免费文献传递   相关文献

Morphogenesis of inflorescence and floret in Alnus (Betulaceae)


The developmental morphology of the inflorescence and floret of Alnus mandshurica and Alnus sibirica was investigated using scanning electron microscopy. Their female inflorescences all appeared multiple aments that consist of multiple spirally arranged cymelets. Each cymelet had one primary bract, two secondary bracts and two tertiary bracts. Each floret had a bicarpellate pistil with a dichotomous columnar style. Two pistils of a cymelet were orientated perpendicularly. During the winter, the female inflorescences of Alnus mandshurica were protected by bud scales, while those of Alnus sibirica naked. Their male inflorescences also appeared multi-ple aments. Cymelets were arranged spirally and each had one primary bract, two secondary bracts and two terti-ary bracts. The two secondary bracts developed earlier than the two tertiary ones but all were originated from cymelet primordia. Of the three floret primordia, the middle one was differentiated earlier than the lateral ones. A floret had four tepals and four stamens, and each stamen had four pollen sacs. The tepals were developed earlier than the stamens, but both were from the floret primordia. During the winter, the male inflorescences of Alnus mandshurica and Alnus sibirica were naked.


全 文 :植物分类学报 46 (4): 641–650 (2008) doi: 10.3724/SP.J.1002.2008.08005
Journal of Systematics and Evolution (formerly Acta Phytotaxonomica Sinica) http://www.plantsystematics.com
桤木属(桦木科)花序和花的形态发生
1, 2朱俊义 1陆静梅*
1(东北师范大学生命科学学院 长春 130024)
2(通化师范学院生物系 通化 134002)
Morphogenesis of inflorescence and floret in Alnus (Betulaceae)
1,2Jun-Yi ZHU 1Jing-Mei

LU*
1(School of Life Sciences, Northeast Normal University, Changchun 130024, China)
2(Department of Biology, Tonghua Teacher′s College, Tonghua 134002, China)
Abstract The developmental morphology of the inflorescence and floret of Alnus mandshurica and Alnus
sibirica was investigated using scanning electron microscopy. Their female inflorescences all appeared multiple
aments that consist of multiple spirally arranged cymelets. Each cymelet had one primary bract, two secondary
bracts and two tertiary bracts. Each floret had a bicarpellate pistil with a dichotomous columnar style. Two pistils
of a cymelet were orientated perpendicularly. During the winter, the female inflorescences of Alnus mandshurica
were protected by bud scales, while those of Alnus sibirica naked. Their male inflorescences also appeared multi-
ple aments. Cymelets were arranged spirally and each had one primary bract, two secondary bracts and two terti-
ary bracts. The two secondary bracts developed earlier than the two tertiary ones but all were originated from
cymelet primordia. Of the three floret primordia, the middle one was differentiated earlier than the lateral ones. A
floret had four tepals and four stamens, and each stamen had four pollen sacs. The tepals were developed earlier
than the stamens, but both were from the floret primordia. During the winter, the male inflorescences of Alnus
mandshurica and Alnus sibirica were naked.
Key words Alnus mandshurica, Alnus sibirica, floret, inflorescence, morphogenesis, SEM.
摘要 在扫描电镜下首次观察了桦木科Betulaceae桤木属Alnus花序和花的形态发生过程, 为桦木科属级鉴定提供了微形态学
依据。实验材料为东北桤木A. mandshurica和辽东桤木A. sibirica, 其雌花序均为柔荑状, 由多个小聚伞花序螺旋状排列组成。
每个小花序外具1枚初级苞片、2枚次级苞片、2枚三级苞片, 内有2朵花。每个花具1个二心皮合生雌蕊, 雌蕊具二叉分枝的长
柱状花柱。每个小花序的2个二心皮合生雌蕊的定位方式为相互垂直。东北桤木的雌花序由芽鳞包被越冬, 而辽东桤木的雌
花序裸露越冬。东北桤木和辽东桤木的雄花序亦为柔荑状, 由多个小聚伞花序螺旋状排列组成。每个小花序外被1枚初级苞
片、2枚次级苞片、2枚三级苞片, 内有3朵花。先形成的2枚次级苞片和后形成的2枚三级苞片均来源于小花序原基。3个花原
基中, 位于中间的比两侧的分化要早。每个花具4枚被片和4枚雄蕊, 每个雄蕊具4个药囊。花的被片比雄蕊发育得早, 均由花
原基发育而成。东北桤木和辽东桤木的雄花序均裸露越冬。
关键词 东北桤木; 辽东桤木; 花; 花序; 形态发生; 扫描电镜

