免费文献传递   相关文献

Active Metabolites Against Phytopathogenic Fungi in Higher Plants

植物中抗病原真菌的活性物质



全 文 :植物学通报 2004, 21 (3): 367~375
Chinese Bulletin of Botany
①通讯作者。Author for correspondence. E-mail:Chenweix@sti.gd.cn
收稿日期:2003-09-23 接受日期:2004-02-01 责任编辑:崔郁英
植物中抗病原真菌的活性物质
1, 2吴光旭 1何庭玉 1刘爱嫒 1陈维信①
1(华南农业大学广东省果蔬保鲜重点实验室 广州 510642 )
2(长江大学生命科学学院 荆州 434023)
摘要 综述了近十年国内外公开报道的部分植物抗病原真菌的活性物质, 这些物质主要包括萜类、生
物碱类、黄酮类、酚类、醌类、苯丙素类、香豆素类和木脂素类等。侧重介绍了禾本科、豆科、蔷薇
科、菊科和十字花科植物中抗病原真菌的活性物质的特点。提出了一些看法与建议。
关键词 植物, 抗病原真菌, 活性物质
Active Metabolites Against Phytopathogenic Fungi
in Higher Plants
1, 2WU Guang-Xu 1HE Ting-Yu 1LIU Ai-Yuan 1CHEN Wei-Xin①
1 (Guang Dong Key Laboratory for Postharvest Science, South China Agricultural University,
Guangzhou 510642)
2 (College of Life Science, Yangtze University, Jingzhou 434023)
Abstract A review was made of published literature in the recent years on the antifungal metabolites
in higher plants. The metabolites mainly include terpenes, alkaloids, flavones, phenols, quinines,
phenylpropanoids, coumarins and lignans. The characteristics of antifungal constituents in the
families of Gramineae, Leguminosae, Rosaceae, Compositae and Cruciferae were emphasized. A brief
conclusion and some suggestions for the further research of antifungal substances were also outlined.
Key words Higher plants, Anti-phytopathogenic fungi, Active metabolites
20世纪80年代以来, 从保证食品安全、保护环境和克服有害生物抗性等共同关心的问题出
发, 科学工作者加大了从植物中寻找抗有害生物活性物质的研究力度。相对而言, 在此类天然活
性物质的研究中, 杀虫物质的报道较多, 而抗病的资料偏少, 本文对有关植物中抗病原真菌的活性
物质的研究作一概述。近十多年, 人们对植物及其抗菌活性物质进行了较为深入的研究, 研究范
围涉及 40多个科的 1 000余种植物, 发现了 300多种新的抗植物真菌活性物质。从植物在农业
生产中的地位出发, 抗真菌活性物质的研究重点集中在主要粮食作物和经济作物上, 如禾本科、
豆科、蔷薇科和菊科等。同时, 一些区域性的主要植物、特色植物和某些相关的民族药用植
物也是研究者注意的对象。
1 植物及其抗真菌活性物质(表1)
1.1 禾本科植物水稻中的抗真菌活性物质
Grayer和Kokubun(2001)发现, 水稻叶可产生许多固有抗菌物质(preformed或 constitutive
368 21(3)
antifungal)或经诱导形成抗菌物质(induced antifungl或 phytoalexin)。固有抗菌物质包括
硅酸盐(酯)、以亚麻酸为母体的 12个十八碳羟基脂肪酸(Kato et al., 1993)、环氧脂肪酸和
烷基间苯二酚(Suzuki et al., 1996); 诱导产生的抗菌物质主要是黄烷酮和二萜类化合物。黄烷酮
类的抗菌化合物有樱花苷(Kodama et al., 1992)和4, 5, 7-三羟基黄烷酮, 二萜类的抗菌化合物有
