30 min, 用50 mL的注射
器通过三通阀采集静态箱内的气体25 mL。用手持
式温度记录仪(JM624, 今明仪器有限公司, 天津)测
定采样开始和结束时静态箱内的温度。所采集的气
体样品带回室内 , 在气相色谱仪 (Agilent 6820,
Agilent Technologies, Palo Alto, USA)上分析气体中
的CO2、CH4和N2O浓度。所有气体样品均在采集后
24 h内完成分析。
1.3 数据处理
对所有数据采用SPSS 16.0 (SPSS, Chicago,
USA)进行统计分析。用一般线性模型中的多因素方
差分析法(Multivariate)分析增温、结皮类型及采样
日期对CO2、CH4和N2O通量的影响, 采用最小显著
差异法(LSD法)进行显著性检验。用单因素方差分析
(one-way ANOVA)检验CO2、CH4和N2O年通量在增
温与不增温处理之间的显著性差异。采用指数和线
性方程型函数拟合5 cm深处的土壤温度和10 cm深
处的土壤湿度与CO2、CH4和N2O通量的关系, 以及
增温和不增温两种处理下5 cm深处的土壤温度差异
与CO2、CH4和N2O通量差异之间的关系。显著性水
平设定为p = 0.05。采用Origin 8.5绘图。
2 结果和分析
2.1 OTC的增温效应
如图1所示, OTC显著增加了5 cm深处的土壤温
度。增温处理下, 5 cm深处土壤的年平均温度为13.5
, ℃ 比不增温处理增加了1.64 (℃ p < 0.001; 图1)。
非生长季(11月至次年3月)和生长季(4–10月), 5 cm
深处土壤温度的年平均值, 增温处理比不增温处理
分别高2.18 ℃和1.10 , ℃ 非生长季的增温幅度明显
高于生长季。


图1 增温对5 cm深度土壤温度的影响(平均值±标准误差)。
NW, 不增温; W, 增温。不同字母表示差异显著(p < 0.05)。
Fig. 1 Effects of warming on soil temperature at 5 cm depth
(mean ± SE). NW, non-warming; W, warming. Different letters
indicate significant differences at 0.05 level.


2.2 CO2通量
增温和结皮类型对CO2通量没有直接的显著影
响, 但采样日期对CO2通量的影响达到极显著水平;
另外, 结皮类型与采样日期两者的互作, 以及增温、
结皮类型和采样日期三者的互作均达到极显著水平
(表1)。增温显著减少了藓类结皮2012年9月和12月
的CO2通量(图2A), 显著增加了藻类结皮2012年8月
812 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (8): 809–820

www.plant-ecology.com
表1 CO2、CH4和N2O通量的多因素方差分析
Table 1 Multivariate analysis of CO2, CH4 and N2O fluxes
CO2 CH4 N2O 因素
Factor F p F p F p
增温 Warming (W) 0.411 0.522 4.818 0.159 0.842 0.360
生物土壤结皮类型 Type of biological soil crusts (T) 2.364 0.098 1.265 0.285 0.287 0.751
采样日期 Date of sampling (D) 25.879 <0.001 5.001 <0.001 1.120 0.350
T × D 5.124 <0.001 2.421 <0.001 0.658 0.874
W × D 1.683 0.083 2.113 0.023 0.825 0.615
W × T 1.815 0.167 1.864 0.159 0.637 0.530
W × T × D 2.407 0.001 2.137 0.004 1.480 0.090




图2 增温和不增温处理下不同生物土壤结皮类型的CO2通
量(平均值±标准误差)。*表示处理间差异显著(p < 0.05)。相
同字母表示处理间差异不显著(p > 0.05)。A, 藓类结皮。B,
藻类结皮。C, 藓类和藻类结皮。
Fig. 2 CO2 fluxes of various biological soil crust types under
warming and non-warming treatments (mean ± SE). * indicate
significant differences between treatments (p < 0.05). The same
letters indicate no significant differences between treatments (p
> 0.05). A, Moss crusts. B, Algae crusts. C, Moss & algae
crusts.


(图2B)和混生结皮2013年3月的CO2通量(图2C)。尽
管增温对3种BSCs类型年平均CO2通量的影响均不
显著, 但增温对不同BSCs类型的影响不一致。不增
温处理下藓类结皮年平均CO2通量为50.3 mg·m–2·
h–1, 增温减少了藓类结皮13.5%的年平均CO2通量,
生长季和非生长季分别减少3.90%和46.1%。不增温
处理下藻类结皮年平均CO2通量为43.1 mg·m–2·h–1,
增温减少了藻类结皮18.9%的年平均CO2通量, 生
长季和非生长季分别减少了21.1%和12.2%。相反,
增温处理下混生结皮的年平均CO2通量却增加了
23.0%, 生长季和非生长季分别增加了16.0%和
38.6%。
2.3 CH4通量
CH4通量受采样日期、结皮类型和采样日期互
作、增温和采样日期互作以及采样日期、增温和结
皮类型三者互作的显著影响, 增温和结皮类型对
CH4通量的影响不显著(表1)。3种BSCs类型的CH4
通量绝大多数情况下表现为负值(图3A、3B和3C),
说明大部分情况下荒漠BSCs-土壤系统是CH4的汇。
不增温处理下, 藓类、藻类和混生结皮的年平均CH4
通量分别为–0.038 μg·m–2·h–1、–0.011 μg·m–2·h–1、
–0.056 μg·m–2·h–1; 增温增加了藓类和藻类结皮年平
均CH4的吸收通量, 分别增加了0.33倍和4.78倍。与
之相反, 混生结皮的年平均CH4吸收通量减少1.35
倍。增温显著增加了藓类结皮2012年10月(图3A)和
藻类结皮2013年5月(图3B)的CH4吸收通量, 但增温
和不增温两种处理下, 3种BSCs类型年平均CH4通量
差异都不显著。
2.4 N2O通量
采样日期、增温和结皮类型对N2O通量的影响
均不显著, 三者之间的互作效应没有达到显著水平
(表1)。3种BSCs类型的N2O通量并没有表现出明显
的季节变化规律。不增温处理下藓类、藻类和混生
徐冰鑫等: 模拟增温对荒漠生物土壤结皮-土壤系统 CO2、CH4和 N2O通量的影响 813

