免费文献传递   相关文献

Molecular Biological and Biochemical Studies Reveal New Pathways Important for Cotton Fiber Development


As the longest single-celled seed trichomes, fibers provide an excellent model for studying fundamental biological processes such as cell differentiation, cell expansion, and cell wall biosynthesis. In this review, we summarize recent progress in cotton functional genomic studies that characterize the dynamic changes in the transcriptomes of fiber cells. Extensive expression profilings of cotton fiber transcriptomes have provided comprehensive information, as quite a number of transcription factors and enzyme-coding genes have been shown to express preferentially during the fiber elongation period. Biosynthesis of the plant hormone ethylene is found significantly upregulated during the fiber growth period as revealed by both microarray analysis and by biochemical and physiological studies. It is suggested that genetic engineering of the ethylene pathway may improve the quality and the productivity of cotton lint. Many metabolic pathways, such as biosynthesis of cellulose and matrix polysaccharides are preferentially expressed in actively growing fiber cells. Five gene families, including proline-rich proteins (PRP), arabinogalactan proteins (AGP), expansins, tubulins and lipid transfer proteins (LTP) are activated during early fiber development, indicating that they may also be needed for cell elongation. In conclusion, we identify a few areas of future research for cotton functional genomic studies.Author for correspondence. Tel: +86 (0)10 6275 1193; Fax: +86 (0)10 6275 4427; E-mail: zhuyx@water.pku.edu.cn