momilactone A、稻叶素(oryzalexin)和植物卡生(phytocassane) (Koga et al., 1995)等。
1.2 蔷薇科植物的抗真菌活性物质
Kokubun和Harborne(1994; 1995)用活性追踪与TLC生物自显影相结合的方法研究了130多
种蔷薇科植物, 分离鉴定出 20多个抗菌活性物质, 这些物质主要是异类黄酮、苯甲酸、联苯和
二苯并呋喃类化合物。此外, 还有 3, 5-二 -氧 -咖啡酰奎尼酸、对苯二酚葡萄糖苷以及在未成
熟的油桃果中发现的7个三萜类物质(Lahlou et al., 1999)。
1.3 豆科植物的抗真菌活性物质
豆科植物抗真菌活性物质主要是异类黄酮类物质 , 如异黄酮、异黄烷酮、异黄烷、
rotenoid、coumestan和 coumaranochromone(Harborne and Baxter, 1999)等。Harborne(1999)曾
系统分析比较过560多种豆科植物中的130多种不同抗真菌活性物质的构成特点, 并在属一级分
类水平上, 提出了抗真菌活性物质化学分类的可能性。
1.4 十字花科植物的抗真菌活性物质
Pedras等(2000)综述了十字花科植物中的 25个抗菌物质:brassitin、cyclobrassinone、
cyclobrassinin、1-methoxyspirobrassinin、1-methoxyspirobrassinol methylether、1-
methylcamalexin、1-methoxyindole-3-carboxylate和 sinalexin等。有趣的是, 在 25个抗菌物质中
除1-Methoxyindole-3-carboxylate外, 其余24个全都是含硫吲哚化合物, 产生含硫抗菌物质似乎是
十字花科的一个特点。
1.5 菊科植物的抗真菌活性物质
Alvarez-Castellanos等(2001)用茼蒿(Chrysanthemum coronarium L.)花精油对12种植物病原
菌进行抗菌试验, 均表现出抗真菌活性, 精油的主要化学成分为 2-莰烷醇(29.2%)、a-蒎
烯(14.8%)、b-蒎烯(9.5%)和 lyratyl acetate(9.8%)。Skaltsa等(2000)从矢车菊
(Centaurea cyanus L.)中分离到大叶香叶内酯、elumanolide、eudesmanolide和桉叶烷对 9种植
物病原真菌有抑制作用。Maatooq等(1996)发现灰白银胶菊×绒毛银胶菊中的银胶菊酮、
8-氧-灰白银胶菊酮、8-氧-去甲-灰白银胶菊酮和假虎刺酮等倍半萜内酯对黑曲霉与烟曲霉有
抗真菌活性。Takasugi和Masuda(1996)用假单胞菌诱导 Polymnia sonchifolia 产生出 3个
4-羟基苯乙酮类化合物有抗 Bipolaris leersiae的活性。有人用 CuCl2诱导向日葵产生香豆素、
7-羟基 -6-甲基香豆素和三脉泽兰素等抗真菌活性物质。
表1摘录了自1993年以来部分其他植物抗病原真菌活性物质的主要研究报道。
2 植物抗病原真菌活性物质的化学分类
从表1可见, 植物的抗真菌活性物质在化学分类上绝大多数都属于次生代谢产物, 主要包括
萜类、生物碱类、黄酮类、酚类、醌类、苯丙素类、香豆素和木脂素等类型, 其分子量通
常在 1 000 Da以下。
3692004 吴光旭等:植物中抗病原真菌的活性物质
2.1 萜类
植物体内具有抗真菌活性的萜类化合物, 多是单萜、倍半萜、二萜和三萜。
Picman (1984)用 45种萜类化合物对Mioroporium cookei、Trichophytom mentagrophytes 和
Fusarium spp. 进行抗菌试验, 发现62%以上的倍半萜化合物对其中的两种真菌呈一定的抗菌活
性, 近 50%的萜类化合物具有很强的抗菌活性, 对镰刀菌有弱抑制作用的为 13%。Wedge 等
(2000)用 36种天然和半合成的倍半萜内酯对 Collectotrichum acutatum、C.fragariae、C.
gloeosporiodes、Fusarium oxysporum、Botrylis cinerea 和 Phomopsis sp.进行了抗菌试验, 结
果证明大多数化合物均有一定程度的抗菌生物活性, 有些呈现出很强的抗菌活性。
二萜类的抗真菌活性化合物。Haraguchi(1996)发现存在于沟果非洲砂仁(Aframomum
aulacocarpos Pellegr ex Koechlin)、红豆蔻(Alpinia galanga Rosc)和姜(Zingiber officinale (L.)