doi: 10.3724/SP.J.1258.2014.00076


图3 增温和不增温处理下不同生物土壤结皮类型的CH4通
量变化(平均值±标准误差)。*表示处理间差异显著(p <
0.05)。相同字母表示处理间差异不显著(p > 0.05)。A, 藓类
结皮。B, 藻类结皮。C, 藓类和藻类结皮。
Fig. 3 CH4 fluxes of various biological soil crust types under
warming and non-warming treatments (mean ± SE). * indicate
significant differences between treatments (p < 0.05). The same
letters indicate no significant differences between treatments (p
> 0.05). A, Moss crusts. B, Algae crusts. C, Moss & algae
crusts.


结皮的年平均N2O通量分别为–4.42 μg·m–2·h–1、
–2.12 μg·m–2·h–1、–3.12 μg·m–2·h–1, 表明荒漠BSCs-
土壤系统在全年水平上表现为N2O的汇。增温显著增
加了藓类结皮2012年9月(图4A)、藻类结皮2012年7
月(图4B)以及混生结皮2012年9月(图4C)的N2O吸收
通量, 但两种处理下的3种BSCs类型年平均N2O通量
差异均不显著。增温都促进了3种BSCs类型对N2O的
吸收, 藓类、藻类以及混生结皮的年平均N2O吸收通
量分别增加了0.54倍、2.34倍和2.27倍。
2.5 温室气体的全球增温潜能(GWP)
根据IPCC (2007)报道的CH4和N2O全球平均
100年GWP值(CH4: 25, N2O: 298), 将3种BSCs类型

图4 增温和不增温处理下不同生物土壤结皮类型N2O通量
变化(平均值±标准误差)。*表示处理间差异显著(p < 0.05)。
相同字母表示处理间差异不显著(p > 0.05)。A, 藓类结皮。
B, 藻类结皮。C, 藓类和藻类结皮。
Fig. 4 N2O fluxes of various biological soil crust types under
warming and non-warming treatments (mean ± SE). * indicate
significant differences between treatments (p < 0.05). The same
letters indicate no significant differences between treatments (p
> 0.05). A, Moss crusts. B, Algae crusts. C, Moss & algae
crusts.


全年累积CH4和N2O通量折合为CO2当量。结果表明:
增温对荒漠BSCs-土壤系统的GWP影响根据不同类
型的BSCs而异, 增温处理下藓类和藻类结皮的CO2
当量分别减少15.3%和22.6%, 而混生结皮增加了
17.1%。但增温对3种BSCs类型年平均GWP的影响
不显著(表2)。
2.6 温室气体通量与土壤温度和土壤湿度的关系
3种BSCs类型的CO2通量与5 cm深处的土壤温
度均呈显著性指数正相关关系(图5A、5B和5C), 土
壤温度分别解释了藓类、藻类和混生结皮56.9%、
29.2%和18.5%的CO2通量变化。指数方程y = aebx中,
b值表征了生态系统呼吸对温度的敏感性, 藓类结
814 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (8): 809–820

www.plant-ecology.com
表2 增温(W)和不增温(NW)处理下CO2、CH4和N2O累积通量(g·m–2)和年增温潜能(GWP) (平均值±标准偏差)
Table 2 Cumulative CO2, CH4 and N2O emission (g·m–2) and annual warming potentials (GWP) (mean ± SD) under warming (W)
and non-warming (NW) treatments
生物土壤结皮类型
Type of biological soil
crusts
处理
Treatment
CO2累积通量
Cumulative CO2 emission
(g·m–2)
CH4累积通量
Cumulative CH4 emission
(g·m–2)
N2O累积通量
Cumulative N2O
emission (g·m–2)
GWP
(g·m–2)
藓类结皮 W 380 ± 185.9 –4.36 × 10–4 ± 1.74 × 10–4 –0.060 ± 0.039 363 ± 197
Moss crusts NW 440 ± 110.8 –3.29 × 10–4 ± 2.31 × 10–4 –0.387 ± 0.037 429 ± 122
藻类结皮 W 306 ± 99.8 –5.72 × 10–4 ± 2.17 × 10–4 –0.062 ± 0.061 288 ± 118
Algae crusts NW 377 ± 121.2 –9.91 × 10–5 ± 2.22 × 10–4 –0.019 ± 0.024 372 ± 128
藓类和藻类结皮 W 337 ± 65.0 –3.65 × 10–4 ± 1.17 × 10–4 –0.089 ± 0.036 311 ± 76
Moss & algae crusts NW 273 ± 78.1 –4.93 × 10–4 ± 1.30 × 10–4 –0.027 ± 0.029 265 ± 87


图5 CO2、CH4和N2O通量与5 cm深处的土壤温度的关系。A, D, G, 藓类结皮。B, E, H, 藻类结皮。C, F, I, 藓类和藻类结皮。
Fig. 5 Relationships of CO2, CH4 and N2O fluxes with soil temperature at 5 cm depth. A, D, G, Moss crusts. B, E, H, Algae crusts.
C, F, I, Moss & algae crusts.


