Abstract:Actin filament patterns during pollen germination in Hosta caerulea Tratt. were visualized with a simple method in which there was no pre-fixation, with dimethylsulphoxide (DMSO) as a permeabilising agent and staining with TRITC-Phalloidin. The cytoplasm of the vegetative cell of the ungerminated pollen grain contained numerous crystalline fusiform bodies to constitute a storage form of actin. These bodies were transferred to the emerging pollen tube after the germination of the pollen grain. Following the growth of pollen tube, the fusiform bodies were gradually dissociated, branched, slenderized and formed a cross-linked actin network. During the further growth of the pollen tube, the preponderance of longitudinally-oriented thin actin filaments with some anastomoses to form a more complex network present always in the long pollen tube. This was the typical pattern of actin filaments in most cases. In some conditions, actin filaments were assembled to form thick actin cables near the proximate part of the pollen tube tip. The branching and connecting of the cables were probably also seen in some parts. Actin filaments were always entering to the apical region of a tube tip. The significance of the non-fixation and fluorescence-phalloidin (FI-Ph) method and the problems in the future studies are discussed