Willd.)中的二萜化合物——非砂仁二醛, 可强力抑制金色青霉菌的生长。水稻中的二萜化合物植
物卡生(phytocassane)A、B、C、D、E (Koga et al., 1995)以及稻叶素 E和稻叶素 F(Kato
et al., 1993), 可抑制稻瘟病菌(Magnaporthe grisea)芽孢生长。
2.2 芳香族类抗真菌活性物质
植物体内的芳香族类抗真菌化合物, 最典型的是酚和醌。赵纯森等(1994)从厚朴落叶
中分离出两种联苯酚类化合物——厚朴酚和厚朴酚, 对多种植物病原真菌具有较高的离体和活体
抗真菌活性。水稻幼苗经诱导产生的一种烷基间苯二酚(Suzuki et al., 1996), 具有抗稻瘟病
的活性。萘醌是一类有效的抗真菌活性物质, 独丽花(Moneses uniflora Gray)中的萘醌——梅笠
草素(Saxena et al., 1996) 对黄曲霉与烟曲霉有抑制作用。北极花破布木(Cordia linnaei
Stearin)根中的破布木醌 B、E、G和H及破布木(Cordia curassavica)中的破布木醌 J和K对瓜
枝孢有抗真菌活性(Ioset et al., 1998)。此外, Suresh 等(2003) 从喜马大黄(Rheum emodi)中分离出
3种新的萘醌—— revandchinone-1、revandchinone-3和 revandchinone-4对 Rhizopus oryzae和
Asperigillus niger有抗真菌活性。
2.3 黄酮类抗真菌活性物质
黄酮类物质是植物体内广泛存在的一类抗菌物质。孪花蟛蛴菊(Wedelia biflora (Linn.))中的
黄酮—— 3, 3-二甲基槲皮素(Miles et al., 1993), 对茄子镰刀菌和寄生曲霉有抑制作用。灰叶
(Tephrosia purpurea (L.) Pers.)中黄酮——披针灰叶素B(Chang et al., 1997)可抑制病原体孢子和
菌核发芽, 对蓼白粉病和小麦散黑粉菌有作用。甜香杨梅(Myrica gale) L.、宾州杨梅(Myrica
pensylvanica L.)和锯齿杨梅(Myrica serrata Lamarck)中的2′, 4′-二羟基-6′-甲氧基-3′, 5′-二甲
基查耳酮(Gafner et al., 1996b), 在TLC上对瓜枝孢菌最小抑制生长量为6 mg。王锦亮等(1995)
发现云南血竭(Dracaena cochinchensis (Lour.) Chen)中的查耳酮——岩棕素A, 其2.5%滤纸片在
培养平板上的抑菌圈直径大小枝孢嗜果仓霉为15.0 mm, 禾谷镰刀菌龙血树变种、禾谷镰刀云南
变种及出芽短梗霉均为 11.0 mm。此外, Garo等(1996)证明(2S)-4 -羟基 -7-甲氧基黄烷、
(2S)-7, 4′-二羟基-3′-甲氧基黄烷和(±)-7, 4′-二羟基-3′-甲氧基黄烷, 对瓜枝孢和立枯丝核菌有
抑制作用。
2.4 含硫或含氮抗真菌活性物质
含硫或含氮化合物包括生物碱、胺及酰胺类等物质, 它们是植物体内具有抗菌活性的典型
物质。在含硫化合物中, Greger等(1994)发现狭叶山小桔(Glycomis angustifolia Lindl)中的
370 21(3)
表 1 部分植物抗菌
Table 1 The selected antifungal compounds
科 Family 种 Species 器 官 Organ 化合物 Compound
Euphorbiaceae Bridelia reusa Stem bark (E)-4-(1,5-dimethyl-3-oxo-1-hexenyl)benzoic acid
Rutaceae Glycosmis pentaphylla Leaf Illukumbin B
Dictamnus dasycarpus Root bark Isofraxinellone
Coleonema pulchellum Root Precolpuchol
Zanthoxylum andentum Stem bark 8-acetonyldihydrontidine
Solanaceae Withania coagulans Whole plant 17 b-hydroxywithanolide K
Guttifereae Hypericum brasiliense Stem, Root Hyperbrasilone
Polygalaceae Polygala fruticosa Leaf, Root bark Frutinone A
Gentianaceae Gentiana tibetica Root Ethyl N-docosanoylanthranilate
Pyrolaceae Moneses uniflora Aerial part 8-chlorochimphilin
Musaceae Musa acuminata Rhizome Musanolone C
Boraginaceae Cordia linnaei Root Cordiaquinone B
Heliotropium floridum Aerial part 3′-acetyltrachelanthamine
Cyperaceae Mariscus psilostachys Whole plant (±)-5, 4′-dihydroxy-7, 3′-dimethoxy-flavanone
Agvaceae Dracaena cochinchinensis Resin 7-hydroxy-4′-methoxy-flavan
Loureirin A
Piperaceae Piper aduncum Leaf Methyl 8-hydroxy-2, 2-dimethyl-2H-chromene-6carboxylate
P. tuberculatum 8(Z)-N-(12,13,14-trimethoxycinnamoyl)-△ 3-pyridin-2-one
Arboreumine
Umbelliferae Apium graveolens Stem Columbianetin
Diplolophium buchanani Leaf Trans-isoelemicin
Oxypeucedanin hydrate
Caricaceae Carica papaya Fruit 3′-5′-dimethoxy-4′-hydr-(2-hydroxy) acetophenone
Labiatae Salvia tomentosa Aerial part Dehydroabietic acid
Acanthaceae Hypoestes serpens Root Fusicoserpenol
Dolobeserpenoic acid
Berberidaceae Podophyllum hexandrum Leaf Picropodopyllone
Combretaceae Terminalia belerica Fruit rind 7-Hyhroxy-3′, 4′-(methylenedioxy)flavane
Myrsinaceae Rapanea melanophloeos Leaf Sakurasosaponin
Myristicaceae Virola olrifera Aril Oleiferin F
V. urinamensis Root 2-hydroxy-7,4′-dimethoxyisoflavone
Polygonaceae Polygonum hydropiper Bud Tadeonal
Rheum emodi Rhizome Revandchinone-1
Revandchinone-3
Dipsacaceae Cephalaria transsylvanica Flower TanssylvanosideA
Canellaceae Canella winterana Stem bark Warburqanal
Celastraceae Bhesa paniculata Wood Anofinic acid