多数学者支持将桦木科Betulaceae分成两个亚
科 —— 桦亚科 Betuloideae 和榛亚科 Coryloideae
(Rendle, 1925; Jury & Heywood, 1978; 匡可任, 李
沛琼, 1979; Takhtajan, 1980; Thorne, 1983; Furlow,
1990)。桦亚科包括桦木属Betula L.和桤木属Alnus
Mill.; 榛亚科包括榛属 Corylus L. 、虎榛子属
Ostryopsis Decne.、鹅耳枥属Carpinus L.和铁木属
Ostrya Scop.。此6属的雌雄花序的成熟结构, 包括
每个小聚伞花序中花的数目、苞片的数目和形状、
花被性状等, 在桦木科各属中变异较大, 对于该科
植物科下分类具有特别重要的意义。
在扫描电镜下, 观察生殖器官的原基分化过程,
可获得一系列微形态性状, 有助于理解复杂的生殖
结构及其系统学价值。桦木科6属植物的雌、雄花
序均为柔荑状花序, 由多个小聚伞花序构成, 每个
小聚伞花序又分别由2–3朵花组成。它们的花序从
原基出现到成熟几乎持续一年时间, 而一些关键发

———————————
2008-01-14 收稿, 2008-04-03 收修改稿。
* 通讯作者(Author for correspondence. E-mail: jingmlu@163.com)。
植物分类学报 Journal of Systematics and Evolution 2008 46卷4期 642
育阶段又往往在短短几天中完成, 这给取材带来很
大的困难; 加之早期发育阶段要在放大100倍的情
况下方可观察, 在剥离原基时还要去掉大量毛状体
和黏液物质。因此, 很少有人对桦木科植物开展这
方面的研究, 尤其雄花序的形态发生至今未见报
道。陈之端等 (2001)对桦木科的鹅耳枥Carpinus
turczaninowii Hance和虎榛子Ostryopsis davidiana
Decne.的雌性生殖结构的早期发育进行过扫描电镜
观察, 并比较了两者的异同, 讨论了这些发育形态
性状对于理解分类群之间关系的价值。本文对桤木
属植物的雌、雄花序的形态发生过程进行了扫描电
镜观察, 以期为理解桦木科分类群之间的关系提供
基础资料。
1 材料和方法
东北桤木Alnus mandshurica (Callier ex C. K.
Schneid.) Hand.-Mazz. (周繇001)取自中国吉林省长
白山北坡瀑布下, 距离瀑布水平距离2500 m, 海拔
1820 m。取材时间为2005年6月15日至8月30日, 每4
天采集一次雌、雄花序, 并用FAA固定液固定。辽
东桤木Alnus sibirica Fisch. ex Turcz. (周繇003)取自
吉林省通化市区, 海拔560 m。取材时间为2005年6
月1日至9月15日, 每4天采集一次雌、雄花序, 并用
FAA固定液固定。两种植物凭证标本保存于通化师
范学院生物系植物标本室。
取固定的实验材料, 用清水洗掉FAA固定液,
利用无水乙醇、二甲苯溶解掉材料内的粘液物质。
