Taxol production of Taxus chinensis(Pilger) Rehd. var.mairei (Lemeeet Lévl.) Cheng et L. K. Fu induced by oligosaccharide from Fusarium oxysporum f.vasinfectum (Atkinson) Snyder et Hansen was studied in suspension cultures, and it was found that oligosaccharide triggered cell apoptosis. Under transmission electron microscope the following morphological changes were observed: cell shrinkage, condensation of cytoplasm, nuclear fragmentation, and the increase of high electron density bodies in vacuole in great quantity. In oligosaccharide treated cells, agarose gel electrophoresis revealed that DNA was digested into oligonucleosomal fragments that were times of 200 bp appearing as DNA ladders. Control cells were in normal physiological state, they were intact, abundant in organelle and with integral nucleus DNA, and the rate of taxol biosynthesis in these cells was very low. After the oligosaccharide to the culture system, the defense system of cells was elicited and the secondary metabolism was strengthened, i.e. phenolics were accumulated in the medium, the activity of polyphenol oxidase (PPO) was increased quickly and secondary wall of cells was thickened. The activity of L phenylalanine ammonia lyase (PAL), the critical enzyme of the phenylpropanoid pathway, was increased promptly 1 h after elicitation. The rate of taxol production was improved sharply and the maximal taxol concentration at 72 h was six times that of control. Appearance of cell apoptosis was accompanied with the highest concentration of taxol in suspension cultures.
寡聚糖诱导悬浮培养南方红豆杉细胞的凋亡
李 春1,2 元英进1 马忠海1 胡宗定1 孙安慈3 胡昌序3
(1. 天津大学化工学院制药工程系,天津300072;2. ( 清华大学化工系生物化工研究所,北京100084;3.( 中国科学院植物研究所,北京100093)
摘要:在真菌(Fusarium oxysporum f.vasinfectum (Atkinson) Snyder et Hansen)寡聚糖诱导悬浮培养南方红豆杉(Taxus chinensis (Pilger) Rehd.var.mairei (Lemee et Lévl.) Cheng et L.K.Fu)细胞生产紫杉醇的体系中发现细胞出现凋亡,次生代谢增强.电镜观察到细胞核质和原生质出现凝集现象,液泡内出现大量的高电子致密体.核DNA经琼脂糖凝胶电泳,呈200 bp的整数倍的梯状条带(ladders);而对照组细胞核DNA完整,呈大片段,细胞完整,细胞器发达,但紫杉醇合成速率很低.加入寡聚糖后,细胞防御系统开启,细胞生长停止,次生代谢物酚类物质大量积累且次生壁加厚,多酚氧化酶活性迅速提高,苯丙烷类代谢途径的关键酶苯丙氨酸解氨酶的活性在1 h后急速提高,目的产物紫杉醇在诱导后72 h达到峰值,比对照组提高了6倍,且细胞凋亡的出现与紫杉醇合成的峰值具有时间上的一致性.
关键词: 真菌寡聚糖;南方红豆杉;凋亡;次生代谢;紫杉醇
全 文 :