Bignoniaceae Newbouldia laevis Root (2R)-5-methoxydehydroiso-α -lapachone
Myricaceae Myrica serrata Leaf Aurentiacin A
Liliaceae Veratrum taliense Root Neoverataline A
Neoverataline B
Pineceae Pseudolarix kaempferi Stem bark Pseudolaric acid B
Phytolacaceae Petiveria alliacea Root Dibenzyl tetrasulphide
Benzylhydroxymethyl sulpide
Di(benzyltrithio) methane
Araceae Lysichitum americanum Leaf 2-(4-methoxyphenyl)-1-nitroethane
2-(4-hydroxylphenayl)-1-nitroethane
Lauraceae Persea americana Fruit (E,Z,Z)-1-acetoxy-2-hydroxy-4oxo-heneicosa-5,12,15-triene
3712004 吴光旭等:植物中抗病原真菌的活性物质
分子式 Formula 化合物类别 Class 病原菌 Pathogen 文献 Reference
C15H18O3 Bisabolane sesquiterpene Cladosporium cladosporioides Jayasinghe et al., 2003
C12H13NOS Organic sulfide C. cladosporioides Greger et al., 1994
C14H16O3 Benzofuran C. cucumerinum Zhao et al., 1998
C14H16O2 Phenol C. cucumerinum Brader et al., 1997
C24H23NO5 Benzophenanthrene alkaloid C. cladosporioides Nissanka et al., 2001
C28H38O6 Steroidal lactone Pleurotus ostreatus Choudhary et al., 1995
C16H16O4 Phenol C. cucumerinum Rocha et al, 1994
C16H18O4 Coumarin C. cucumerinum Rahalison et al., 1994
C31H53NO3 Anthranilic acid derivative Aspergillus flavus Tan et al., 1998
C12H9CLO2 Organic halid Fusarium tricuictum Saxena et al., 1996
C19H14O2 Phenalenone F. oxysporum Luis et al., 1995
C21H26O3 Naphthoquinone C. cucumerinum Ioset et al., 1998
C17H29NO5 Pyrolizidine alkoloid F. moniliforme Reina et al., 1997
C17H16O6 Flavan C. cucumerinum Garo et al., 1996
C16H16O3 Flavan C. carpophilum 王锦亮等,1995
C17H18O4 Chalcone Aureobasidium pullulans
C13H14O4 Chromene Penicillium oxalicum Orjala et al., 1993
C17H19NO5 Amide C. sphaerospermum Navickiene et al., 2000
C25H40N2O5 Amide C. sphaerospermum Vasques et al., 2002
C14H14O4 Coumarin Botrytis cinerea Afek et al., 1995
C12H16O3 Phenylpropanoid C. cucumerinum Marston and Hostettmann, 1995
C16H16O6 Furocoumarin C. cucumerinum
C10H12O5 Acetophenone Collectotrichum gloeosporioides Echeverri et al., 1997
C20H28O2 Diterpenoid Pyricularia grisea San Feliciano et al., 1993
C20H34O2 Diterpenoid C. cucumerinum
C23H38O4 Diene Collectotrichum gloeosporioides Domergue et al., 2000
Rasoamiarnjanahary et al., 2003
C20H30O2 Diterpenoid C. cucumerinum
C22H20O8 Lignan Pleurotus ostreatus Atta-Ur-Rahman et al., 1995
C16H14O4 Flavane P. expansum Valsaraj et al., 1997
C60H98O27 Trierpenoidal glycoside C. cucumerinum Ohtani et al., 1993
C20H24O5 Lignan C. cladosporioides Sartorelli et al., 1998
C17H1O54 Isoflavone C. cladosporioides Lopes et al., 1999
C15H22O2 Sesquiterpenoid Mucor mucedo Taniguchi, 1993
C34H46O6 Oxanthrone ester Rhizopus oryzae Suresh et al., 2003
C37h54O5 Anthraquinone ester
C53H86O22 Trierpenoidal glycoside Aspergillus oryzae Kirmizigul and Anil, 1994
C15H22O3 Sesquiterpenoid Sclerotinia libertiania Taniquchi, 1993
C12H12O3 Benzopyran C. cucumerinum Harrison et al., 1995
C16H14O4 Naphthoquinone C. cucumerinum Gafner et al., 1996a
C17H16O4 Chalcone C. cucumerinum Gatner et al., 1996b
C27H41NO8 Steriodal alkaloide Phytophthora capisis Zhou et al., 2003
C27H41NO9
C21H26O7 Diterpenoid Aspergillus flavus Li et al., 1995
C14H14S4 Polysulphide C. cladosporioides Benevides et al., 2001
C8H10S6
C15H16S6
C9H11O3N Nitro compound Fusarium oxysporum Hanawa et al., 2000
C9H11O3N Nitro compound
C23H38O4 Diene Collectotrichum gloeosporioides Domergue et al., 2000
活性物质
in higher plants
372 21(3)
含硫生物碱——甲基达布林有中等抗真菌活性。存在于北京油菜(Brassica campestris L. ssp.