将处理好的实验材料置体视镜下解剖, 选取适于观
察的材料放在样品台导电胶上 , 置 HITACHI
S-3000N 型扫描电子显微镜内,在低真空背散射模
式(BSE2)下观察照相。
2 实验结果
2.1 东北桤木
东北桤木的雄花序位于新生枝顶端, 雌花序位
于下部。雄花序芽以“合轴分枝”方式形成3–4个
雄花序。在雄花序芽的下部有2个雌花序芽, 其以
“合轴分枝”方式形成4–5个雌花序, 由芽鳞包被越
冬。
2.1.1 雌花序、小花序和花 发育成熟的东北桤木
雌花序为柔荑状, 由多个小聚伞花序螺旋状排列组
成, 由芽鳞包被越冬, 花芽长1 cm, 直径0.4 cm。每
个小花序外具1枚初级苞片和2枚次级苞片、2枚三
级苞片, 内有2朵花, 每个花具1个二心皮合生雌蕊,
雌蕊具二叉分枝的长柱状花柱。同一个小花序中,
2个二心皮合生雌蕊的定位方式为直角而非平行
式。雌花序的发生时间一般在7月中旬。
2.1.2 雌花序、小花序和花的形态发生过程 雌花
序原基呈柱状伸长生长, 并分化出呈螺旋状排列的
初级苞片原基(图1, 2); 随着雌花序的分化, 在初级
苞片内形成最初为近球形的小花序原基, 位于初级
苞片的基部(图3–5); 近球形的小花序原基进一步
分化, 产生1对次级苞片(图4, 6), 近球形的小花序
原基中央部分开始凹陷, 两端形成花原基(图7); 同
时, 在次级苞片内侧产生1对三级苞片(图8); 小花
序原基从中间分裂, 形成2个花原基, 并直接发育
为雌蕊原基(图9); 雌蕊原基开始分化形成二心皮
雌蕊(图10, 11), 其具有分叉的柱状花柱, 同时, 次
级苞片和三级苞片也发育成熟(图12); 2个雌蕊由最
初的平行排列(图8), 逐渐形成近90˚的夹角(图13)。
因此, 花中两心皮子房的定位方式为直角而非平行
式。花柱分叉的雌蕊在春季迅速伸长生长(图14), 伸
长生长的雌蕊花柱表皮细胞形成突起, 与接受花粉
受精有关(图15)。
2.1.3 雄花序、小花序和花 发育成熟的东北桤木
雄花序为柔荑状, 裸露越冬, 长一般为1.5 cm左右,
直径在0.6 cm左右。由多个小花序螺旋状排列组成,
每个小花序外被1枚初级苞片和2枚次级苞片、2枚
三级苞片, 内有3朵花。每花具4枚花被片和4枚雄
蕊, 花被片与雄蕊相对而生,每个雄蕊具4个药囊。
雄花序的发生时间一般在7月上旬。
2.1.4 雄花序、小花序和花的发育 首先是雄花序
原基呈柱状伸长生长(图16), 并分化出呈螺旋状排
列的初级苞片原基和初级苞片(图17–19); 随着雄
花序的分化, 在初级苞片基部分化形成最初为近球
形的小花序原基(图20, 21); 近球形的小花序原基
首先在远轴面分化出1对次级苞片原基(图22–24);
同时近球形的小花序原基分化形成3个球形的花原
基(图25, 26), 并分化出1对三级苞片(图27–29); 3个
花原基中, 位于中间的分化比两侧的要早(图30);
每个花原基首先分化出4枚被片(图28, 30); 之后在
被片基部又分化出4个近球形的雄蕊原基(图30–
朱俊义, 陆静梅: 桤木属(桦木科)花序和花的形态发生

