免费文献传递   相关文献

滇龙胆紫外指纹图谱共有峰率和变异峰率双指标序列分析法



全 文 :第3 1卷,第8期             光 谱 学 与 光 谱 分 析 Vol.31,No.8,pp2161-2165
2 0 1 1年8月             Spectroscopy and Spectral Analysis  August,2011  
滇龙胆紫外指纹图谱共有峰率和变异峰率双指标序列分析法
袁天军1,2,王元忠1,赵艳丽1,张 霁1,金 航1*,张金渝1*
1.云南省农业科学院药用植物研究所,云南 昆明 650223
2.云南民族大学化学与生物技术学院,云南 昆明 650031
摘 要 利用共有峰率和变异峰率双指标序列分析法,采用平均值、平滑和一次微分处理方法校准和排除
干扰,提高光谱的分辨率,考察三种极性溶剂提取的滇龙胆样品中各波段稳定性和重现性的变异系数RSD,
计算紫外指纹图谱共有峰率和变异峰率,对滇龙胆样品间进行定性评价。结果表明,滇龙胆在氯仿、无水乙
醇和水三种极性溶剂下分别提取40min可达到最大提取率,且稳定性在30h内变异系数 RSD%分别在
0.078~0.455,0.158~0.462,0.052~0.682之间;重现性变异系数RSD%分别在0.044~0.753,0.156~
0.288,0.191~2.413之间。指纹图谱显示,滇龙胆不同产区样品间最大共有峰率达67.6%,最小共有峰率
为45.2%,变异峰率最大为78.9%,最小为21.7%。该法可以准确对两个以上中药材样品进行定性评价,
阐明不同产区间的相似程度,为中药材真伪鉴定和品质评价奠定基础。
关键词 滇龙胆;紫外指纹图谱;双指标序列分析法;定性评价
中图分类号:O657.3  文献标识码:A   DOI:10.3964/j.issn.1000-0593(2011)08-2161-05
 收稿日期:2010-10-13,修订日期:2011-02-16
 基金项目:科技部“十一五”支撑专项项目(2006BA106A12-13)和云南省重大专项([2007]1718)资助
 作者简介:袁天军,1984年生,云南民族大学化学与生物技术学院硕士研究生
*通讯联系人  e-mail:jinhang2009@126.com;jyzhang2008@126.com
引 言
  滇龙胆(Gentiana rigescens)为龙胆科(Gentianaceae)多
年生宿根草本植物,其根茎为用药部位,含有龙胆苦苷(gen-
tiopicroside)、獐牙菜苦苷(swertiamarin)、獐牙菜苷(swero-
side)、龙胆碱(gentianine)、熊果酸(ursolic)、齐墩果酸
(oleanolic acid)、马钱子苷酸(loganic acid)、龙胆次碱(gen-
tianidine)、龙胆醛碱(gentianal)等多种活性成分[1],具有保
肝、健胃、利胆、抗炎、降血压、增强免疫功能、抗病原体等
作用[2]。主要分布在我国广西、湖南、四川、云南、贵州等
地[3]。随着滇龙胆生境不断遭到破坏,野生数量急剧减少,
产量明显下降,替代品不断涌入市场,导致滇龙胆中药材品
质下降。为使滇龙胆的鉴别及质量进行有效控制,本文基于
中药材中化合物有非对称性、自身具有遗传稳定性和变异性
的生物学特征,采用氯仿、无水乙醇、重蒸水三种不同极性
溶剂分别提取,并用三组平均值、四点平滑、一次微分等方
法校准和排除干扰,利用多维共有峰率和变异峰率双指标系
列法建立不同产区滇龙胆紫外指纹图谱。结果表明,该方法
具有稳定性高、重现性好等特征,可以快速、有效鉴别不同
产区滇龙胆中药材,为中药材质量的准确评价提供参考。
1 实验部分
1.1 仪器
UV-2550双通道紫外可见分光光度仪(岛津公司,自带
工作站),SY3200-T型超声波清洗机(上海声源超声仪器设
备有限公司),AR1140型万分之一分析天平(NJ,USA),
0.45μm过滤膜(天津 Aulomatic science公司),DFT-100型
中药粉碎机(浙江温岭市林大机械有限公司)。
1.2 药材及试剂
氯仿(AR),无水乙醇(AR),二次重蒸水,滇龙胆药材
样品见表1。
1.3 测试样品制备及测试条件
样品加入各种提取溶剂,在室温条件下采用超声法提取
40min可达到最大且稳定的提取率。测定波长190~400
nm,狭缝1.0nm,采样间隔0.2nm。
1.4 紫外指纹图谱测试液制备
准确称取粉碎后过100目筛的滇龙胆样品0.300 0g(平
