免费文献传递   相关文献

Effects of starvation and refeeding on survival rate, growth and digestive enzyme activities of juvenile Sepia pharaonis.

饥饿和再投喂对虎斑乌贼幼体存活、生长和消化酶活力的影响


本文探究了饥饿胁迫与饥饿后再投喂对虎斑乌贼幼体存活率、生长、行为、肝体比、摄食率以及消化酶活力的影响.在室内控制条件下开展了幼体(初始体质量为4.95±0.48 g)的饥饿(0、1、2、3、4、5、6 d)和再投喂(15 d)试验.结果表明: 不同饥饿时间对虎斑乌贼的幼体存活率、体质量降低率、肝体比和消化酶活力影响显著.随着饥饿胁迫时间的增加,其存活率、肝体比呈下降趋势,其中饥饿3 d后,存活率开始明显下降,体质量降低率明显增大,幼体出现喷墨、互相残杀等异常行为;4种消化酶活力呈先下降后上升的趋势,淀粉酶活力以饥饿4 d组最低 (0.07±0.02 U·mg-1·prot-1);脂肪酶活力以饥饿2 d组最低(18.47±2.07 U·g-1·prot-1),饥饿6 d组最高(57.60±3.98 U·g-1·prot-1),胃蛋白酶活力和胰蛋白酶活力以饥饿5 d组(1.98±0.59 U·mg-1·prot-1)和饥饿4 d(186.68±20.72 U·mg-1·prot-1) 最低.饥饿处理结束后,经15 d再投喂,各试验组存活率、特定生长率、肝体比和摄食率差异显著,幼体的存活率、特定生长率、肝体比和摄食率均与饥饿处理时间呈负相关;饥饿1和2 d组与对照组的存活率、特定生长率和肝肝体比无显著差异,而饥饿3~6 d组显著低于对照组;饥饿1~2 d组的摄食率明显高于对照组,而饥饿6 d组的摄食率明显小于对照组;各组淀粉酶与脂肪酶活力无显著差异,胃蛋白酶与胰蛋白酶活力差异显著,均以对照组最高(胃蛋白酶活力7.06±0.64 U·mg-1·prot-1,胰蛋白酶活力914.67±26.54 U·mg-1·prot-1),饥饿6 d组最低(胃蛋白酶活力3.21±0.57 U·mg-1·prot-1,胰蛋白酶活力660.04±37.92 U·mg-1·prot-1).说明虎斑乌贼的幼体饥饿不可逆点(PNR)为第6天,且不能补偿生长.

To investigate the effects of starvation and refeeding on survival rate, behavior, growth and digestive enzyme activities of juvenile Sepia pharaonis, the manipulative laboratory experiments were conducted with 0-6 days of starvation and 15 days of re-feeding to reveal the mechanism of compensatory growth. The results showed that starvation exerted a significant negative effect on the survival rate, growth, hepatosomatic index and digestive enzyme activities (P<0.05). The survival rate and digestive enzyme activities declined during the whole starvation process. After 3 days, the survival rate began to decline significantly, the decrease rate of body mass increased obviously and juveniles experienced some abnormal behaviors, such as inkjet, fighting and so on. The effects of starvation on digestive enzyme activities of juveniles were significant, and the digestive enzyme activities declined and then rose during the whole starvation process. The lowest amylase activity occurred after 4 days of starvation (0.07±0.02 U·mg-1·prot-1). The lowest lipase activity occurred after 2 days of starvation (18.47±2.07 U·g-1·prot-1), and the highest after 6 days (57.60±3.98 U·g-1·prot-1). The lowest pepsin and trypsin activities occurred after 5 days (1.98±0.59 U·mg-1·prot-1) and 4 days (186.68±20.72 U·mg-1·prot-1) of starvation, respectively. The effects of re-feeding on survival rate, growth, hepatosomatic index and digestive enzyme activities of juveniles were significant. The survival rate, specific growth rate, hepatosomatic index and feeding rate were negatively correlated with hunger processing duration. The survival rate, specific growth rate and hepatosomatic index showed no significant difference between 1 day starvation group and 2 days starvation group (P>0.05). The survival rate, specific growth rate and hepatosomatic index of 3 days to 6 days starvation groups were significantly lower than the control group. The feeding rates of 1 day and 2 days starvation groups were obviously higher than that of the control group. The feeding rate of 6 days starvation group was significantly lower than that of the control group. The amylase and lipase activities were not significantly different among different starvation treatments, whereas the pepsin and trypsin activities were significantly different, with the highest value in the control group (pepsin 7.06±0.64 U·mg-1·prot-1, trypsin 914.67±26.54 U·mg-1·prot-1) and the lowest value in the group with 6 days of starvation (pepsin 3.21±0.57 U·mg-1·prot-1, trypsin 660.04±37.92 U·mg-1·prot-1). Six days of starvation would be the point of noreturn for the juveniles, without any compensatory effect after starvation and re-feeding.