pekinensis)与欧洲油菜(B. napus L.)中的环芸苔宁碱和甲基油菜素, 对31种以上植物的致病真菌
显示出中等抗真菌活性(Takasugi et al., 1988)。在含氮化合物中, Harborne和Baxter (1993)发现
存在于许多植物中的胺类化合物有抗真菌作用, 如spermdine和spermidin可抑制青霉菌孢子的萌
发。Navickiene 等(2000)从Piper hispidum和Piper tubericulatum中分离到 10种酰胺化合物, 对
C. sphaerospermum的最低抑制剂量为 0.1~5 mg。
2.5 苯丙素类抗真菌活性物质
苯丙素中的香豆素和木脂素是植物重要的抗真菌活性物质。(1)香豆素:灌木酮 A和
非巴洛素对瓜枝孢、去甲蟛蜞菊内酯对黑曲霉、欧前胡酚对盘长状刺盘孢、弯孢霉菌和青霉
菌有较强抗真菌活性(Marston and Hostettmann, 1995); (2)木脂素:产油肉豆蔻(Virola oleifera
(Schott) Smith)中的木脂素——产油肉豆蔻素G和H(Sartorelli et al., 1998)抑制芽枝状枝孢
和球孢枝孢生长的最低剂量为 10~25 mg。鬼臼(Podophyllum emodi Wall.var .chinense
Sprague)中的木脂素——4′-O-去甲去氢鬼臼毒素对糙皮侧耳有抗真菌作用(Atta-Ur-Rahman
et al., 1995)。
2.6 其他抗真菌活性物质
Arnone 等(1993)发现桉杯伞烯A和B, 在浓度50 mg.mL-1时, 对芽枝状枝孢呈抗真菌活性。
姜烯酮 A在 10 mg.mL-1时, 完全抑制 Pyricularia oryzae生长。Zhao等(1998)测定白鲜
Dictamnus dasycarpus Turcz.中的柠檬苦素——6β- 梣羟基 皮酮, 在TLC板上, 抑制瓜枝孢生长
的最小剂量为 5 mg。Phay 等(1999)证明威尔士洋葱中的十八碳 -3-羟基吲哚可抑制 Fusarium
oxysporum蛋白质的合成。Wang和Ng (2002)从猕猴桃中分离出类似于奇异果甜蛋白的单链蛋
白(21 kDa), 有抗 Botrytis cinerea和抑制Mycosphaerella arachidicola与 Corpinus comatus
的活性。
3 结语
从以上的研究结果可以得出以下几点结论:(1)具有抗菌活性物质的植物呈现出多样性; (2)
植物抗菌活性物质的分布呈现出多样性; (3)植物抗菌活性物质的类别呈现出多样性; (4)在众多的
植物抗菌活性物质中, 萜类、酚醌类、黄酮类、含硫与含氮生物碱类和香豆素等化合物是主
要类型; (5)植物抗菌活性物质的活性大小(MIC值)通常为 0.1~100 mg。
植物次生代谢物质是生物间, 特别是植物与昆虫、植物与微生物之间协同进化的产物, 是新
物质不断生成的基源。据估计全球约有50万种植物, 作过化学成分研究的仅占10%, 已知的植
物次生代谢产物有 40万种, 鉴定分子结构的仅有 1万多种。因此, 植物源农药的研发具有巨大
的空间和广阔的前景, 我国已利用除虫菊成功开发出高效拟杀虫菊酯。著名的巴斯夫公司和先
正达公司都以热带雨林中的Oudemansiella muscida和Strobilurus teuacellus的抗菌物质b-甲基
丙烯酸酯类化合物为模版开发出了杀菌谱广、药效高、对环境和非靶标生物友善的系列杀菌
剂。随着对植物抗菌活性物质的化学与分子生物学研究的深入, 安全、高效和环保农药的开发
将会不断呈现出新的突破。值得提及的是, 由于滥用化学合成农药导致食品安全的问题越来越
突出, 因此, 研究植物源抗菌物质防治果蔬采后病害具有很重要的意义。
植物抗菌活性物质的研发, 首先应从复杂的植物体中分离提纯单体, 明确其组成、结构和性
3732004 吴光旭等:植物中抗病原真菌的活性物质
质;其次是分析生源途径、遗传特性、构效关系和作用机理;最后是利用先导化合物通过
化学改性开发出系列产品。深入研究植物抗菌活性物质的分子机制, 运用基因工程手段调节其
产出, 更是有效利用植物活性物质的新途径。植物抗真菌活性物质的研究属边缘交叉学科, 必须
有多学科的协作。充分利用相关的植物资源与活性产物数据库, 组合经典与现代方法进行活性
测试筛选、物质分离提纯和鉴定是提高研究准确性和工作效率的重要手段。
参 考 文 献
王锦亮, 李兴从, 江东福, 马萍, 杨崇仁, 1995. 云南血竭的化学成分及抗真菌活性.云南植物研究, 17:336~340
赵纯森, 黄俊斌, 周茂繁, 1994. 厚朴叶中抑菌活性成分鉴别及其防病效果.华中农业大学学报, 13:373~377