行3份,D2样品平行5份)于50mL具塞三角瓶中,精确加
入20mL氯仿,超声提取40min,过滤,用氯仿洗涤粉末,
收集滤液并定容于25.00mL容量瓶中待测。挥干粉末后,
精确加入20mL无水乙醇,超声提取40min,过滤,用无水
乙醇洗涤粉末,收集滤液并定容于25.00mL容量瓶中待测。
水提取液制备同无水乙醇提取液相同。测定液稀释一定倍数
后,使吸光度值A<2,在此范围内,峰的吸收波长随浓度变
化甚微。以对应提取溶剂作为参比进行紫外指纹图谱测定。
Table 1 Materials
序号 采集地
经度
/degree
纬度
/degree
海拔
/m
D1 昆明市筇竹寺后山      N25.664 7° E102.620 8° 2 289
D2 楚雄州南华县水井房     N25.308 8° E101.271 2° 2 122
D3 临沧市云县茶房乡福焰山   N24.299 9° E100.237 3° 2 016
D4 贵州省兴义安龙       N25.150 37° E105.328° 2 207
D5 玉溪市江川县安华乡中村后山 N24.396 8° E102.695 6° 1 933
D6 怒江州兰坪县脚裂山     N32.714 8° E107.435 1° 2 100
D7 文山州马关县小街乡老抖地山 N23.253 5° E104.050 9° 1 955
D8 曲靖市师宗县葵山镇小查拉山 N24.753 8° E103.794 7° 1 864
D9 楚雄州姚安县太平镇矿石   N25.390 9° E101.280 9° 2 246
D10 昆明市小哨         N25.171 4° E102.949 1° 1 937
D11 文山州砚山县二塘罗盖壳山  N23.488 1° E104.257 6° 1 626
D12 楚雄州南华县紫溪山     N25.056 4° E101.382 5° 2 086
2 结果与分析
2.1 光谱信号预处理
采用紫外可见分光光度仪自带软件 UV Probe对采集的
原始光谱进行3组平均化以提高测定的准确度,对平均化的
光谱进行4点平滑处理[4],滤除光谱噪音以提高信号的可用
性,对平滑处理后的光谱数据进行一次微分处理[5],进一步
校准基线,消除二次背景噪音,提高光谱的分辨率。
2.2 最佳提取时间
以样品D1为研究对象,分别采用氯仿、无水乙醇、水进
行超声提取20,30,40,50和60min,按2.1节方式处理分
别测定三次,结果表明采用氯仿提取30min可达到最大提
取率,无水乙醇和水分别提取40min可达到最大提取率。因
此采用40min作为提取的最佳时间。
2.3 指纹图谱时间稳定性实验
将保存在0~4℃下提取40min的D1样品制备液,分
别在0,5,10,20,30和40h时进行紫外测定三次,按2.1
节方式处理。结果表明,在30h内样品保持稳定,氯仿、无
水乙醇、水提取液波长变异系数 RSD%最大分别为0.455,
0.642和0.682,最小变异系数 RSD%分别为0.078,0.158
和0.052。因此,制备液在保存30h之内稳定性较好。
2.4 指纹图谱重现性实验
以样品D2为研究对象,准确称取0.300 0g样品5份,
按1.4节方式处理后提取40min,每组样品在紫外下测定三
次,经2.1节方式处理后,氯仿、无水乙醇、水提取液波长
变异系数RSD%最大分别为0.753,0.228和2.413,最小变
异系数RSD%分别为0.044,0.156和0.191。结果表明,三
种极性溶剂提取40min后,样品重现性较好。
2.5 不同产区滇龙胆紫外指纹图谱
不同产区滇龙胆紫外指纹图谱,见图1—图3。
Fig.1 UV fingerprint spectra of extracts from different
areas of Gentiana rigescens with Chloroform
Note 1:D4,2:D1,3:D10,4:D8,5:D6,6:D2,7:D9,8:D7,
9:D12,10:D5,11:D3,12:D11,the same below
Fig.2 UV fingerprint spectra of extracts from different areas
of Gentiana rigescens with absolute ethanol
Flg.3 UV fingerprint spectra of extracts from different
areas of Gentiana rigescens with water