643















































图1–15 东北桤木雌花序形态发生过程 1. 发育早期的东北桤木雌花序, 示初级苞片原基、初级苞片、小花序原基。2. 发育早期的东北桤
木雌花序, 示初级苞片原基。3. 发育早期的东北桤木雌花序, 示初级苞片、小花序原基。4. 示小花序原基发育的不同时期。5. 示小花序原
基呈球形。6. 示小花序原基分化形成1 对次级苞片原基。7, 8. 次级苞片原基继续发育, 1对三级苞片原基形成, 同时花原基形成。9–11. 花
原基直接发育为雌蕊原基,次级苞片、三级苞片继续发育。12. 从远轴面看发育完全的次级苞片、三级苞片。13. 示发育形成花柱分叉的雌
蕊。14. 示春季迅速伸长生长的雌蕊花柱。15. 示春季迅速伸长生长的雌蕊花柱的细胞表面形成突起。
CP, 小花序原基; FP, 花原基; FS, 四药囊雄蕊; G, 腺体; IP, 花序原基; PB, 初级苞片和初级苞片原基; Pe, 被片和被片原基; Pi, 雌蕊和雌蕊
原基; SB, 次级苞片和次级苞片原基; SP, 雄蕊原基; TB, 三级苞片和三级苞片原基。
Figs. 1–15. Morphogenesis of female inflorescences in Alnus mandshurica. 1. The development of female inflorescences in the early stage,
showing the primary bract primordium, the primary bracts, and cymelet primordium. 2. The development of female inflorescences, showing the
primary bract primordium in the early stage. 3. The development of female inflorescences in the early stage, showing the primary bracts and the
cymelet primordium. 4. Female inflorescences, showing the development of cymelet primordia at different stages. 5. Showing that the cymelet
primordia are spherical. 6. Showing that cymelet primordia differentiate and develop into a pair of the secondary bract primordia. 7, 8. The secondary
bract primordia continue the development, and a pair of the tertiary bract primordia and the floret primordia come into being. 9–11. The floret
primordia develop into pistil primordia, and the secondary bract and tertiary bract continue the development. 12. Abaxial surface of the fully devel-
oped secondary and tertiary bracts. 13. Showing that the pistils with columnar-style branches are developed and come into being. 14. Showing the
columnar styles of the pistils extending and developing rapidly in the spring. 15. Showing that the protrusions are developed on the surface of cells
from columnar styles of the pistils.
CP, cymelet primordium; FP, floret primordium; FS, stamens with four pollen sacs; G, gland; IP, inflorescence primordium; PB, primary bract and
primary bract primordium; Pe, perigone and perigone primordium; Pi, pistils and pistil primordium; SB, secondary bracts and secondary bract
primordium; SP, stamen primordium; TB, tertiary bract and tertiary bract primordium.
Scale bars: 1, 4, 13=200 μm; 2, 3, 10, 12=100 μm; 5–9, 11=50 μm; 14=300 μm; 15=500 μm.
植物分类学报 Journal of Systematics and Evolution 2008 46卷4期 644
32); 近球形的雄蕊原基纵裂分化成中部相连的两
部分(图33–35); 每部分侧面浅纵裂, 分化形成四棱
形雄蕊原基(图36, 37); 形成具4个药囊的雄蕊(图
38)。至此1个花原基形成具4个被片、4个雄蕊的花。
入冬前东北桤木雄花序的花粉粒和药囊均已发育
成熟(图39)。
2.2 辽东桤木
辽东桤木的雄花序位于新生枝的上部, 雌花序
位于下部。雄花序芽以“合轴分枝”方式形成3–5
个雄花序。在雄花序芽的下部有2个雌花序芽, 由其
以“合轴分枝”方式形成4–6个雌花序, 裸露越冬。
2.2.1 雌花序、小花序和花 发育成熟的辽东桤木
雌花序为柔荑状, 裸露越冬, 长一般为0.5 cm左右,
直径在0.2 cm左右。每个小花序外具1枚初级苞片、
2枚次级苞片、2枚三级苞片, 内有2朵花, 每个花具
1个二心皮合生雌蕊, 雌蕊具二叉分枝的长柱状花
柱。2个二心皮合生雌蕊的定位方式为直角而非平
行式。雌花序的发生时间一般在7月上旬。
2.2.2 雌花序、小花序和花的发育 首先是雌花序
原基呈柱状伸长生长, 并分化出呈螺旋状排列的初
级苞片原基(图40–44); 随着雌花序的分化, 在初级
苞片基部分化形成近球形的小花序原基(图46); 近
球形的小花序原基进一步分化, 产生1对次级苞片
(图47);并且近球形的小花序原基开始形成花原基,
并在次级苞片内侧产生1对三级苞片(图48, 49); 小
花序原基形成2个近球形的花原基, 并进一步发育
为雌蕊原基(图50); 雌蕊原基分化形成两心皮的雌
蕊, 其具有分叉的柱状花柱, 同时, 2枚次级苞片和
2枚三级苞片也发育成熟(图51–56)。2个二心皮子房
的定位方式为直角而非平行式(图45, 53)。花柱分叉
的雌蕊在春季迅速伸长生长以接受花粉受精(图
57)。
2.2.3 雄性花序、小花序和花 发育成熟的辽东桤
木雄花序为柔荑状, 裸露越冬, 长一般为4 cm左右,
直径在0.6 cm左右。由多个小花序螺旋状排列组成,
每个小花序外被1枚初级苞片、2枚次级苞片、2枚
三级苞片, 内有3朵花。每个花具4枚花被片和4枚雄
蕊, 花被片与雄蕊相对而生,每个雄蕊具4个药囊。
雄花序的发生时间一般在6月下旬。
2.2.4 雄花序、小花序和花的发育 花序原基形成
许多初级苞片, 包围着花序原基(图58–61); 随着雄
花序的分化, 在初级苞片内侧基部分化形成近球形
的小花序原基(图60, 71); 小花序原基首先在远轴
面分化出1对次级苞片原基, 并进一步分化形成2枚
次级苞片(图62–64, 72); 同时近球形的小花序原基
分化形成3个球形的花原基和1对三级苞片 (图
65–67, 73, 74); 3个花原基中, 位于中间的分化比两
侧的要早(图69, 70); 每个花原基首先分化出4枚被
片(图74–76); 之后在被片基部又分化出4个近球形
的雄蕊原基(图70, 77, 78); 近球形的雄蕊原基纵裂
分化成两部分, 但中部相连(图79–84); 每部分侧面
浅纵裂, 形成四棱形雄蕊原基(图85, 86); 进一步形
成具4个药囊的雄蕊(图87–89)。入冬前辽东桤木雄
花序的药囊和花粉粒已发育成熟(图90)。