全 文 :饥饿和再投喂对虎斑乌贼幼体存活、
生长和消化酶活力的影响
乐可鑫  汪  元  彭瑞冰  梁晶晶  蒋霞敏∗  韩庆喜
(宁波大学海洋学院, 浙江宁波 315211)
摘  要  本文探究了饥饿胁迫与饥饿后再投喂对虎斑乌贼幼体存活率、生长、行为、肝体比、
摄食率以及消化酶活力的影响.在室内控制条件下开展了幼体(初始体质量为 4.95±0.48 g)的
饥饿(0、1、2、3、4、5、6 d)和再投喂(15 d)试验.结果表明: 不同饥饿时间对虎斑乌贼的幼体存
活率、体质量降低率、肝体比和消化酶活力影响显著.随着饥饿胁迫时间的增加,其存活率、肝
体比呈下降趋势,其中饥饿 3 d后,存活率开始明显下降,体质量降低率明显增大,幼体出现喷
墨、互相残杀等异常行为;4种消化酶活力呈先下降后上升的趋势,淀粉酶活力以饥饿 4 d 组
最低 (0.07±0.02 U·mg-1·prot-1);脂肪酶活力以饥饿 2 d 组最低(18.47±2.07 U·g-1·
prot-1),饥饿 6 d组最高(57.60±3.98 U·g-1·prot-1),胃蛋白酶活力和胰蛋白酶活力以饥饿 5
d组(1.98±0.59 U·mg-1·prot-1)和饥饿 4 d(186.68±20.72 U·mg-1·prot-1) 最低.饥饿处理
结束后,经 15 d再投喂,各试验组存活率、特定生长率、肝体比和摄食率差异显著,幼体的存活
率、特定生长率、肝体比和摄食率均与饥饿处理时间呈负相关;饥饿 1 和 2 d 组与对照组的存
活率、特定生长率和肝肝体比无显著差异,而饥饿 3~6 d组显著低于对照组;饥饿 1~2 d组的
摄食率明显高于对照组,而饥饿 6 d组的摄食率明显小于对照组;各组淀粉酶与脂肪酶活力无
显著差异,胃蛋白酶与胰蛋白酶活力差异显著,均以对照组最高(胃蛋白酶活力 7.06±0.64
U·mg-1·prot-1,胰蛋白酶活力 914.67±26.54 U·mg-1·prot-1),饥饿 6 d 组最低(胃蛋白酶
活力 3.21±0.57 U·mg-1·prot-1,胰蛋白酶活力 660.04±37.92 U·mg-1·prot-1) .说明虎斑乌
贼的幼体饥饿不可逆点(PNR)为第 6天,且不能补偿生长.
关键词  虎斑乌贼; 饥饿胁迫; 再投喂; 存活率; 生长; 消化酶
本文由宁波市农业重大专项(2014C11001)和浙江省海洋与渔业项目(浙海渔计 2013[82])资助 This work was supported by the Major Agriculture
Project of Ningbo City, Zhejiang Priovince, China (2014C11001) and the Ocean and Fishery Project of Zhejiang Province, China (Zhejiang Marine
Fishery Program, 2013[82]).
2015⁃10⁃09 Received, 2016⁃03⁃07 Accepted.
∗通讯作者 Corresponding author. E⁃mail: jiangxiamin@ nbu.edu.cn
Effects of starvation and re⁃feeding on survival rate, growth and digestive enzyme activities
of juvenile Sepia pharaonis. LE Ke⁃xin, WANG Yuan, PENG Rui⁃bing, LIANG Jing⁃jing,
JIANG Xia⁃min∗, HAN Qing⁃xi (School of Marine Sciences, Ningbo University, Ningbo 315211,
Zhejiang, China) .
Abstract: To investigate the effects of starvation and re⁃feeding on survival rate, behavior, growth
and digestive enzyme activities of juvenile Sepia pharaonis, the manipulative laboratory experiments
were conducted with 0-6 days of starvation and 15 days of re⁃feeding to reveal the mechanism of
compensatory growth. The results showed that starvation exerted a significant negative effect on the
survival rate, growth, hepatosomatic index and digestive enzyme activities (P<0.05). The survival
rate and digestive enzyme activities declined during the whole starvation process. After 3 days, the
survival rate began to decline significantly, the decrease rate of body mass increased obviously and
juveniles experienced some abnormal behaviors, such as inkjet, fighting and so on. The effects of
starvation on digestive enzyme activities of juveniles were significant, and the digestive enzyme ac⁃
tivities declined and then rose during the whole starvation process. The lowest amylase activity oc⁃
curred after 4 days of starvation (0.07±0.02 U·mg-1·prot-1). The lowest lipase activity occurred
应 用 生 态 学 报  2016年 6月  第 27卷  第 6期                                            http: / / www.cjae.net
Chinese Journal of Applied Ecology, Jun. 2016, 27(6): 2002-2008                  DOI: 10.13287 / j.1001-9332.201606.009
after 2 days of starvation (18.47±2.07 U·g-1·prot-1), and the highest after 6 days (57.60±3.98
U·g-1 ·prot-1 ). The lowest pepsin and trypsin activities occurred after 5 days (1. 98 ± 0. 59
U·mg-1·prot-1) and 4 days (186.68±20.72 U·mg-1·prot-1) of starvation, respectively. The
effects of re⁃feeding on survival rate, growth, hepatosomatic index and digestive enzyme activities of
juveniles were significant. The survival rate, specific growth rate, hepatosomatic index and feeding
rate were negatively correlated with hunger processing duration. The survival rate, specific growth
rate and hepatosomatic index showed no significant difference between 1 day starvation group and 2
days starvation group (P>0.05). The survival rate, specific growth rate and hepatosomatic index of
3 days to 6 days starvation groups were significantly lower than the control group. The feeding rates
of 1 day and 2 days starvation groups were obviously higher than that of the control group. The feed⁃
ing rate of 6 days starvation group was significantly lower than that of the control group. The amylase
and lipase activities were not significantly different among different starvation treatments, whereas
the pepsin and trypsin activities were significantly different, with the highest value in the control
group (pepsin 7.06±0.64 U·mg-1·prot-1, trypsin 914.67±26.54 U·mg-1·prot-1) and the lo⁃
west value in the group with 6 days of starvation ( pepsin 3.21±0.57 U·mg-1·prot-1, trypsin
660.04±37.92 U·mg-1·prot-1). Six days of starvation would be the point of no⁃return for the ju⁃
veniles, without any compensatory effect after starvation and re⁃feeding.