Afek U, Aharoni N, Carmeli S, 1995. Columbianetin, a phytoalexin associated with celery resistance to pathogens
during storage. Phytochemistry, 39:1347~1350
Alvarez-Castellanos P P, Bishop C D, Pascual V M J, 2001.Antifungal activity of the essential oil of flowerheads of
garland Chrysanthemum (Chrysanthemum coronarium) against agricultural pathogens. Phytochemistry, 57:
99~102
Arnone A, Cardillo R, Nasini G, Pava O V D, 1993.Two cinnamic allenic ethers from the fungus Clitocybe
eucalytorum. Phytochemistry, 32:1279~1286
Atta-ur-Rahman, Ashraf M, Choudhary M l, Habib-ur-Rehman, Kazmi M H, 1995.Antifungal aryltetralin lignans
from leaves of Podophyllum hexandrum. Phytochemistry, 40:427~431
Benevides P J C, Young M C M, Giesbrecht A M, Roque N F, Bolzani V S, 2001.Antifungal polysulphides from
Petiveria alliacea L. Phytochemistry, 57:743~747
Brader G, Bacher M, Hofer O, Greger H, 1997.Prenylated phenylpropenes from Coleonema pulchellum with
antimicrobial activity. Phytochemistry, 45:1207~1212
Chang L C, Clarssa G, Lynda S, Norman R F, John M P, Douglas K, 1997.Activity-guided isolation of constituents
of Tephrosia purpurea with the potential to induce the phaseⅡ enzyme, quinone reductase. J Nat Prod, 60:
869~873
Choudhary M I, Dur-e-Shahwar, Parveen Z, Jabbar A, Ali I, Atta-ur-Rahman, 1995. Antifungal steroidal lactones
from Withania coagulance. Phytochemistry, 40:1243~1246
Domergue F, Helms G L, Prusky D, Browse J, 2000. Antifungal compounds from idioblast cells isolated from avocado
fruits. Phytochemistry, 54:183~189
Echeverri F, Torres F, Quiñones W, Cardona G, Archbold R, Roldan J, Brito I, Luis J G, Lahlou E, 1997.
Danielone, a phytoalexin from papaya fruit. Phytochemistry, 44:255~256
Gafner S, Wolfender J L, Mavi S, Hostettmann K, 1996a.Antifungal and antibacterial chalcones from Myrica serrata.
Planta Med, 62: 67~69
Gafner S, Wolfender J L, Nianga M, Stoeckli E H, Hostettmann K, 1996b.Antifungal and antibacterial naphthoquinones
from Newbouldia laevis roots. Phytochemistry, 42:1315~1320
Garo E, Maillard M, Antus S, Mavi S, Hostettmann K, 1996.Five flavans from Mariscus psilostachys.