________________________________________________________________________________________________________________________

图16–39 东北桤木雄花序的形态发生过程 16. 示雄花序原基。17. 示初级苞片开始形成。18, 19. 示以合轴分枝方式形成的雄花序聚集
在一起。20. 示不同发育时期的小花序原基。21. 示球形小花序原基。22, 23. 示球形小花序原基基部形成1对次级苞片原基。24. 雄花序纵
切面, 示初级苞片、次级苞片、开始分化的小花序原基。25, 26. 小花序原基分化形成三个花原基。27, 28. 示1对三级苞片原基形成, 同时花
的四个被片原基出现。29. 示发育形成的1对次级苞片和1对三级苞片。30. 示三个花原基分化不同步, 中间的花原基分化较快, 可见四个被
片和四个雄蕊原基。31. 一朵花, 示具四个被片和四个雄蕊原基。32. 示花的被片和雄蕊原基。33–35. 示球形雄蕊原基分化形成中间相连的
两部分。36–38. 一朵花, 示中间相连的球形雄蕊原基分化形成具四个药囊的雄蕊。39. 药囊横切。
缩写请见图1–15的说明。
Figs. 16–39. Morphogenesis of male inflorescences in Alnus mandshurica. 16. Showing the primordia of male inflorescences. 17. Primordia of
male inflorescences, showing the primary bracts. 18, 19. Showing male inflorescences are developed with sympodial branches. 20. Male inflorescen-
ces, showing cymelet primordia at different stages. 21. Showing spherical cymelet primordia. 22, 23. Showing a pair of the secondary bracts devel-
oped from the base of spherical cymelet primordia. 24. The vertical section of male inflorescences, showing that the primary bracts, secondary bracts,
cymelet primordia start to differentiate. 25, 26. Cymelet primordia start to differentiate into three floret primordia. 27, 28. Showing a pair of tertiary
bract primordia. Meanwhile, four tepal primordia appear. 29. Showing that a pair of the secondary bracts develops and comes into being. 30. Showing
that three floret primordia differentiate at different stages. The floret primordium in the middle differentiates faster, and four tepals and four stamen
primordia can be seen. 31. A floret, showing four tepals and four stamen primordia. 32. Showing the tepals of florets and stamen primordia. 33–35.
Showing that spherical stamen primordia differentiate and develop into two parts, but they are attached in the middle. 36–38. A floret, showing that
two connected stamen primordia differentiate and develop into stamens with four pollen sacs. 39. Transverse section of a pollen sac.
Abbreviations: Please see previous figure legends.
Scale bars: 16, 20, 27, 28, 30, 33, 34, 36–38=100 μm; 17, 29, 39=200 μm; 18, 19=500 μm; 21–26, 31, 32, 35=50 μm.