2.6 紫外指纹图谱共有峰和变异峰的确定
对于紫外光谱指纹图谱,同一吸收峰在不同的图谱中没
有一个固定的变化范围,对不同图谱中共有峰可采用W 正
态分布检验进行识别,对于一组非常接近的吸收峰,若不满
足正态分布,可采用组内吸收峰波长的极差值与该组以及相
邻组之间的平均波数差值进行比较,当极差值显著小于平均
波数值时视为一组共有峰,反之视为变异峰。共有峰率P=
(Ng/Nd)×100%,变异峰率Pva=(na/Ng)×100%,Pvb=
2612 光谱学与光谱分析                    第31卷
(nb/Ng)×100%,其中Ng,Nd,na,nb,Pva和Pvb分别代表
两个图谱中共有峰数、独立峰数、a图谱的变异峰数、b图谱
的变异峰数、a图谱的变异峰率、b图谱的变异峰率,Nd=
Ng+na+nb。
2.7 不同产区滇龙胆共有峰的识别
不同产区滇龙胆分别经氯仿、无水乙醇、水提取采用紫
外检测后,分别通过平均、平滑、一次微分处理后得到指纹
图谱吸收峰波长数据及共有峰的识别,见表2。
Table 2 The wavelengths of peaks in UV fingerprint spectra of Gentiana rigescens pal with chloroform,ethanol and water*
序号
吸收峰波长λ/nm
Chloroform  Ethanol  Water
D1  287.80  259.20  208.60  196.20  193.40  253.20
D2  219.20  206.80  297.00  258.40
D3  284.00  257.20  245.80  214.00  205.00  194.00  298.60  201.40  280.60  250.20
D4  326.00  288.20  256.80  250.80  205.20  193.60  295.00  200.40  295.60
D5  335.80  286.20  256.80  214.00  206.40  200.60  360.80  300.40  202.40  283.00  255.00
D6  288.80  256.60  249.20  217.80  206.40  200.00  372.20  301.00  205.60  198.80  287.00
D7  288.20  246.20  205.80  198.20  295.00  200.40  278.40
D8  325.60  287.20  256.80  253.60  362.00  300.00  197.40  281.20  254.60
D9  302.40  256.80  290.20  275.40
D10  286.00  253.80  211.00  203.60  197.20  302.40  199.80  253.60
D11 302.00  257.00  248.20  359.20  290.60  279.40
D12  218.20  206.60  195.00  353.40  297.60  286.00  253.20
*对吸收峰波长进行Wa=0.05检验,表2中同一列中的吸收峰为共有峰。
2.8 基本关系组、对及分析
分别采用氯仿、无水乙醇、水三种极性溶剂提取滇龙胆
后进行紫外检测。原始图谱采用平均、平滑、一次微分处理
后,以各样品为参考,分别以指纹图谱共有峰率和变异峰率
计算公式计算出其他样品的共有峰率和变异峰率,按共有峰
大小排成n维序列片段,通过该序列片段可以精确描述一个
样品与另外所测任意样品之间的远近关系。12个滇龙胆样
品的双指标序列(见表3)。中药指纹图谱片段按每个序列共
有峰率的平均值为标准进行整体分析,以平均值为分界线将
各序列分为前后两部分,大于等于平均值共有峰率的序列之
间相似性越高,序列间变异率值越小。根据此法确定出12个
不同产区的滇龙胆样品相似性(见表4)。
Table 3 The common and variation peak ratios in different samples
序列 (P;PvD13,Pvb) 序列 (P;PvD13,Pvb) 序列 (P;PvD13,Pvb)
D1∶D10* (67.6%;21.7,26.1) D2∶D9 (65.7%;21.7,30.4) D3∶D6 (61.5%;29.1,33.3)