Phytochemistry, 43:1265~1269
Grayer R J, Kokubun T, 2001.Plant-fungal interactions: the search for phytoalexins and other antifungal compounds
from higher plants.Phytochemistry, 56: 253~263
Greger H, Zechner G, Hofer O, Hadacer F, Wurz G, 1994.Sulphur-containing amides from Glycosmis species with
different antifungal activity.Phytochemistry, 34:175~179
Hanawa F, Tahara S, Towers G H N, 2000.Antifungal nitro compounds from Skunk Cabbage (Lysichitum americanum)
leaves treated with cupric chloride.Phytochemistry, 53:55~58
Haraguchi H, 1996.Antifungal activity from Alpinia galanga and the competition for incorporation of unsaturated
fatty acids in cell growth. Planta Med, 62:308~310
374 21(3)
Harborne J B, 1999.The comparative biochemistry of phytoalexin induction in plants. Biochem System Ecol, 27:
335~367
Harborne J B, Baxter H, 1993. Phytochemical Dictionary. London: Taylor and Francis, 46~48
Harborne J B, Baxter H, 1999.The Handbook of Natural Flavonoids.Chichester: Wiley & Sons, 15~37
Harborne J B, 1996. Modern fungicides and antifungal compounds.Phytochemistry, 43:533~536
Harrison L J, Sia G, Sim K, Tan H T W, Connolly J D, Lavaud C, Massiot G, 1995.A ferulic acid ester of sucrose and
other constituents of Bhesa paniculata.Phytochemistry, 38:1497~1500
Ioset J, Marston A, Gupta M P, Hostettmann K, 1998.Antifungal and larvicidal meroterpenoid naphthoquinones and
a naphthoxirene from the roots of Cordia linnaei. Phytochemistry, 47:729~734
Jayasinghe L, Kumarihamy B M M, Jayarathna K H R N, Udishani N W M G, Bandara M B R, Hara N, Fujimoto
Y, 2003.Antifungal constituents of the stem bark of Bridelia retusa.Phytochemistry, 62:637~641
Kato T, Yamaguchi Y, Nanai T, Hirukawa T, 1993.Oxygenated fatty acids with anti-rice blast fungus activity in rice
plants. Biosci Biotech Bioch, 57:283~287
Kirmizigul S, Anil H, 1994.TranssylvanoisideA, an acidic triterpene glycoside from Cephalaria transsylvanica.
Phytochemistry, 35:1075~1076
Kodama O, Li W X, Tamogami S, Akatsuka T, 1992. Oryzalexin S , a novel stemarane-type diterpene rice
phytoalexin. Biosci Biotech Bioch, 56: 1002~1003
Koga J, Shimura M, Oshima K, Ogawa N, Yamauchi T, Ogasawara N, 1995.Phytocassanes A, B, C and D, novel
diterpene phytoalexins from rice, Oryzea sativa L. Tetrahedron, 51:7907~7918
Kokubun T, Harborne J B, 1994. 2, 6-Dihydroxy-4-methoxyacetophenone, a phytoalexin from the roots of Sanguisorba
minor. Phytochemistry, 38:331~333
Kokubun T, Harborne J B, 1995.Phytoalexin induction in the sapwood of plants of the Maloideae (Rosaceae):
biphenyls or dibenzofurans. Phytochemistry, 40: 1649~1654
Lahlou E H, Hirai N, Tsuda M, Ohigashi H, 1999.Triterpene phytoalexins from nectarine fruits.Phytochemistry, 50:
623~629
Li E, Clark A M, Hufford C D, 1995.Antifungal evaluation of pseudolaric acid B, a major constituent of Pseudolari
kaempferi. J Nat Prod, 58:57~67
Lopes N P, Kato M J, Yoshida M, 1999.Antifungal constituents from roots of Virola surinamensis.Phytochemistry,
51:29~33
Luis J G, Quinones W, Echevrri F, Grillo T A, Kishi M P, Garcia F G, Torres F, Cardona G, 1996. Musanolones: four
9-phenylphenalenones from rhizomes of Musa acuminata.Phytochemistry, 41:753~757
Maatooq G T, Stumpf D K, Hoffmann J J, Hutter L K, Timmermann B N, 1996.Antifungal eudesmanoids from
Parthenium argentatum × P. tomentosa.Phytochemistry, 41:519~524
Marston A, Hostettmann K, 1995. Isolation of antifungal and larvicidal constituents of Diplolophium buchanani by
centrifugal partition chromatography, J Nat Prod, 58: 128~130
Miles D H, Vallapa C, Paul A H , Udom K , 1993.Potential agrochemicals from leaves of Wedelia biflora. Phytochemistry,
32:1427~1429
Navickiene H M D, Alécio A C, Kato M J, Bolzani V S, 2000.Antifungal amides from Piper hispidum and Piper
tuberculatum. Phytochemistry, 55:621~626
Nissanka A P K, Karunaratne V, Bandara B M R, Kumar V N T, 2001.Antimicrobial alkaloids from Zanthoxylum
tetraspermum and caudatum.Phytochemistry, 56: 857~861
Ohtani K, Mavi S, Hostettmann K, 1993.Molluscidal and antifungal triterpenoid saponins from Rapanea melanophloeos
leaves, Phytochemistry, 33: 83~86
Orjala J, Erdelmeier C A J, Wright A D, Rali T, Sticher O, 1993.Two chromenes and prenylated benzoic acid derivatives
from Piper aduncum.Phytochmestry, 34:813~818
Pedras M S C, Okanga F I, Zaharia I L, Khan A Q, 2000.Phytoalexins from crucifers: synthesis, biosynthesis, and
3752004 吴光旭等:植物中抗病原真菌的活性物质
biotransformation. Phytochemistry, 53: 161~176
Phay N, Higashiyama T, Tsuji M, Matsuura H, Fukushi Y, 1999. An antifungal compound from roots of Welsh onion.