朱俊义, 陆静梅: 桤木属(桦木科)花序和花的形态发生

645


































































植物分类学报 Journal of Systematics and Evolution 2008 46卷4期 646
3 讨论
3.1 东北桤木和辽东桤木雌、雄生殖器官发育过程
比较
根据本实验结果, 东北桤木和辽东桤木雌性生
殖器官的发生过程均为: 雌花序原基呈柱状伸长生
长, 并分化出呈螺旋状排列的初级苞片原基, 在初
级苞片内侧基部形成近球形的小花序原基。1个小
花序原基分化形成2枚次级苞片、2枚三级苞片、2
个花原基, 花原基直接发育为雌蕊原基, 并分化形
成两心皮雌蕊, 其具有分枝的柱状花柱。同一小花
序内的2个二心皮子房的定位方式为直角而非平行
式。
东北桤木和辽东桤木雄性生殖器官的发生过
程均为: 花序原基分化形成初级苞片, 在初级苞片
内侧基部形成近球形的小花序原基。1个小花序原
基分化形成2枚次级苞片、2枚三级苞片、3个花原
基。3个花原基中, 位于中间的分化比两侧的要早。
每个花原基分化形成4枚被片, 在被片基部又分化
出4个近球形的雄蕊原基。近球形的雄蕊原基纵裂
分化成中部相连的两部分, 每部分原基侧面浅纵
裂, 形成具4个药囊的雄蕊。由此可见, 来自于桤木
属植物雌、雄生殖器官发育的微形态性状在属内具
有相对的稳定性。
3.2 与以往的关于桤木属花序、小花序和花形态研
究的比较
Abbe (1935, 1974)认为桦木科植物的雌、雄花
序均为柔荑花序, 组成柔荑花序的小花序为小聚伞
花序, 本实验结果也证明了这一点。在东北桤木、
辽东桤木雌花序发生过程中, 1个小花序原基分化
形成2个花原基、2枚次级苞片、2枚三级苞片, 相当
于二歧聚伞花序。在东北桤木、辽东桤木雄花序发
生过程中, 1个小花序原基可分化形成3个花原基、2
枚次级苞片、2枚三级苞片, 但3个花原基的分化有
一定的顺序, 位于中间的分化比两侧的要早。
Abbe (1935)根据维管束痕迹认为: 桤木属雌、
雄花序的小花序各自具5枚苞片。其中1枚初级苞
片、2枚次级苞片和2枚三级苞片。本研究也发现辽
东桤木和东北桤木雌雄花序的小花序均分别由5枚
苞片组成, 其中有1枚初级苞片, 并发生于花序主
轴, 其他4枚苞片呈两对出现, 它们分别起源于小
花序原基, 但出现的时间上有先后, 发生的位置也
不同。所以, 本文亦将它们称为次级苞片、三级苞
片, 每枚苞片发育成熟时呈扩展的片状。
关于桦木科的小花序中二心皮子房的定位方
式, Abbe (1935, 1938, 1974)认为: 二心皮子房是由
三心皮子房退化而成, 在桤木属、桦木属、榛属和
虎榛子属, 二心皮子房是靠近三级苞片腹面的一个
心皮消失后形成的; 在鹅耳枥属和铁木属中消失的
心皮是靠近次级苞片腹面的那一个, 于是前者两个
二心皮子房互成对角, 后者则互相平行。Hjelmqvist
(1948)不同意这样的解释, 认为二心皮子房的不同
定位方式可能与子房的扭曲有关。本研究中并未发
现三心皮子房的痕迹, 辽东桤木和东北桤木小花序
中的2个二心皮子房发育初期是互相平行的, 但随
着发育的进行, 2个二心皮子房逐渐呈一定的角度,
最后几乎为直角, 与Hjelmqvist (1948)的观点相同。