Key words: Sepia pharaonis; starvation; re⁃feeding; survival rate; growth; digestive enzyme.
    水生动物在成长过程中由于受到环境变化、季
节变更、种内种间竞争等因素影响,导致有时候食物
无法满足自身需求,使之面临饥饿威胁,从而使饥饿
成为水生动物生活史中的一个主要环境胁迫因子.
不同物种或同一物种的不同阶段对饥饿的耐受力和
应对方法不尽相同[1-3] .通过饥饿胁迫试验可以了解
水产动物耐饥饿胁迫能力.这对研究水产动物营养
生理具有重要的理论意义.补偿生长是指动物继饥
饿或营养不足后再恢复正常摄食时表现出超过正常
个体生长速度的现象.研究表明,对于一些种类,可
利用补偿生长来改变喂食方式提高经济效益.目前
国内外相关的研究已有不少报道,主要集中在鱼
类[4-6]、甲壳类[7]和双壳类[8],而关于头足类的饥饿
研究鲜有报道[9] .
虎斑乌贼(Sepia pharaonis)是一种个体大(最大
在 5 kg 以上)、生长快(养殖 3 个月可达 0.5 kg 以
上)、具有养殖发展前景的新品种.但在人工育苗与
养殖过程中,由于受到各种因素的影响,导致饵料供
不应求,使之常常面临饥饿胁迫.相关研究表明,水
生动物在饥饿状态下可通过调节自身的能量分配、
代谢水平和物质能源消耗来应对饥饿胁迫,再投喂
后其机体生理生化各方面均能得以逐渐恢复,但胁
迫加重或持续时间延长,机体调节和免疫保护能力
超出其正常水平,其机体正常生理状态将出现紊乱,
免疫机能也会受到显著影响.因此,研究饥饿胁迫和
再投喂对其存活、生长、行为、摄食情况、肝功能和相
关酶活力的影响,探讨饥饿处理对其的胁迫程度及
再投喂后其的恢复情况,对制订科学合理的饥饿⁃再
投喂方案至关重要.本试验以存活率、特定生长率、
行为、摄食率、肝体比和消化酶等为切入点,研究虎
斑乌贼对饥饿胁迫的适应性,探讨饥饿条件下其生
理响应机制,以期为虎斑乌贼规模化培养、饵料驯
化、制定合理的投喂策略提供理论依据.
1  材料与方法
1􀆰 1  供试材料
2014年 3—4月,于广东省湛江市硇洲岛海域
捕捞性腺发育良好的雌、雄亲体,在硇洲岛当地诱导
产卵,经塑料袋充氧运输至舟山市水产研究所基地,
经人工培育得 45 日龄幼体,幼体胴长(5.46±0.23)
cm,体质量(4.95±0.48) g.
1􀆰 2  饥饿试验
在水泥池(4.5 m×4.0 m×1.4 m)中,采用悬浮塑
料筐(直径 0.6 m、高 0.2 m)为试验培养装置.共设置
7个不同饥饿时间梯度(0、1、2、3、4、5、6 d),各 6 个
平行,其中 3个平行用于饥饿处理试验,另外 3个平
行用于饥饿处理和再投喂恢复生长试验.每一筐放
置幼体 20 只.试验用水为砂滤自然海水,试验期间
水质情况:水温 26.2 ~ 28.6 ℃,盐度 23.7 ~ 25.4,pH
7.9—8.2,微充气,日换水量 50% ~ 100%.每组经不
同饥饿时间处理后,立即从其中 3个平行中取样,测
定存活率、酶活性等指标.另外 3 个平行待饥饿处理
结束后,立即开始再投喂,各自分别投喂 15 d,投喂
结束后取样测定各指标.投喂以小杂鱼条(1 cm×0.2
30026期                  乐可鑫等: 饥饿和再投喂对虎斑乌贼幼体存活、生长和消化酶活力的影响     
cm)为饵,日投喂 3次,投喂量按每组每次留有残饵
确定.每日观察幼体的外形特征、运动方式、平衡状
态、体色等,及时捞出死亡个体,并记录各时期的变
化和统计死亡率.
1􀆰 3  消化酶测定
饥饿处理后,各组从 3 个平行中随机取幼体 9
只(每一平行取 3 只),再投喂结束时,从另外 3 个
平行中随机取幼体 9 只(每一平行取 3 只),不足 9
只组全部取样.用吸水纸去除幼体体表的水分,活体
解剖取得肝脏、胰脏和胃,用匀浆器匀浆后,测定消
化酶活力(胃蛋白酶、胰蛋白酶、淀粉酶、脂肪酶).测
定方法采用南京建成生物工程研究所试剂盒
(A080⁃1、A080⁃2、C016、A054),方法参照说明书.