皮CO2通量的温度敏感性最大, 藻类结皮次之, 混
生结皮最小。相反, 藓类和混生结皮CH4通量与5 cm
深处的土壤温度呈显著的负线性相关关系(图5D和
5F), 说明这两类结皮随着土壤温度的增加, 其CH4
吸收通量增加; 土壤温度分别解释了藓类和混生结
皮5.40%和31.2%的CH4通量变化。而藻类结皮CH4
通量与5 cm深处的土壤温度没有显著相关关系(图
5E)。同样, 3种BSCs类型的N2O通量与5 cm深处的土
壤温度均没有显著的相关关系(图5G、5H和5I)。
土壤湿度与3种BSCs类型的CO2通量均呈显著
的线性正相关关系(图6A、6B和6C), 分别解释了藓
类、藻类和混生结皮CO2通量变化的30.9%、25.0%
徐冰鑫等: 模拟增温对荒漠生物土壤结皮-土壤系统 CO2、CH4和 N2O通量的影响 815

doi: 10.3724/SP.J.1258.2014.00076


图6 CO2、CH4和N2O通量与10 cm深处的土壤湿度的关系。A, D, G, 藓类结皮。B, E, H, 藻类结皮。C, F, I, 藓类和藻类结皮。
Fig. 6 Relationships of CO2, CH4 and N2O fluxes with soil moisture at 10 cm depth. A, D, G, Moss crusts. B, E, H, Algae crusts. C,
F, I, Moss & algae crusts.


和13.5%。土壤湿度与藻类和混生结皮的CH4通量均
呈显著性负相关关系, 并分别解释了CH4通量变化
的4.4%和23.6%, 与混生结皮的CH4通量不相关(图
6D、6E、6F)。土壤湿度与藓类结皮N2O通量呈显著
线性负相关关系(图6G), 并解释了5.9%的N2O通量
变化, 藻类与混生结皮N2O通量与土壤湿度无显著
相关关系(图6H、6I)。土壤湿度与CO2通量之间线性
回归方程的斜率可以用来表征生态系统呼吸的湿度
敏感性, 斜率越大表示敏感性越强, 从图6可以看
出, 3种BSCs类型CO2通量的温度敏感性为藓类结皮
>藻类结皮>混生结皮。
增温和不增温两种处理下, 3种温室气体通量差
异与其5 cm深处的土壤温度差异的相关关系分析结
果表明, 藓类结皮CO2和CH4通量差异与温度差异
呈显著负线性相关关系(表3)。表明随着温差的增加,
藓类结皮的CO2通量增加幅度和CH4吸收通量的减
小程度逐渐减小, 其他两种BSCs类型的CO2和CH4
通量变化程度与温度差异不相关; 温度差异与藻类
结皮N2O通量的差异呈近似正相关关系(p = 0.051),
与其他两种BSCs类型的N2O通量差异不相关。说明
温差越大, 藻类BSCs的N2O通量变化越大。
3 讨论
3.1 增温对温室气体通量的影响
本试验中测定的CO2通量是荒漠BSCs-土壤系
统的生态系统呼吸(Re), 包括土壤呼吸(土壤微生物
呼吸、根系呼吸和土壤动物呼吸)和BSCs中隐花植
物的自养呼吸。陈志芳(2012)发现, 增温显著增加了
816 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (8): 809–820

www.plant-ecology.com
表3 增温和不增温处理下5 cm深度土壤温度差异与CO2、CH4和N2O通量差异的回归分析
Table 3 Regressions of the differences in soil temperature at 5 cm depth with the differences in fluxes of CO2, CH4 and N2O be-
tween warming and non-warming treatments
CO2 CH4 N2O 生物土壤结皮类型
Type of biological
soil crusts
线性方程
Linear equation
p R2 线性方程
Linear equation
p R2 线性方程
Linear equation
p R2
藓类结皮
Moss crusts
y = –19.5x + 25.3 0.036 0.097 y = –0.043x + 0.059 0.018 0.128 y = –6.76x + 13.6 0.141 0.035
藻类结皮
Algae crusts
y = 10.9x – 26.1 0.216 0.016 y = 0.027x – 0.099 0.264 0.008 y = 13.1x – 27.5 0.051 0.081
藻类和藓类结皮
Moss & algae crusts
y = –3.35x + 12.8 0.487 0.000 y = 0.022x – 0.043 0.125 0.040 y = 2.97x – 11.4 0.602 0.000