________________________________________________________________________________________________________________________

图40–57 辽东桤木雌花序形态发生过程 40. 示花序原基呈球形。41, 42. 示球形花序原基上分化出初级苞片原基。43, 44. 示初级苞片包
围的雌花序。45. 雌花序, 示次级苞片和雌蕊。46. 示小花序原基呈球形。47. 示小花序原基分化形成1对次级苞片原基。48, 49. 次级苞片
原基继续发育, 1对三级苞片原基形成, 同时小花序原基中间开始凹陷, 形成花原基。50. 花原基直接发育为雌蕊原基。51–53. 示球形雌蕊原
基逐渐凹陷发育, 1对次级苞片、1对三级苞片继续发育。54. 示发育形成花柱分叉的雌蕊。55. 从近轴面看发育完全的次级苞片和花柱分叉
的雌蕊。56. 从远轴面看发育完全的次级苞片、三级苞片和花柱分叉的雌蕊。 57. 示春季迅速伸长生长的雌蕊花柱。
缩写请见图1–15的说明。
Figs. 40–57. Morphogenesis of female inflorescences in Alnus sibirica. 40. Showing that inflorescence primordia are spherical. 41, 42. Showing
the primary bract primordia differentiated from the spherical inflorescence primordia. 43, 44. Showing male inflorescences surrounded by the primary
bracts. 45. Female inflorescences, showing a pair of the secondary bracts and pistils. 46. Showing cymelet primordia are spherical. 47. Showing that
cymelet primordia differentiate and develop into a pair of the secondary bract primordia. 48, 49. The secondary bract primordia continue the devel-
opment, and a pair of the tertiary bract primordia comes into being; meanwhile, the middle part of the floret primordium starts to sink. 50. The floret
primordium develops into spherical pistil primordium directly. 51–53. Showing that spherical pistil primordia sink gradually, and the secondary and
tertiary bracts continue the development. 54. Showing the pistils with columnar-style branches. 55. Abaxial surface of secondary bracts and pistils
with columnar-style branches which were fully developed. 56. Adaxial surface of secondary bracts and tertiary bracts and pistils with columnar-style
branches which were fully developed. 57. Showing the columnar styles of the pistils extending and developing rapidly in the spring.
Abbreviations: Please see previous figure legends.
Scale bars: 40, 46=50 μm; 41–43, 47–52, 54=100 μm; 44, 45=500 μm; 53, 55=200 μm; 56, 57=300 μm.
朱俊义, 陆静梅: 桤木属(桦木科)花序和花的形态发生