1􀆰 4  数据处理
特定生长率 = ( ln 终末体质量 - ln 初始体质
量) /饲养时间×100%
存活率=(终末数量 /初始数量)×100%
体质量降低率 = (初始体质量-终末体质量) /
初始体质量×100%
肝体比=(肝脏质量 /体质量)×100%
摄食率=摄食总量 / [投喂天数×(终末体质量+
初始体质量) / 2]×100%[10]
数据分析在 SPSS 19.0 软件上进行,利用方差
分析(ANOVA)分别统计分析各试验的数据, 采用
Tukey HSD 检验判断各处理之间差异的显著性,差
异显著水平为 α= 0.05.
2  结果与分析
2􀆰 1  饥饿对幼体存活率、生长、行为及肝体比的
影响
随着饥饿时间的延长,虎斑乌贼幼体存活率呈
现下降趋势,除饥饿 1 d组、2 d组与对照组(0 d)无
显著差异(P>0.05)外,其余各组与对照组(存活率
达 100%)差异显著(P<0.05),从饥饿 3 d 起,存活
率出现明显下降,饥饿 6 d 后最低(33.3%±8.5%).
不同饥饿时间对幼体体质量降低率显著影响.随着
饥饿时间增加,幼体体质量降低率呈现上升趋势,其
排序为:6 d(22.9%±2.5%)>5 d(14.6%±0.7%)>4 d
(11.7%±1. 7%) >3 d(4. 0% ± 0. 8%) > 2 d(3. 3% ±
0.5%)>1 d(1.3%±0.3%) >0 d(0%),饥饿第 4 天
起,体质量降低率明显增大(图 1).饥饿 1 d组,幼体
活力、形态均正常,与对照组无明显差异;饥饿 2 d
组,幼体开始不停的碰撞筐壁;饥饿 3 d 组,幼体出
现互相残杀、喷墨等现象;饥饿 4 d组,幼体体色发
表 1  虎斑乌贼幼体不同饥饿时间的行为观察
Table 1  Observation of juvenile Sepia pharaonis after star⁃
vation
饥饿时间
Starvation
time (d)
现象
Phenomenon
0 活力强,游泳、体色正常,静卧于筐底部
1 活力强,形态活动正常,少数出现上下浮动
2 活力下降,幼体不停的碰撞筐壁
3 活力下降,出现互相残杀、喷墨等现象
4 活力差,个别体色开始发白,互相追逐攻击情况
频发
5 活力差,胴部变三角形,无法潜入水底,尾部一
直露出水面
6 多数失去活力,体色发白,漂浮于水面,对刺激
反应迟缓
图 1  饥饿胁迫对虎斑乌贼幼体生长与存活的影响
Fig.1  Effect of starvation on survival rate and weight loss rate
of juvenile Sepia pharaonis (mean±SD).
不同字母表示处理间差异显著(P<0.05) Different letters meant signi⁃
ficant difference among treatments at 0.05 level. 下同 The same below.
Ⅰ: 存活率 Survival rate; Ⅱ: 体质量降低率 Decrease rate of body
mass.
白;饥饿 5 d组,幼体胴部由椭圆形变成三角形,无法
潜入水底;饥饿 6 d组,幼体多数失去活力,漂浮于水
面(表 1).从图 2可以看出,不同饥饿时间对虎斑乌贼
幼体肝体比的影响显著,除饥饿1 d组(2.1%±0.2%)
图 2  饥饿胁迫对虎斑乌贼幼体肝体比的影响
Fig.2   Effect of starvation on hepatosomatic index of juvenile
Sepia pharaonis (mean±SD).
4002                                     应  用  生  态  学  报                                      27卷
表 2  不同饥饿时间对虎斑乌贼幼体消化酶活力的影响
Table 2  Effect of different starvation time on enzymes ac⁃
tivity of juvenile Sepia pharaonis (mean±SD)
饥饿时间
Starvation
time
(d)
胃蛋白酶
Pepsin
(U·mg-1·
prot-1)
胰蛋白酶
Trypsin
(U·mg-1·
prot-1)
淀粉酶
Amylase
(U·mg-1·
prot-1)
脂肪酶
Lipase
(U·g-1·
prot-1)
0 6.92±0.40a 921.67±29.87a 0.27±0.02a 24.79±2.93cd
1 5.75±0.35a 782.59±26.32b 0.28±0.02a 20.16±3.43d
2 4.20±0.23b 690.63±15.74c 0.25±0.03a 18.47±2.07d
3 2.75±0.63bc 382.13±25.33d 0.15±0.02b 29.03±3.36c
4 2.68±0.63c 186.68±20.72f 0.07±0.02c 43.68±3.12b
5 1.98±0.59c 245.58±24.33ef 0.12±0.03bc 51.49±2.60ab
6 2.37±0.33c 315.40±30.97de 0.18±0.02b 57.60±3.98a
同列不同字母表示差异显著(P<0.05) Different letters in same column
meant significant difference at 0.05 level. 下同 The same below.
与对照组(2.3%±0.2%)无显著差异外,其余组均比对
照组低,差异显著,但饥饿 2~6 d组间无显著差异.
2􀆰 2  饥饿对幼体消化酶的影响
随着饥饿时间的延长,虎斑乌贼幼体各种消化
酶都出现了先下降后上升的变化趋势(表 2).胃蛋
白酶饥饿 2~6 d与对照组相比均显现出显著差异,
以对照组最高(6.92±0.40 U·mg-1·prot-1),饥饿 5
d组最低(1.98±0.59 U·mg-1·prot-1);胰蛋白酶饥
饿 1~6 d 与对照组差异显著,对照组最高(921.67±
29.87 U·mg-1·prot-1),随后呈现下降趋势,饥饿
第 4天最低(186.68±20.72 U·mg-1·prot-1),后又
上升.淀粉酶饥饿 3~6 d组与对照组差异显著,饥饿
4 d组最低(0.07±0.02 U·mg-1·prot-1),后上升,
但饥饿 6 d组与饥饿 3 d组无显著差异;脂肪酶在饥
饿 0~2 d 内呈现下降趋势,且各组间无显著差异,
饥饿 2 d组最低(18.47±2.07 U·g-1·prot-1),后上
升,第 4天起与对照组存在显著差异,饥饿 6 d 组最
高(57.60±3.98 U·g-1·prot-1).