内蒙古荒漠草原生态系统的Re。Oberbauer等(2007)
研究表明增温导致干旱苔原生态系统的Re显著增
加。而本研究结果发现增温对荒漠BSCs-土壤系统
年平均Re无显著影响, 这一结果同上述研究结果不
一致, 但与Xia等(2009)和Lin等(2011)在温带草原和
青藏高原高寒草甸的报道一致。原因可能是: 尽管
增温会通过刺激土壤酶的活性加快土壤有机质的分
解(Luo et al., 2010), 进而促进土壤微生物的呼吸使
Re增加, 但在干旱区由于水分的限制, 土壤有机质
的分解速率受到抑制, 土壤养分的有效性降低, 而
且增温进一步降低了土壤水分有效性, 从而抑制了
土壤微生物的活性(Allison & Treseder, 2008), 最终
导致Re变化不明显。这说明未来全球变暖背景下,
荒漠BSCs-土壤系统的Re不会有显著的改变。然而,
我们还发现增温对BSCs-土壤系统Re的影响因BSCs
类型的变化而不同, 如: 增温减少了藓类、藻类结
皮的Re, 而增加了混生结皮的Re。这可能与不同
BSCs的土壤微生物组成及不同微生物群落的活性
对增温的反应差异有关, 这方面还有待于进一步的
研究。
在土壤中, CH4由产CH4菌在厌氧环境下产生
(Le Mer & Roger, 2001; Chaban et al., 2006), 在有氧
条件下被CH4氧化菌和自养氨氧化菌所氧化(Dalal
& Allen, 2008)。我们观测到的CH4通量是土壤CH4
产生和氧化的综合表现(Kammann et al., 2009)。前
期在云冷杉林生态系统(Rustad & Fernandez, 1998)
和苔原生态系统(Oberbauer et al., 1998)的研究结果
都表明增温对CH4通量的影响不显著。然而, 李娜
(2010)研究发现增温显著增加了荒漠草原对CH4的
吸收, 原因可能是温度升高时, 土壤CH4氧化细菌
活性呈指数级增加, 并且在一定温度范围内温度对
产CH4作用的影响被过低的底物含量所屏蔽, 无法
表达出来。因此, 增温对CH4通量的影响是一个复杂
的过程, 它与生态系统类型以及土壤水分(Castro et
al., 1995)等有关。本试验结果显示增温对荒漠BSCs-
土壤系统CH4通量的影响不显著。这可能是因为增
温加速了BSCs-土壤系统的水分散失, 促使大气中
的CH4和O2通过扩散进入土壤, 加快了CH4的氧化
过程, 导致土壤CH4吸收通量增加; 而土壤湿度的
降低又反过来抑制了CH4氧化菌的活性, 最终的结
果是CH4吸收通量没有明显的变化。但是, 不同类型
的BSCs对增温的响应并不一致; 增温增加了藓类
和藻类结皮的CH4吸收通量, 而混生结皮的CH4吸
收通量却减少。这可能是由于混生结皮比藓类、藻
类结皮具有较高的土壤孔隙度(高丽倩, 2012), 为土
壤中CH4的排放提供了良好的环境, 而相对较高的
持水量创造的厌氧环境有利于CH4的产生, 导致混
生结皮的CH4吸收通量减少。
N2O的产生主要是由硝化作用和反硝化作用这
两个微生物过程控制 (Granli & Bockman, 1994;
Bremner, 1997; Barnard et al., 2005), 同时也受到土
壤水分、温度和土壤有机质等的影响(Burford &
Bremner, 1975; Wang et al., 2005; Lin et al., 2009)。
厌氧条件下的反硝化作用是N2O的主要产生过程
(Xu et al., 2003)。Hu等(2010)对高寒草甸的研究发
现增温只是改变了生长季和非生长季对年N2O通量
的贡献比率, 并没有改变N2O的年释放量。然而, 李
娜(2010)在荒漠草原的试验表明增温显著增加了该
系统N2O通量的释放。我们的研究显示, 增温对荒
漠BSCs-土壤系统年平均N2O通量并无显著影响,
但增温增加了3种BSCs年平均N2O吸收通量。增温
可能减少了BSCs的持水量, 使由大气扩散入土壤
的N2O和O2增加, 导致反硝化作用受到抑制, 硝化
作用增强(侯爱新等, 1997), 引起BSCs的N2O吸收通
徐冰鑫等: 模拟增温对荒漠生物土壤结皮-土壤系统 CO2、CH4和 N2O通量的影响 817