Phytochemistry, 52: 271~274
Picman A K, 1984. Antifungal activity of sesquiterpene lactones.Biochem Syst Ecol, 12:13~18
Rahalison L, Hamburger M, Monod M, Frenk E, Hostettmann K, 1994. Antifungal tests in phytochemical investigations:
comparison of bioautographic methods using phytopathogenic and human pathogenic fungi. Planta Med, 60:
41~44
Rasoamiaranjanahary L, Marston A, Guitef D, Schenk K, Randimbivololon F, Hostettmann K, 2003.Antifungal
diterpenes from Hypoestes serpens (Acanthaceae). Phytochemistry, 62:333~337
Reina M, Gonzalez C A, Gutierrez C, Cabrera R, Henriquez J, Villarroel L, 1997.Bioactive saturated pyrrolizidine
alkaloids from Heliotropium floridum.Phytochemistry, 46: 845~853
Rocha L, Marston A, Kaplan M A C, Storeckl E H, Thull U, Testa B, Hostettmann K, 1994.Antifungalγ -pyrone and
xanthones with monoamine oxdase inhibitory activities from Hypericum brasliense. Phytochemistry, 36:1381~
1385
San Feliciano A, Gordaliza M, Salinero M A, Jose M M C, 1993.Abietane acids: source, biological activities, and
therapeutic uses.Planta Med, 59: 485~490
Sartorelli P, Young M C M, Kato M J, 1998.Antifungal lignans from the arils of Virola oleifera.Phytochemistry, 47:
1003~1006
Saxena G, Farmer S W, Hancock R E W, Towers G H N, 1996.Chlorochimaphillin: a new antibiotic from Moneses
uniflora. J Nat Prod, 59:62~65
Skaltsa H, Lazari D, Panalogouleas C, Georgiadou E, Garcia B, 2000.Sesquiterpene lactones from Centaurea thessala
and Centaurea attica. Antifungal activity. Phytochemistry, 55:903~908
Suresh B K, Srinivas P V, Praveen B, Hara K K, Suryanarayana M U, Madhusudana R J, 2003.Antimicrobial constitu-
ents from the rhizomes of Rheum emodi. Phytochemistry, 62:203~207
Suzuki Y, Esumi Y, Hyakutake H, Kono Y, Sakurai A, 1996, Isolation of 5-(8′Z-heptadecenyl)-resorcinol from
etiolated rice seedlings as an antifungal agent. Phytochemistry, 41:1485~1489
Takasugi M, Masuda T, 1996.Three 4-hydroxyacetophenone-related phytoalexins from Polymnia sonchifolia.
Phytochemistry, 43:1019~1021
Takasugi M, Monde K, Katsui N, Shirata A, 1988.Cyclobrassinine and methoxybrassitin from Brassica campestris and
Brassica napus.Bull Chem Soc Japan, 61:285~288
Tan R X, Kong L D, Wei H X, 1998.Secoiridoid glycosides and an antifungal anthranilate derivative from Gentiana
tibetica.Phytochemistry, 47:1223~1226
Taniquchi M, 1993.Ethnobotanical drug discovery based on medicine men’s trails in the African svanna:Screening
of east African plants for antimicrobial activityⅡ. J Nat Prod, 56:1539~1546
Valsaraj R, Pushpangadan P, Smitt U W, Adsersen A, Christensen S B, Sittie A, Nyman U, Nielsen C, Olsen C E, 1997.
New anti-HIV-1, antimalarial, and antifungal compounds from Terminalia bellerica. J Nat Prod, 60:739~742
Vasques S R, Debonsi N H M, Kato M J, Bolzani V S, 2002.Antifungal amides from Piper arboreum and Piper
tuberculatum.Phytochemistry, 59:521~527
Wang H, Ng T B, 2002.Isolation of an antifungal thaumatin-like protein from kiwi fruits.Phytochemistry, 61:1~6
Wedge D E, Galindo J C G, Macías F A, 2000. Fungicidal activity of natural and synthetic sesquiterpene lactone
analogs.Phytochemistry, 53:747~757
Zhao W, Jean L W, Hostettmann K, Xu R, Qin G, 1998.Antifungal alkaloids and limonoid derivatives from
Dictamnus dasycarpus.Phytochemistry, 47:7~11
Zhou C X, Liu J Y, Ye W C, Liu C H, Tan R X, 2003.Neoverataline A and B, two antifungal alkaloids with a novel
carbon skeleton from Veratrum taliense.Tetrahedron, 59:5743~5747