2􀆰 3  再投喂对幼体存活率、特定生长率、肝体比和
摄食率的影响
各组经饥饿后,用小杂鱼进行再投喂 15 d,试验
结束各组幼体存活率呈现下降趋势,饥饿 0 ~ 2 d 各
组存活率无显著差异(P>0.05),饥饿 3 ~ 6 d,随着
饥饿时间延长存活率明显下降,各组存活率的排序
为: 0 d(92.7%±2.8%) >1 d(92.0%±2.7%) >2 d
(83.4%±4.8%) >3 d(58.7%±4.1%) >4 d(46.5%±
4􀆰 0%)>5 d(31.5%±1.7%)>6 d(13.6%±2.6%).特
定生长率各组也随饥饿时间延长呈现下降趋势,对
照组最高(4.7%±0.1%·d-1),饥饿 3~6 d组与对照
组差异显著(P < 0. 05),饥饿 6 d 组最低 (2. 9% ±
0􀆰 5%·d-1)(图 3).肝体比随饥饿时间延长各组呈
下降趋势,对照组最高(8.6%±0.6%),饥饿 3 ~ 6 d
组与对照组差异显著,饥饿 6 d 组最低 ( 6. 3 ±
0􀆰 3%);再投喂对摄食率具有显著影响,除对照组
外,随着饥饿时间延长,各组摄食率呈现先上升后下
降的趋势,各组摄食率的排序为:1 d(4.3%±0.4%)
>2 d(3.6%±0.3%)>0 d(2.8%±0.3%)= 3 d(2.8%±
0.6%)≥4 d(2.4%±0.3%)= 5 d(2.4%±0.2%)>6 d
(1.8%±0.1%),且饥饿 1~2 d 组摄食率明显高于对
照组(0 d),饥饿 6 d 组摄食率最低(1.8%±0.1%)
(图 4).
2􀆰 4  再投喂对幼体消化酶的影响
从表 3可以看出,再投喂 15 d后,4种消化酶活
力出现不同的变化.各饥饿组的淀粉酶和脂肪酶活
力与对照组无显著差异(P>0.05);胃蛋白酶活力除
饥饿 1 d 组外,其他各组与对照组差异显著 ( P
<0.05),且随饥饿时间延长呈现下降趋势,饥饿 6 d
组胃蛋白酶活力最低(3.21±0.57 U·mg-1·prot-1).
胰蛋白酶活力饥饿0 ~ 3 d各组间无显著差异,从饥
图 3  再投喂对虎斑乌贼幼体生长与存活的影响
Fig.3  Effect of re⁃feeding on survival rate and specific growth
rate of juvenile Sepia pharaonis (mean±SD).
Ⅰ: 存活率 Survival rate; Ⅱ: 特定生长率 Specific growth rate.
图 4  再投喂对虎斑乌贼幼体肝体比(Ⅰ)和摄食率(Ⅱ)的
影响
Fig.4   Effect of re⁃feeding on hepatosomatic index (Ⅰ) and
feeding rate (Ⅱ) of juvenile Sepia pharaonis (mean±SD).
50026期                  乐可鑫等: 饥饿和再投喂对虎斑乌贼幼体存活、生长和消化酶活力的影响     
图 5  再投喂后虎斑乌贼幼体个体体质量
Fig.5  Body mass of juvenile Sepia pharaonis after re⁃feeding
表 3  再投喂对虎斑乌贼幼体消化酶活力的影响
Table 3  Effect of re⁃feeding on enzymes activity of juvenile
Sepia pharaonis (mean±SD)
饥饿时间
Starvation
time
(d)
胃蛋白酶
Pepsin
(U·mg-1
·prot-1)
胰蛋白酶
Trypsin
(U·mg-1
·prot-1)
淀粉酶
Amylase
(U·mg-1
·prot-1)
脂肪酶
Lipase
(U·g-1
·prot-1)
0 7.06±0.64a 914.67±26.54a 0.26±0.04a 25.00±2.00a
1 6.07±0.75a 889.00±46.57a 0.30±0.01a 23.48±2.01a
2 4.89±0.47bc 844.30±41.97a 0.27±0.02a 22.37±1.37a
3 4.48±0.41cd 829.36±41.97a 0.26±0.01a 22.82±1.91a
4 4.36±0.20cd 689.02±49.24b 0.28±0.02a 21.37±3.00a
5 3.54±0.41cd 694.76±24.31b 0.27±0.03a 22.65±1.65a
6 3.21±0.57d 660.04±37.92b 0.29±0.02a 21.09±3.21a
饿 4 d组起胰蛋白酶活力与对照组差异显著,而饥
饿 4~6 d组间无显著差异.