doi: 10.3724/SP.J.1258.2014.00076
量增加。但由于干旱区土壤水分的限制, 使土壤中
硝化、反硝化细菌及相关酶的活性受到抑制, 荒漠
BSCs-土壤系统对N2O的吸收在总体上没有显著的
改变。
3.2 温室气体通量与土壤温度和土壤湿度的关系
本试验结果证实荒漠BSCs-土壤系统的Re随着
土壤温度的增加呈指数增加, 这与之前其他类型生
态系统的报道一致(Kato et al., 2004; Nakano et al.,
2008; Lin et al., 2009)。胡宜刚等(2014)在同一研究
区的研究表明土壤湿度与CO2通量呈显著线性正相
关关系, 与本试验的结果一致。可能的原因是Re中
的土壤呼吸以微生物对土壤有机质的分解为主, 温
度和湿度增加会加快土壤有机质的分解速率(Luo et
al., 2010), 使土壤中的微生物和地下生物量呼吸加
强。我们的研究还发现随着增温幅度的加大, 藓类
结皮CO2通量增加幅度会逐渐减小。由于干旱和半
干旱区水分条件受限, 增温幅度的增加将会减少水
分有效性, 从而通过降低微生物活性的方式导致Re
随着土壤湿度的减小而下降, 因此, Re随着温度增
加而增加的趋势并不是持续的, Re主要还受到土壤
含水量等因素的影响(Nakano et al., 2008; Zhang et
al., 2013)。
Rustad和Fernandez (1998)在森林生态系统的研
究表明土壤温度与CH4通量无相关关系。Wang等
(2005)发现内蒙古典型草原CH4的吸收与土壤温度
显著正相关, 与土壤湿度显著负相关。Lin等(2009)
在青藏高原高寒草甸的研究表明土壤湿度解释了
35%–36%的CH4通量变化。本试验将3种类型BSCs
的CH4通量放在一起分析时发现, BSCs的CH4的吸
收通量与土壤温度和湿度显著正相关。然而, 增温
幅度越大, 藓类结皮CH4吸收通量的增加程度越小。
说明随着土壤温度升高幅度的增加, 藓类结皮对
CH4的吸收受到了土壤湿度等其他环境因子的
限制。
Hu等(2010)发现青藏高原高寒草甸N2O通量与
土壤温度和湿度显著正相关或不相关。Lin等(2009)
发现土壤温度和湿度解释了34%–56%的N2O通量变
化。胡正华等(2013)在农田生态系统的研究表明土
壤温度和土壤湿度与N2O通量呈显著性指数正相关
关系。然而, 本研究发现3种BSCs类型的N2O通量与
土壤温度都不相关, 土壤湿度只与藓类结皮N2O通
量显著负相关, 仅解释了5.9%的N2O通量变化, 表
明温度和湿度并不是影响荒漠BSCs-土壤系统N2O
通量的主要环境因子, 该系统N2O通量可能还受到
O2可利用性(Bollmann & Conrad, 1998)和活性氮库
和碳库(Rodionow et al., 2006)等其他因子的影响。
由此可以推测, 荒漠生态系统N2O通量在全球变暖
背景下不会有明显的改变。
4 结论
1)增温对荒漠BSCs-土壤系统CO2和CH4的影响
因BSCs类型的不同而异。然而, 增温对各BSCs年平
均CO2、CH4、N2O通量和GWP通量无显著影响。表
明全球变暖背景下, 荒漠BSCs-土壤系统CO2、CH4
和N2O通量不会有显著的改变。
2)土壤温度与荒漠BSCs-土壤系统Re通量的显
著正相关主要表现在季节变化上; 增温幅度对Re和
CH4通量的变化贡献不大; 土壤温度与荒漠BSCs-
土壤系统的N2O通量无显著相关关系。土壤湿度与
CO2通量显著正相关, 与CH4和N2O通量之间的关系
随BSCs类型的不同而呈弱负相关或不相关。土壤湿
度可能是决定CO2通量“源-汇”关系的主要环境因
子, 而土壤温度并非是决定荒漠BSCs-土壤系统3种
温室气体“源-汇”关系的主要环境因子。
基金项目 国家自然科学基金(41101081和31170-
385)和中国科学院“西部之光”博士项目。
参考文献
Allison SD, Treseder KK (2008). Warming and drying suppress
microbial activity and carbon cycling in boreal forest soils.
Global Change Biology, 14, 2898–2909.
Aronson EL, McNulty SG (2009). Appropriate experimental
ecosystem warming methods by ecosystem, objective, and
practicality. Agricultural and Forest Meteorology, 149,
1791–1799.
Barnard R, Leadley PW, Hungate BA (2005). Global change,
nitrification, and denitrification: a review. Global Biogeo-
chemical Cycles, 19(1), doi: 10.1029/2004GB002282.
Belnap J, Lange OL (2001). Biological Soil Crusts: Structure,
Function, and Management. Springer-Verlag, Berlin.
Bollmann A, Conrad R (1998). Influence of O2 availability on
NO and N2O release by nitrification and denitrification in
soils. Global Change Biology, 4, 387–396.
Bremner JM (1997). Sources of nitrous oxide in soils. Nutrient
Cycling in Agroecosystems, 49, 7–16.
Burford JR, Bremner JM (1975). Relationships between deni-
trification capacities of soils and total, water-soluble and
readily decomposable soil organic matter. Soil Biology &
818 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (8): 809–820