D1∶D9 (62.9%;35.3,23.5) D2∶D12 (62.8%;22.7,36.3) D3∶D2 (57.8%;34.6,38.4)
D1∶D2 (62.1%;17.4,43.5) D2∶D1 (62.1%;43.5,17.4) D3∶D7 (57.1%,55.0,22.0)
D1∶D12 (58.3%;28.6,42.8) D2∶D10 (58.9%;34.9,34.9) D3∶D1 (54.0%;45.0,40.0)
D1∶D8 (55.5%;45.0,35.0) D2∶D3 (57.8%;38.4,34.6) D3∶D12 (51.3%;55.0,40.0)
D1∶D5 (54.0%;45.0,40.0) D2∶D4 (55.8%;45.8,33.3) D3∶D11 (51.3%;50.0,45.0)
D1∶D3 (54.0%;40.0,45.0) D2∶D5 (55.0%;54.5,27.3) D3∶D5 (51.2%;45.4,50.0)
D1∶D4 (51.3%;45.0,50.0) D2∶D6 (54.5%;45.8,37.5) D3∶D9 (50.0%;63.1,36.8)
D1∶D6 (50.0%;45.0,55.0) D2∶D7 (51.3%;65.0,30.0) D3∶D10 (50.0%;55.0,45.0)
D1∶D7 (47.2%;70.6,41.2) D2∶D8 (51.2%;57.1,38.1) D3∶D4 (50.0%;45.4,54.5)
D1∶D11 (45.2%;57.9,63.1) D2∶D11 (50.0%,65.0,35.0) D3∶D8 (47.5%;78.9,31.6)
D4∶D8 (56.2%;44.4,33.3) D5∶D10 (65.6%;33.3,19.0) D6∶D3 (61.5%;33.3,29.1)
D4∶D2 (55.8%;33.3,45.8) D5∶D9 (63.6%,33.3,23.8) D6∶D10 (60.0%;42.8,23.8)
D4∶D9 (54.8%;47.0,35.3) D5∶D8 (55.8%,42.1,36.8) D6∶D11 (59.4%;42.1,26.3)
D4∶D7 (54.5%;44.4,38.9) D5∶D2 (55.0%,37.5,47.8) D6∶D9 (58.8%;35.0,35.0)
D4∶D11 (54.3%;52.6,31.6) D5∶D12 (55.0%;35.0,45.0) D6∶D8 (57.1%;40.0,35.0)
D4∶D10 (54.0%;50.0,35.0) D5∶D1 (54.0%;40.0,45.0) D6∶D12 (56.6%;47.0,29.4)
D4∶D5 (53.8%;47.6,38.1) D5∶D7 (52.9%;55.5,33.3) D6∶D7 (56.2%;55.5,22.2)
D4∶D1 (51.3%;50.0,45.0) D5∶D11 (52.9%;44.4,44.4) D6∶D2 (54.5%;37.5,45.8)
D4∶D3 (50.0%;54.5,45.4) D5∶D6 (51.3%;36.8,57.9) D6∶D5 (51.3%;57.9,36.8)
D4∶D12 (50.0%;55.6,44.4) D5∶D4 (51.3%;50.0,45.0) D6∶D1 (50.0%;55.0,45.0)
D4∶D6 (48.7%;57.9,47.4) D5∶D3 (51.2%;50.0,45.4) D6∶D4 (48.7%;47.4,57.9)
3612第8期                    光谱学与光谱分析
 续表3
D7∶D11 (65.6%;31.6,36.8) D8∶D9 (66.7%;25.0,25.0) D9∶D8 (66.7%;25.0,25.0)
D7∶D10 (59.4%;31.6,36.8) D8∶D10 (62.9%;23.5,35.3) D9∶D12 (65.7%,21.7,30.4)
D7∶D3 (57.1%,22.0,55.0) D8∶D12 (62.5%;20.0,40.0) D9∶D2 (65.7%;30.4,21.7)
D7∶D8 (56.3%;38.9,38.9) D8∶D6 (57.18%;35.0,40.0) D9∶D5 (63.6%,23.8,33.3)
D7∶D6 (56.2%;22.2,55.5) D8∶D11 (57.15;40.0,35.0) D9∶D1 (62.9%;23.5,35.3)