3  讨    论
3􀆰 1  饥饿胁迫和再投喂对幼体的影响
探讨饥饿过程中水生动物幼体的生理生化变化
对人工育苗具有重要的指导意义.一般在持续饥饿
情况下,水生动物的幼体不但生长与发育会受到抑
制,而且生物体将丧失固有的生活习性[11] .从本研
究结果可见,体色发黑与静卧于筐底是正常生活的
幼体所固有的生活习性.随着饥饿时间的增加,这些
固有生活习性的表现水平开始降低,表现为 3 d 后
幼体的体色发白,出现互相残杀,6 d 后漂浮于水面
上.这与饥饿使麦瑞加拉鲮鱼(Cirrhina mrigola)幼
鱼集群性消失的结果相似[12] .
在饥饿条件下,生物体缺少外源性能量的摄入,
开始内源性能量物质的消耗,以维持自身的生命活
动.当幼体受到饥饿胁迫时,其体质量会表现出明显
的负增长趋势.1~3 d体质量变化速率较后期低,可
能是由于前期幼体的生理活动仍处于正常水平,而
后期由于出现互相追逐攻击,加剧了体内营养物质
的消耗.这种体质量持续下降的现象与曼氏无针乌
贼(Sepiella maindroni)在饥饿胁迫下体质量先下降
后上升[9]的结果不同.这可能是由于不同物种的习
性差异所致.同时发现在饥饿胁迫下,幼体肝体比下
降,出现肝脏萎缩现象,随着协迫时间延长,肝脏萎
缩加重.这与宋昭彬等[13]报道饥饿胁迫下南方鲇
(Silurus meridionalis)仔稚鱼的肝脏萎缩,肝组织变
得疏松,细胞缩小的研究结果相吻合.可以看出,胁
迫加重或持续时间延长,机体调节压力过大,机体一
些器官受损,导致机体正常生理状态出现紊乱.
在饥饿试验中,幼体饥饿 3 d 后开始出现明显
死亡,饥饿 3~ 4 d 组再投喂后,幼体几乎都能进行
食物捕捉,但部分虚弱的个体摄食量极少,且在投喂
第 2天死亡加剧.这可能是由于长时间饥饿后,消化
道管腔变窄,管壁变薄,胃的褶皱减少,肝脏出现萎
缩[13-14],重新摄入营养物质以后,导致胃扩张和代
谢紊乱,促使死亡加剧.其确切原因仍需进一步研
究.再投喂结束时,4 d组存活率为 46.5%,即 50%致
死时间(生理死亡)为 4 d.饥饿 6 d组大多数个体失
去摄食能力,再投喂结束时存活率仅为 13.6%.“不
可逆点”( the point of no⁃return, PNR)也称“生态死
亡”,是指饥饿幼体抵达该点时虽仍能存活一段时
间,但已失去摄食能力[10] .因此,虎斑乌贼幼体的
PNR为饥饿 6 d.
3􀆰 2  幼体的补偿生长
由于自然界中季节更替、环境剧变或食物分布
不均等原因, 动物经常受到饥饿或营养不足的胁
迫.作为生理生态学上的一种适应性,动物继饥饿或
营养不足后,在恢复正常摄食时表现出超过未受饥
饿或营养不足胁迫的正常个体的生长速度,称为补
偿生长现象[15] .有学者将鱼类的补偿生长现象从量
的角度分为 4类:超补偿生长、完全补偿生长、部分
补偿生长和不能补偿生长[16] .在目前情况下,判断
补偿生长主要是依据恢复生长期间的特定生长率、
再投喂的体质量与对照组的比较[17-18] .在饥饿或营
养不良一段时间后再投喂,生物体将出现超过正常
生长速度的补偿生长现象.但补偿生长受到不同的
物种、个体的大小和环境因子的影响,南美白对虾
(Penaeus vannamei)在饥饿 1~3 d后经恢复投喂,具
有完全补偿生长能力;饥饿 4 ~ 6 d 后仅具部分补偿
生长[19] .史氏鲟幼鱼(Acipenser schrenckii)在饥饿 7
和 14 d后能够完全补偿生长;而饥饿 21 d后无法补
偿生长[20] .斑节对虾(Penaeus monodon)在饥饿 2 和
4 d后经恢复投喂,能获得部分补偿生长;在饥饿 6
6002                                     应  用  生  态  学  报                                      27卷
和 8 d后,恢复投喂无法补偿生长[21] .
再投喂后,各饥饿组的特定生长率均小于对照
组,除饥饿 1~ 2 d 组与对照组无显著差异外,各组
的个体体质量均明显小于对照组(图 5).由此可见,
虎斑乌贼幼体属于在饥饿后不能补偿生长的类型.
因此,在虎斑乌贼幼体的培育过程中,要尽量保证充
足适口的饵料,以免幼体生长越来越慢,最终导致体
型瘦小.
3􀆰 3  饥饿胁迫与再投喂对幼体消化酶活力的影响
饥饿后,水产动物体内消化酶活力随着饥饿时
间的延长,呈现出不同的变化趋势.日本沼虾(Mac⁃
robrachium nipponense)随着饥饿时间的延长,胃蛋白
酶、胰蛋白酶和脂肪酶的活性都呈现下降趋势,而淀
粉酶活力上升[22];褐菖鲉( Sebastiscus marmoratus)
在饥饿期间的蛋白酶、淀粉酶活力总体呈先升后降
趋势,脂肪酶活力总体呈缓慢下降趋势[23];卵形鲳
鲹(Trachinotus ovatus)幼鱼随着饥饿时间延长,蛋白
酶活力表现为先升后降再上升的趋势,淀粉酶则不
断下降,脂肪酶总体上表现为下降趋势[24] .本试验
结果表明,虎斑乌贼幼体饥饿胁迫前后胃蛋白酶和
胰蛋白酶活力相对较高,淀粉酶和脂肪酶的活力远
远低于胃蛋白酶和胰蛋白酶,这与虎斑乌贼是肉食
性动物的情况相符.4 种消化酶活力均表现为先降
后升趋势,最低点出现的时间有些差异.这主要是因
为虎斑乌贼幼体体内的储能物质不同,饵料营养结
构不同等,从而引起体内消化酶活力变化的不一致.