www.plant-ecology.com
Biochemistry, 7, 389–394.
Castro MS, Steudler PA, Melillo JM, Aber JD, Bowden RD
(1995). Factors controlling atmospheric methane con-
sumption by temperate forest soils. Global Biogeochemi-
cal Cycles, 9, 1–10.
Chaban B, Ng SYM, Jarrell KF (2006). Archaeal habitats—
from the extreme to the ordinary. Canadian Journal of
Microbiology, 52, 73–116.
Chen ZF (2012). The Effect of Simulated Warming and N Addi-
tion on Ecosystem Gas Exchange in Inner Mongolia De-
sert Steppe. Master degree dissertation, Inner Mongolia
Agricultural University, Hohhot. (in Chinese) [陈志芳
(2012). 模拟增温和氮素添加对荒漠草原生态系统气体
交换的影响. 硕士学位论文, 内蒙古农业大学, 呼和
浩特.]
Chimner RA, Welker JM (2005). Ecosystem respiration re-
sponses to experimental manipulations of winter and
summer precipitation in a Mixedgrass Prairie, WY, USA.
Biogeochemistry, 73, 257–270.
Christensen TR, Prentice IC, Kaplan J, Haxeltine A, Sitch S
(1996). Methane flux from northern wetlands and tundra.
Tellus B, 48, 652–661.
Dalal RC, Allen DE (2008). TURNER REVIEW No. 18.
Greenhouse gas fluxes from natural ecosystems. Austra-
lian Journal of Botany, 56, 369–407.
Du R, Lu D, Wang GC (2006). Diurnal, seasonal, and
inter-annual variations of N2O fluxes from native
semi-arid grassland soils of Inner Mongolia. Soil Biology
& Biochemistry, 38, 3474–3482.
Fearnside PM (2000). Global warming and tropical land-use
change: greenhouse gas emissions from biomass burning,
decomposition and soils in forest conversion, shifting cul-
tivation and secondary vegetation. Climatic Change, 46,
115–158.
Feng L, Li XR, Guo Q, Zhang JG, Zhang ZS (2011). Effects of
highway on the vegetation species composition along a
distance gradient from road edge in southeastern margin of
Tengger Desert. Chinese Journal of Applied Ecology, 22,
1114–1120. (in Chinese with English abstract) [冯丽, 李
新荣, 郭群, 张景光, 张志山 (2011). 腾格里沙漠东南
缘公路对路域植被物种组成的影响. 应用生态学报, 22,
1114–1120.]
Gao LQ (2012). The Effect and It’s Mechanism of Biological
Soil Crusts on Soil Erodibility. Master degree dissertation,
Graduate University of Chinese Academy of Sciences,
Beijing. (in Chinese) [高丽倩 (2012). 生物结皮对土壤
可蚀性的影响及机理. 硕士学位论文, 中国科学院研究
生院, 北京.]
Gleick PH, Adams RM, Amasino RM, Anders E, Anderson DJ,
Anderson WW, Anderson WW, Anselin LE, Arroyo MK,
Asfaw B, Ayala FJ, Bax A, Bebbington AJ, Bell G, Ben-
nett MV, Bennetzen JL, Berenbaum MR, Berlin OB,
Bjorkman PJ, Blackburn E, Blamont JE, Botchan MR,
Boyer JS, Boyle EA, Branton D, Briggs SP, Briggs WR,
Brill WJ, Britten RJ, Broecker WS, Brown JH, Brown PO,
Brunger AT, Cairns J Jr, Canfield DE, Carpenter SR, Car-
rington JC, Cashmore AR, Castilla JC, Cazenave A, Cha-
pin FS 3rd, Ciechanover AJ, Clapham DE, Clark WC,
Clayton RN, Coe MD, Conwell EM, Cowling EB, Cowl-
ing RM, Cox CS, Croteau RB, Crothers DM, Crutzen PJ,
Daily GC, Dalrymple GB, Dangl JL, Darst SA, Davies
DR, Davis MB, De Camilli PV, Dean C, DeFries RS, De-
isenhofer J, Delmer DP, DeLong EF, DeRosier DJ, Diener
TO, Dirzo R, Dixon JE, Donoghue MJ, Doolittle RF,
Dunne T, Ehrlich PR, Eisenstadt SN, Eisner T, Emanuel
KA, Englander SW, Ernst WG, Falkowski PG, Feher G,
Ferejohn JA, Fersht A, Fischer EH, Fischer R, Flannery
KV, Frank J, Frey PA, Fridovich I, Frieden C, Futuyma
DJ, Gardner WR, Garrett CJ, Gilbert W, Goldberg RB,
Goodenough WH, Goodman CS, Goodman M, Greengard
P, Hake S, Hammel G, Hanson S, Harrison SC, Hart SR,
Hartl DL, Haselkorn R, Hawkes K, Hayes JM, Hille B,
Hökfelt T, House JS, Hout M, Hunten DM, Izquierdo IA,
Jagendorf AT, Janzen DH, Jeanloz R, Jencks CS, Jury
WA, Kaback HR, Kailath T, Kay P, Kay SA, Kennedy D,
Kerr A, Kessler RC, Khush GS, Kieffer SW, Kirch PV,
Kirk K, Kivelson MG, Klinman JP, Klug A, Knopoff L,
Kornberg H, Kutzbach JE, Lagarias JC, Lambeck K,
Landy A, Langmuir CH, Larkins BA, Le Pichon XT,
Lenski RE, Leopold EB, Levin SA, Levitt M, Likens GE,
Lippincott-Schwartz J, Lorand L, Lovejoy CO, Lynch M,
Mabogunje AL, Malone TF, Manabe S, Marcus J, Massey
DS, McWilliams JC, Medina E, Melosh HJ, Meltzer DJ,
Michener CD, Miles EL, Mooney HA, Moore PB, Morel
FM, Mosley-Thompson ES, Moss B, Munk WH, Myers N,
Nair GB, Nathans J, Nester EW, Nicoll RA, Novick RP,
OConnell JF, Olsen PE, Opdyke ND, Oster GF, Ostrom E,
Pace NR, Paine RT, Palmiter RD, Pedlosky J, Petsko GA,
Pettengill GH, Philander SG, Piperno DR, Pollard TD,
Price PB Jr, Reichard PA, Reskin BF, Ricklefs RE, Rivest
RL, Roberts JD, Romney AK, Rossmann MG, Russell
DW, Rutter WJ, Sabloff JA, Sagdeev RZ, Sahlins MD,
Salmond A, Sanes JR, Schekman R, Schellnhuber J,
Schindler DW, Schmitt J, Schneider SH, Schramm VL,
Sederoff RR, Shatz CJ, Sherman F, Sidman RL, Sieh K,
Simons EL, Singer BH, Singer MF, Skyrms B, Sleep NH,
Smith BD, Snyder SH, Sokal RR, Spencer CS, Steitz TA,
Strier KB, Südhof TC, Taylor SS, Terborgh J, Thomas DH,
Thompson LG, Tjian RT, Turner MG, Uyeda S, Valentine
JW, Valentine JS, Van Etten JL, van Holde KE, Vaughan
M, Verba S, von Hippel PH, Wake DB, Walker A, Walker
JE, Watson EB, Watson PJ, Weigel D, Wessler SR,
West-Eberhard MJ, White TD, Wilson WJ, Wolfenden RV,
徐冰鑫等: 模拟增温对荒漠生物土壤结皮-土壤系统 CO2、CH4和 N2O通量的影响 819