D7∶D9 (54.5%;38.9,44.4) D8∶D4 (56.2%;33.3,44.4) D9∶D6 (58.8%;35.0,35.0)
D7∶D4 (54.5%;38.9,44.4) D8∶D7 (56.3%;38.9,38.9) D9∶D11 (58.6%;29.4,41.2)
D7∶D12 (53.1%;29.4,58.9) D8∶D1 (55.5%;35.0,45.0) D9∶D4 (54.8%;35.3,47.0)
D7∶D5 (52.9%;33.3,55.5) D8∶D5 (55.8%,36.8,42.1) D9∶D7 (54.5%;44.4,38.9)
D7∶D2 (51.3%;30.0,65.0) D8∶D2 (51.2%;38.1,57.1) D9∶D10 (53.1%;47.0,41.2)
D7∶D1 (47.2%;41.2,70.6) D8∶D3 (47.5%;31.6,78.9) D9∶D3 (50.0%;36.8,63.1)
D10∶D1 (67.6%;26.1,21.7) D11∶D7 (65.6%;36.8,31.6) D12∶D9 (65.7%,30.4,21.7)
D10∶D5 (65.6%;19.0,33.3) D11∶D6 (59.4%;26.3,42.1) D12∶D8 (62.5%;40.0,20.0)
D10∶D8 (62.9%;35.3,23.5) D11∶D9 (58.6%;41.2,29.4) D12∶D2 (62.8%;36.3,22.7)
D10∶D6 (60.0%;23.8,42.8) D11∶D8 (57.15;35.0,40.0) D12∶D1 (58.3%;42.8,28.6)
D10∶D7 (59.4%;31.8,36.6) D11∶D10 (55.9%;36.8,42.1) D12∶D6 (56.6%;29.4,47.0)
D10∶D2 (58.9%;34.9,34.9) D11∶D4 (54.3%;31.6,52.6) D12∶D10 (56.3%;47.6,47.6)
D10∶D12 (56.35;47.6,47.6) D11∶D5 (52.9%;44.4,44.4) D12∶D5 (55.0%;45.0,35.0)
D10∶D11 (55.9%;42.1,36.8) D11∶D3 (51.3%;45.0,50.0) D12∶D7 (53.1%;58.9,29.4)
D10∶D4 (54.0%;35.0,50.0) D11∶D12 (51.2%47.6,47.6) D12∶D3 (51.3%;40.0,55.0)
D10∶D9 (53.1%;41.2,47.0) D11∶D2 (50.0%,65.0,35.0) D12∶D11 (51.2%47.6,47.6)
D10∶D3 (50.0%;45.0,55.0) D11∶D1 (45.2%;63.1,57.9) D12∶D4 (50.0%;44.4,55.6)
 *D1∶D10(67.6%;21.7,26.1),该序列片段表示以样品D1为参考,样品D10与样品D1之间的共有峰率为67.6%,D1样品的变异峰率
是21.7%,D10样品的变异峰率是26.1%,从共有峰率和变异峰率综合看,二者之间差异性极小,相似度较高。
Table 4 The common and variation peak ratios in similar samples
序列 (P;PvD13,Pvb) 序列 (P;PvD13,Pvb) 序列 (P;PvD13,Pvb)
D1∶D10 (67.6%;21.7,26.1) D2∶D9 (65.7%;21.7,30.4) D3∶D6 (61.5%;29.1,33.3)
D1∶D9 (62.9%;35.3,23.5) D2∶D12 (62.8%;22.7,36.3) D3∶D2 (57.8%;34.6,38.4)
D1∶D2 (62.1%;17.4,43.5) D2∶D1 (62.1%;43.5,17.4) D3∶D7 (57.1%,55.0,22.0)
D1∶D12 (58.3%;28.6,42.8) D2∶D10 (58.9%;34.9,34.9) D3∶D1 (54.0%;45.0,40.0)
D1∶D8 (55.5%;45.0,35.0) D2∶D3 (57.8%;38.4,34.6)
D4∶D8 (56.2%;44.4,33.3) D5∶D10 (65.6%;33.3,19.0) D6∶D3 (61.5%;33.3,29.1)
D4∶D2 (55.8%;33.3,45.8) D5∶D9 (63.6%,33.3,23.8) D6∶D10 (60.0%;42.8,23.8)