关于饥饿引起蛋白酶活力下降的原因主要有:1)饥
饿使动物体内胃的机械蠕动停止,酶分泌减少;2)
食物能通过视觉、嗅觉等影响消化腺的分泌,在饥饿
的情况下,缺乏这些刺激;3)饥饿使动物体质变弱,
影响酶分泌[22] .而本试验中胃蛋白酶活力在第 5 天
出现最低值(1.98±0.59 U·mg-1·prot-1),胰蛋白
酶活力在第 4 天出现最低值(186. 68 ± 20. 72 U·
mg-1·prot-1),与范帆等[9]报道的曼氏无针乌贼在
饥饿过程中胃蛋白酶和胰蛋白酶活力变化不尽相
同.这可能是由于物种和环境因子的差异引起的.
恢复投喂后,动物体质的改善促使酶活力恢复
正常.本试验中,经过 15 d 的恢复投喂,淀粉酶与脂
肪酶活力恢复至正常水平;胃蛋白酶除了饥饿 1 d
组与对照组无显著差异外,其余组酶活力较低;胰蛋
白酶活力饥饿 4、5、6 d 组仍处于较低水平,可能是
由于幼体个体较小,酶活的恢复速率较低,而两种蛋
白酶活力恢复的不一致性,可能是由于饵料的组成
引起的,具体原因有待进一步研究.
4  结    论
在人工育苗或饵料驯化过程中,饥饿是引起幼
体死亡的一个主要原因,对育苗、驯化成败关系密
切.在虎斑乌贼育苗前期或驯化过程中要注意以下
几点:1)储备充足饵料,避免幼体饥饿后无法补偿
生长;2)幼体的饥饿不可逆点为 6 d,驯化时需注意
该关键时间点;3)幼体饥饿状态下易出现互相残
杀、喷墨等现象,在培育过程中应尽量避免其处于饥
饿状态;4)可通过观察幼体的体色与行为,判断幼
体健康状态.
参考文献
[1]  Mehner T, Wieser W. Energetics and metabolic corre⁃
lates of starvation in juvenile perch (Perca fluviatilis).
Journal of Fish Biology, 1994, 45: 325-333
[2]  Millan DN, Houlihau DF. Protein synthesis in trout liver
is stimulated by both feeding and fasting. Fish Physiolo⁃
gy and Biochemistry, 1992, 10: 23-34
[3]  Jin L (金  丽), Zhao N (赵  娜), Zhou C⁃J (周传
江), et al. Effects of starvation on hematological parame⁃
ters and hematogenesis in Myxocyprinus asiaticus. Acta
Hydrobiologica Sinica (水生生物学报), 2012, 36(4):
665-673 (in Chinese)
[4]  Bolasina S, Perez A, Yamashita Y. Digestive enzymes
activity during ontogenetic development and effect of
starvation in Japanese flounder, Paralichthys olivaceus.
Aquaculture, 2006, 252: 503-515
[5]  Li Y, Zhu ZQ, Ortegn O, et al. Effects of short⁃term
starvation and refeeding on the survival, growth, and
RNA / DNA and RNA / Protein ratios in rock carp (Pro⁃
cypris rabaudi ) larvae. Acta Hydrobiologica Sinica,
2012, 36: 674-681
[6]  Zeng L⁃Q (曾令清), Peng H⁃L⁃Y (彭韩柳依), Wang
J⁃W (王健伟), et al. The effects of food deprivation on
individual variation and repeatability in swimming per⁃
formance of juvenile southern catfish (Silurus meridiona⁃
lis Chen). Acta Hydrobiologica Sinica (水生生物学
报), 2014, 38(5): 883-890 (in Chinese)
[7]  Liu L (刘  璐), Wu L⁃X (吴立新), Zhang W⁃G (张
伟光), et al. Effects of starvation and refeeding on car⁃
bohydrate metabolism of Marsupenaeus japonicus. Chi⁃
nese Journal of Applied Ecology (应用生态学报),
2007, 18(3): 697-700 (in Chinese)
[8]   Yan X⁃W (闫喜武), Yao T (姚   托), Zhang Y⁃H
(张跃环), et al. Effects of starvation and refeeding in
winter on the growth, survival, and biochemical compo⁃
sition of different size Ruditapes philippinarum. Chinese
Journal of Applied Ecology (应用生态学报), 2009, 20
(12): 3063-3069 (in Chinese)
[9]  Fan F (范  帆), Yin F (尹  飞), Peng S⁃M (彭士
明), et al. Impacts of starvation on biochemical indices
and behaviors of Sepiella maindroni juveniles. Chinese
70026期                  乐可鑫等: 饥饿和再投喂对虎斑乌贼幼体存活、生长和消化酶活力的影响     
Journal of Ecology (生态学杂志), 2011, 30(10):
2262-2268 (in Chinese)
[10]  Qu Y⁃J (区又君), Liu Z⁃W (刘泽伟). Starvation and
compensatory growth in the young Lutjanus sebae. Jour⁃
nal of Fisheries of China (水产学报), 2007, 31(3):
323-329 (in Chinese)
[11]  Sun Z⁃W (孙泽伟), Zheng H⁃P (郑怀平), Zhang T
(张  涛), et al. Effects of low temperature and starva⁃
tion on larval growth and survival of nobel scallop
Chlamysnobilis reeve. Acta Ecologica Sinica (生态学
报), 2010, 30(1): 1-6 (in Chinese)
[12]  Wang Z⁃Z (王志铮), Shi J⁃J (施建军), Lv G⁃T (吕
敢堂), et al. Development, biochemical composition
and digestive enzyme activity of juvenile Cirrhina mriga⁃
la under short⁃term starvation. Oceanologia et Limno⁃