doi: 10.3724/SP.J.1258.2014.00076
Wood JA, Woodwell GM, Wright HE Jr, Wu C, Wunsch
C, Zoback ML (2010). Climate change and the integrity of
science. Science, 328, 689–691.
Granli T, Bockman OC (1994). Nitrous oxide from agriculture.
Norwegian Journal of Agricultural Sciences, 12(suppl.),
7–128.
Hou AX, Chen GX, Wu J (1997). Relationship between CH4
and N2O emissions from rice field and its microbiological
mechanism and impacting factors. Chinese Journal of Ap-
plied Ecology, 8, 270–274. (in Chinese with English ab-
stract) [侯爱新, 陈冠雄, 吴杰 (1997). 稻田CH4和N2O
排放关系及其微生物学机理和一些影响因子. 应用生
态学报, 8, 270–274.]
Hu YG, Chang XF, Lin XW, Wang YF, Wang SP, Duan JC,
Zhang ZH, Yang XX, Luo CY, Xu GP, Zhao XQ (2010).
Effects of warming and grazing on N2O fluxes in an alpine
meadow ecosystem on the Tibetan Plateau. Soil Biology &
Biochemistry, 42, 944–952.
Hu YG, Feng YL, Zhang ZS, Huang L, Zhang P, Xu BX
(2014). Greenhouse gases fluxes of biological soil crusts
and soil ecosystem in the artificial sand-fixing vegetation
region in Shapotou area. Chinese Journal of Applied
Ecology, 25, 61–68. (in Chinese with English abstract).
[胡宜刚, 冯玉兰, 张志山, 黄磊, 张鹏, 徐冰鑫 (2014).
沙坡头人工植被固沙区生物结皮-土壤系统温室气体通
量特征. 应用生态学报, 25, 61–68.]
Hu ZH, Zhou YP, Cui HL, Chen ST, Xiao QT, Liu Y (2013).
Effects of diurnal warming on soil N2O emission in soy-
bean field. Environmental Science, 34, 2961–2967. (in
Chinese with English abstract) [胡正华, 周迎平, 崔海羚,
陈书涛, 肖启涛, 刘艳 (2013). 昼夜增温对大豆田土壤
N2O排放的影响. 环境科学, 34, 2961–2967.]
IPCC (Intergovernmental Panel on Climate Change) (2007).
Climate Change 2007: the Physical Science Basis. Con-
tribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate
Change. Cambridge University Press, Cambridge, UK.
IPCC (Intergovernmental Panel on Climate Change) (2013).
Climate Change 2013: the Scientific Basis. Contribution of
Working Group I to the Fifth Assessment Report of the In-
tergovernmental Panel on Climate Change. Cambridge
University Press, Cambridge, UK.
Kammann C, Hepp S, Lenhart K, Müller C (2009). Stimulation
of methane consumption by endogenous CH4 production
in aerobic grassland soil. Soil Biology & Biochemistry, 41,
622–629.
Kato T, Tang YH, Gu S, Cui XY, Hirota M, Du MY, Li YN,
Zhao XQ, Oikawa T (2004). Carbon dioxide exchange
between the atmosphere and an alpine meadow ecosystem
on the Qinghai-Tibetan Plateau, China. Agricultural and
Forest Meteorology, 124, 121–134.
Keller M, Kaplan WA, Wofsy SC (1986). Emissions of N2O,
CH4 and CO2 from tropical forest soils. Journal of Geo-
physical Research: Atmospheres (1984–2012), 91(D11),
11791–11802.
Le Mer J, Roger P (2001). Production, oxidation, emission and
consumption of methane by soils: a review. European
Journal of Soil Biology, 37, 25–50.
Li N (2010). Effect of Warming and Nitrogen Addition on Soil
Greenhouse Gases Fluxes of Desert Steppe Ecosystem.
Master degree dissertation, Inner Mongolia Agricultural
University, Hohhot. (in Chinese) [李娜 (2010). 增温和施
氮肥对荒漠草原生态系统土壤温室气体通量的影响.
硕士学位论文, 内蒙古农业大学, 呼和浩特.]
Li XR, Zhang YM, Zhao YG (2009). A study of biological soil
crusts: recent development, trend and prospect. Advances
in Earth Science, 24, 11–24. (in Chinese with English ab-
stract) [李新荣, 张元明, 赵允格 (2009). 生物土壤结皮
研究: 进展、前沿与展望. 地球科学进展, 24, 11–24.]
Lin XW, Wang SP, Ma XZ, Xu GP, Luo CY, Li YN, Jiang
GM, Xie ZB (2009). Fluxes of CO2, CH4 and N2O in an
alpine meadow affected by yak excreta during summer
grazing periods on the Qinghai-Tibetan Plateau. Soil Biol-
ogy & Biochemistry, 41, 718–725.
Lin XW, Zhang ZH, Wang SP, Hu YG, Xu GP, Luo CY,
Chang XF, Duan JC, Lin QY, Xu BX, Wang YF, Zhao
XQ, Xie ZB (2011). Response of ecosystem respiration to
warming and grazing during the growing seasons in the
alpine meadow on the Tibetan Plateau. Agricultural and
Forest Meteorology, 151, 792–802.
Luo C, Xu G, Chao Z, Wang S, Lin X, Hu Y, Zhang Z, Duan J,
Chang X, Su A, Li Y, Zhao X, Du M, Tang Y, Kimball B
(2010). Effect of warming and grazing on litter mass loss
and temperature sensitivity of litter and dung mass loss on
the Tibetan Plateau. Global Change Biology, 16, 1606–
1617.
Nakano T, Nemoto M, Shinoda M (2008). Environmental con-
trols on photosynthetic production and ecosystem respira-
tion in semi-arid grasslands of Mongolia. Agricultural and
Forest Meteorology, 148, 1456–1466.
Oberbauer SF, Starr G, Pop EW (1998). Effects of extended
growing season and soil warming on carbon dioxide and
methane exchange of tussock tundra in Alaska. Journal of
Geophysical Research, Atmospheres (1984–2012), 103
(D22), 29075–29082.
Oberbauer SF, Tweedie CE, Welker JM, Fahnestock JT, Henry
GH, Webber PJ, Hollister RD, Walker MD, Kuchy A, El-
more E, Starr G (2007). Tundra CO2 fluxes in response to
experimental warming across latitudinal and moisture gra-
dients. Ecological Monographs, 77, 221–238.
Rodionow A, Flessa H, Kazansky O, Guggenberger G (2006).
Organic matter composition and potential trace gas pro-
duction of permafrost soils in the forest tundra in northern
820 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (8): 809–820