D4∶D9 (54.8%;47.0,35.3) D5∶D8 (55.8%,42.1,36.8) D6∶D11 (59.4%;42.1,26.3)
D4∶D7 (54.5%;44.4,38.9) D6∶D9 (58.8%;35.0,35.0)
D4∶D11 (54.3%;52.6,31.6) D6∶D8 (57.1%;40.0,35.0)
D4∶D10 (54.0%;50.0,35.0) D6∶D12 (56.6%;47.0,29.4)
D7∶D11 (65.6%;31.6,36.8) D8∶D9 (66.7%;25.0,25.0) D9∶D8 (66.7%;25.0,25.0)
D7∶D10 (59.4%;31.6,36.8) D8∶D10 (62.9%;23.5,35.3) D9∶D12 (65.7%,21.7,30.4)
D7∶D3 (57.1%,22.0,55.0) D8∶D12 (62.5%;20.0,40.0) D9∶D2 (65.7%;30.4,21.7)
D7∶D8 (56.3%;38.9,38.9) D8∶D6 (57.18%;35.0,40.0) D9∶D5 (63.6%,23.8,33.3)
D7∶D6 (56.2%;22.2,55.5) D9∶D1 (62.9%;23.5,35.3)
D10∶D1 (67.6%;26.1,21.7) D11∶D7 (65.6%;36.8,31.6) D12∶D9 (65.7%,30.4,21.7)
D10∶D5 (65.6%;19.0,33.3) D11∶D6 (59.4%;26.3,42.1) D12∶D8 (62.5%;40.0,20.0)
D10∶D8 (62.9%;35.3,23.5) D11∶D9 (58.6%;41.2,29.4) D12∶D2 (62.8%;36.3,22.7)
D10∶D6 (60.0%;23.8,42.8) D11∶D8 (57.15;35.0,40.0) D12∶D1 (58.3%;42.8,28.6)
D10∶D7 (59.4%;31.8,36.6) D12∶D6 (56.6%;29.4,47.0)
D10∶D2 (58.9%;34.9,34.9)
  表3结果表明,不同产区滇龙胆之间存在一定的差异。
随着滇龙胆产区之间空间距离的增加,其样品间共有峰率逐
渐呈下降趋势,变异峰率呈上升趋势。滇龙胆整体共有峰率
均小于70%,大于45%,变异率最大达78.9%。表4结果表
4612 光谱学与光谱分析                    第31卷
明不同产地滇龙胆随地理距离的增加相近程度逐渐减小,但
总体相似度在50%~70%之间,滇中地区昆明和楚雄、滇西
南临沧和滇西北怒江、滇东南文山地区和滇东曲靖、滇南玉
溪和滇中昆明之间相近程度较高,贵州产区与云南产区滇龙
胆间相近程度都较低。
3 结 论
  在紫外条件下利用双指标序列分析法,通过三组平均、
4点平滑和一次微分处理建立了滇龙胆紫外指纹图谱。该方
法稳定性高、重现性好,准确定性反映任意两个样品之间的
相似和差异情况,同时从整体上对其进行分组,与常用的模
糊聚类相比更为客观、直接。能进一步区分中药材真伪和药
材的品质,为中药材定性评价奠定了基础。
实验结果表明,样品相近程度随地理位置不同变化较
大,这可能与云南地理、气候多元化有关。野生滇龙胆中药
材在长期的进化过程中,遗传的稳定性和变异性与外界环境
的变化密切相关,而指纹图谱中共有峰率和变异峰率在一定
程度可以客观的反映不同产区野生滇龙胆的相近情况,为滇
龙胆的进一步研究提供了理论依据。
References
[1] SUN Nan-jun,XIA Chun-fang(孙南君,夏春芳).China Journal of Chinese Materia Medica(中国中药杂志),1984,9(1):33.
[2] The Pharmacopoeia Committe of China,Pharmacopoeia of Chinese(中国药典),Part One(一部).Beijing:Chemical Industry Press(北京:
化学工业出版社),2010.
[3] RAN Mao-xiong(冉懋雄).China National Corp of Traditional & Herbal Medicine Compile(中国中药区化),Part One(一部).Beijing:
Science Press(北京:科学出版社),1995.