logia Sinica (海洋与湖沼), 2006, 37(3): 218-224
(in Chinese)
[13]   Song Z⁃B (宋昭彬), He X⁃F (何学福). Effects of
starvation on morphology and histology of digestive sys⁃
tem in larval and juvenile Silurus meridionalis Chen. Ac⁃
ta Hydrobiologica Sinica (水生生物学报), 2000, 24
(2): 155-160 (in Chinese)
[14]  Gao L⁃J (高露姣), Chen L⁃Q (陈立侨), Zhao X⁃Q
(赵晓勤), et al. Starvation and compensatory growth of
Acipenser schrenckii juveniles: Effects on digestive or⁃
gans structure and digestive enzymes activity. Journal of
Fishery Sciences of China (中国水产科学), 2004, 11
(5): 413-419 (in Chinese)
[15]  Wu L⁃X (吴立新), Dong S⁃L (董双林). Advance in
studies on compensatory growth of aquatic animals after
starvation or under nutrition. Chinese Journal of Applied
Ecology (应用生态学报), 2000, 11(6): 943- 946
(in Chinese)
[16]  Zheng S⁃M (郑曙明), Wang Y⁃N (王燕妮), Nie Y⁃X
(聂迎霞), et al. Study on the recovery growth after
starvation and amylase activity in Pangasius polyura⁃
nodon. Journal of Huazhong Agricultural University (华
中农业大学学报), 2003, 22(5): 483-487 ( in Chi⁃
nese)
[17]  Wang Y (王   岩). Bioenergetics of hybrid tilapia
(Oreochromis niloticus × O. aureus) reared in seawater,
in relation to compensatory growth. Oceanologia et Lim⁃
nologia Sinica (海洋与湖沼), 2001, 32(3): 233-
239 (in Chinese)
[18]  Jiang H (江  华), Chen G (陈  刚), Zhang J⁃D (张
建东), et al. Effects of food restriction and starvation
on compensatory growth in juvenile Trachinotus ovatus.
Journal of Guangdong Ocean University (广东海洋大学
学报), 2014, 34(3): 35-40 (in Chinese)
[19]   Lin X⁃T (林小涛), Zhou X⁃Z (周小壮), Yu H⁃N
(于赫男), et al. The effects of starvation on biochemi⁃
cal composition and compensatory growth in Penaeus
vannamei. Journal of Fisheries of China (水产学报),
2004, 28(1): 47-53 (in Chinese)
[20]  Gao L⁃J (高露姣), Chen L⁃Q (陈立侨), Song B (宋
兵). Effect of starvation and compensatory growth on
feeding, growth and body biochemical composition in
Acipenser schrenckii juveniles. Journal of Fisheries of
China (水产学报), 2004, 28(3): 279-284 ( in Chi⁃
nese)
[21]  Yang Q⁃B (杨其彬), Jiang S (姜   松), Huang J⁃H
(黄建华), et al. The compensatory growth of Penaeus
monodon after starvation. South China Fisheries Science
(南方水产科学), 2013, 9(5): 25-31 (in Chinese)
[22]  Li Z⁃H (李志华), Xie S (谢  松), Wang J⁃X (王军
霞), et al. Effects of intermittent starvation on growth
and some digestive enzymes in the shrimp Macrobra⁃
chium nipponense. Journal of Fisheries of China (水产
学报), 2007, 31(4): 456-462 (in Chinese)
[23]  Jiang L⁃H (江丽华), Zhu A⁃Y (朱爱意), Yuan S⁃B
(苑淑宾). Effects of starvation on digestive enzyme ac⁃
tivity and digestive tract index in dustry stingfish Sebas⁃
tiscus marmoratus. Fisheries Science (水产科学 ),
2011, 30(4): 187-191 (in Chinese)
[24]  Su H (苏   慧), Qu Y⁃J (区又君), Li J⁃E (李加
儿), et al. Digestive enzyme activity of Trachinotus ova⁃
tus. Ⅵ. Effects of starvation on survival and enzyme acti⁃
vity in young fish. Marine Fisheries (海洋渔业 ),
2012, 34(1): 45-50 (in Chinese)
作者简介  乐可鑫,男,1990 年生,硕士研究生.主要从事水
产动物增养殖研究.E⁃mail: lekexin0115@ 126.com
责任编辑  肖  红
乐可鑫,汪元,彭瑞冰,等.饥饿和再投喂对虎斑乌贼幼体存活、生长和消化酶活力的影响.应用生态学报, 2016, 27(6): 2002-
2008
Le K⁃X, Wang Y, Peng R⁃B, et al. Effects of starvation and re⁃feeding on survival rate, growth and digestive enzyme activities of ju⁃
venile Sepia pharaonis. Chinese Journal of Applied Ecology, 2016, 27(6): 2002-2008 (in Chinese)
8002                                     应  用  生  态  学  报                                      27卷