www.plant-ecology.com
Siberia. Geoderma, 135, 49–62.
Rustad LE, Fernandez IJ (1998). Experimental soil warming
effects on CO2 and CH4 flux from a low elevation
spruce-fir forest soil in Maine, USA. Global Change Bi-
ology, 4, 597–605.
Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt
KB, Tignor M, Miller HL (2007). Climate Change 2007:
The Physical Science Basis, Contribution of Working
Group 1 to the Fourth Assessment Report of the Intergov-
ernmental Panel on Climate Change. Cambridge Univer-
sity Press, New York.
Wan SQ, Hui DF, Wallace L, Luo YQ (2005). Direct and indi-
rect effects of experimental warming on ecosystem carbon
processes in a tallgrass prairie. Global Biogeochemical
Cycles, 19(2), doi: 10.1029/2004GB002315.
Wang Y, Xue M, Zheng X, Ji B, Du R, Wang Y (2005). Effects
of environmental factors on N2O emission from and CH4
uptake by the typical grasslands in the Inner Mongolia.
Chemosphere, 58, 205–215.
Welker JM, Fahnestock JT, Henry GH, O’Dea KW, Chimner
RA (2004). CO2 exchange in three Canadian High Arctic
ecosystems: response to long-term experimental warming.
Global Change Biology, 10, 1981–1995.
Xia JY, Niu SL, Wan SQ (2009). Response of ecosystem car-
bon exchange to warming and nitrogen addition during
two hydrologically contrasting growing seasons in a tem-
perate steppe. Global Change Biology, 15, 1544–1556.
Xu R, Wang YS, Zheng XH, Ji BM, Wang MX (2003). A com-
parison between measured and modeled N2O emissions
from Inner Mongolian semi-arid grassland. Plant and Soil,
255, 513–528.
Zhang P, Li XR, He MZ, Li XJ, Gao YH (2012). Effects of
wintertime low temperature and simulated warming on ni-
trogen-fixing activity of soil biocrusts. Chinese Journal of
Ecology, 31, 1653–1658. (in Chinese with English ab-
stract) [张鹏, 李新荣, 何明珠, 李小军, 高艳红 (2012).
冬季低温及模拟升温对生物土壤结皮固氮活性的影响.
生态学杂志, 31, 1653–1658.]
Zhang ZS, Li XR, Nowak RS, Wu P, Gao YH, Zhao Y, Huang
L, Hu YG, Jia RL (2013). Effect of sand-stabilizing shrubs
on soil respiration in a temperate desert. Plant and Soil,
367, 449–463.

责任编委: 李新荣 责任编辑: 王 葳