[4] Mcclurel,Bartonj W F,et al.Journal of Near Infrared Spectroscopy,1998,6:77.
[5] Gorry P A.Analysis Chemistry,1990,62:570.
The Common and Variation Peak Ratio Dual Index Sequence Analysis in
UV Fingerprint Spectra of Gentiana Rigescens
YUAN Tian-jun1,2,WANG Yuan-zhong1,ZHAO Yan-li 1,ZHANG Ji 1,JIN Hang1*,ZHANG Jin-yu1*
1.Institute of Medicinal Plant,Yunnan Academy of Agricultural Sciences,Kunming 650223,China
2.Colege of Chemistry and Biotechnology,Yunnan Nationalities University,Kunming 650031,China
Abstract With the common and variation peak ratio dual index sequence analysis method,using mean value,smoothness and
derivative processing methods to calibrate and exclude interference,in order to increase resolution of spectrum,and then inspec-
ted the RSD of stability and repeatability of three different polarity solvent extracts of Gentiana rigescens,calculated the common
and variation peak ratio in the UV fingerprint spectral,to evaluate the quality of G.rigescens from different areas.The results
showed that,at 40min,the extract ratio was the best in chloroform,absolute ethyl alcohol or water,and in 30hthe RSD of sta-
bility respectively were between 0.078~0.455,0.158~0.462,0.052~0.682;the RSD of repeatability respectively were be-
tween 0.044~0.753,0.156~0.288,0.191~2.413.The fingerprint spectral implicated that the largest common peak ratio was
67.6%,while the least was 45.2%,and the largest variation peak ratio was 78.9%,the least was 21.7%among different areas
of G.rigescens.The method could be used exactly in qualitative evaluation of two more herb samples,and clarified the similarity
level among different areas,also applied the basement for authenticity identification and quality evaluation of herbs.
Keywords Gentiana rigescens;UV fingerprint spectral;Dual index sequence analysis method;Qualitive evaluation
(Received Oct.13,2010;accepted Feb.16,2011)  
*Corresponding author
5612第8期                    光谱学与光谱分析