647





































































植物分类学报 Journal of Systematics and Evolution 2008 46卷4期 648





































































朱俊义, 陆静梅: 桤木属(桦木科)花序和花的形态发生

649
































图58–90 辽东桤木雄花序的形态发生过程 58. 示雄花序原基。59. 示初级苞片开始形成。60. 示初级苞片、小花序原基。61. 示以合轴
分枝方式形成的三个雄花序聚集在一起。62. 雄花序, 示不同发育时期的小花序原基。63, 64. 雄花序纵切面, 示初级苞片、次级苞片、开始
分化的小花序原基。65–70. 从近轴面观察初级苞片基部的小花序原基的分化形成花的过程。65. 小花序原基分化形成1对次级苞片。66. 小
花序原基逐渐凹陷形成三个花原基,三级苞片形成。67. 小花序原基分化形成1对次级苞片、1对三级苞片、3个花原基。68. 花原基开始分化。
69. 花原基开始分化, 中间的花原基分化最早, 四个被片形成。70. 三个花原基形成三朵花, 每朵花有四个被片和四个雄蕊。71–74. 从远轴
面观察初级苞片基部的小花序原基的分化过程。71. 示球形小花序原基。72. 示球形小花序原基基部分化形成1对次级苞片原基。73. 小花
序原基分化形成三个花原基。74. 示1对三级苞片原基形成, 同时花的四个被片原基出现。75. 示小花原基分化出四个被片原基。76, 77. 示
花原基分化出四个被片原基和四个雄蕊原基。78. 一朵花, 示具四个被片和四个雄蕊原基。79–84. 示球形雄蕊原基分化形成中间相连的两
部分。85, 86. 一朵花, 示中间相连的球形雄蕊原基分化形成具四个药囊的雄蕊。87. 示一朵发育成熟花具四个被片和四个雄蕊。88. 一个发
育成熟具四个药囊的雄蕊。89. 雄花序横切。90. 花药横切。
缩写请见图1–15的说明。
Figs. 58–90. Morphogenesis of male inflorescences in Alnus sibirica. 58. Showing the primordia of male inflorescences. 59. The primordia of
male inflorescences, showing the primary bracts. 60. Male inflorescences, showing the primary bracts and cymelet primordia. 61. Showing that three
male inflorescences are developed with sympodial branches. 62. Male inflorescences, showing cymelet primordia at different stages. 63, 64. The
vertical section of male inflorescences, showing primary bracts, a pair of the secondary bracts, and cymelet primordia starting to differentiate. 65–70.
Observing the differentiating process of cymelet primordia from the base of primary bracts. 65. Showing that cymelet primordia differentiate and
develop into a pair of secondary bract primordia. 66. Cymelet primordia sink gradually, and develop into three floret primordia and the tertiary bract
primordia. 67. Cymelet primordium differentiates into a pair of the secondary bracts, a pair of the tertiary bracts and three floret primordia. 68.
Cymelet primordia start to differentiate. 69. Cymelet primordia start to differentiate, the middle one being the earliest, and four tepals come into
being. 70. Three floret primordia develop into three florets. Each floret has four tepals and four stamens. 71–74. Observing the differentiating process
of cymelet primordia from the base of primary bracts. 71. Showing spherical cymelet primordia. 72. Showing that a pair of the secondary bract
primordia comes into being from the base of spherical cymelet primordia. 73. Cymelet primordia differentiate and develop into three floret primordia.
74. Showing tertiary bract primordia. Meanwhile, four tepal primordia of florets appear. 75. Showing that floret primordia differentiate and develop
into four tepal primordia. 76, 77. Showing that floret primordia differentiate and develop into four tepal primordia and four stamen primordia. 78. A
floret, showing four tepals and four stamen primordia. 79–84. Showing that spherical stamen primordia differentiate and develop into two parts, but
they are attached in the middle. 85, 86. A floret, showing that two connected stamen primordia differentiate and develop into stamens with four pollen
sacs. 87. A fully developed floret with four tepals and four stamens. 88. A fully developed stamen with four pollen sacs. 89. Transverse section of the
male inflorescences, showing primary bracts and florets. 90. Transverse section of an anther, showing four pollen sacs and connective.
Abbreviations: Please see previous figure legends.
Scale bars: 58, 64–66, 72–76, 78=50 μm; 59, 60, 63, 67–69, 77, 79–83=100 μm; 61=500 μm; 62, 70, 84–86, 90=200 μm; 71=30 μm; 87=1 mm; 88,
89=300 μm.


植物分类学报 Journal of Systematics and Evolution 2008 46卷4期 650
致谢 感谢吉林省教育厅科研基金(吉教科合字
[2005]第153号)的资助。
参考文献
Abbe EC. 1935. Studies in the phylogeny of the Betulaceae (I).
Floral and inflorescence anatomy. Botanical Gazette 97:
1–67.
Abbe EC. 1938. Studies in the phylogeny of the Betulaceae (II).
Extremes in the variation of floral and inflorescence
morphololgy. Botanical Gazette 99: 431–469.
Abbe EC. 1974. Flowers and inflorescences of the
“Amentiferae”. Botanical Gazette 40: 159–261.
Chen Z-D (陈之端), Xing S-P (邢树平), Ling H-X (梁汉兴),
Lu A-M (路安民). 2001. Morphogenesis of female repro-
ducetive organs in Carpinus turczaninowii and Ostryopsis
davidiana (Betulaceae). Acta Botanica Sinica (植物学报)
43: 1110–1114.
Furlow JJ. 1990. The genera of Betulaceae in the southeastern
United States. Journal of the Arnold Arboretum 71: 1–67.
Hjelmqvist H. 1948. Studies on the floral morphology and
phylogeny of the Amentiferae. Botaniska Notiser
Supplement 2: 1–171.
Jury SL, Heywood VH. 1978. Flowering plants of the world
(Betulaceae). Oxford: Oxford University Press. 59–60.
Kuang K-C (匡可任), Li P-C (李沛琼). 1979. Betulaceae. In:
Flora Reipublicae Popularis Sinicae ( 中国植物志 ).
Beijing: Science Press. 21: 44–137.
Rendle AB. 1925. The classification of flowering plants.
Cambridge: Cambridge University Press. 23–30.
Takhtajan A. 1980. Outline of the classification of flowering
plants (Magnoliophyta). Botanical Review 46: 225–359.
Thorne RF. 1983. Proposed new relignments in the
angiosperms. Nordic Journal of Botany 3: 85–117.