全 文 :第 34 卷第 24 期
2014年 12月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol.34,No.24
Dec.,2014
http: / / www.ecologica.cn
基金项目:高等学校博士学科点专项科研基金(20122136110003); 国家自然科学基金(40501013)
收稿日期:2013鄄10鄄05; 摇 摇 网络出版日期:2014鄄03鄄19
*通讯作者 Corresponding author.E鄄mail: suncaizhi@ lnnu.edu.cn
DOI: 10.5846 / stxb201310052408
孙才志,闫晓露.基于 GIS鄄Logistic耦合模型的下辽河平原景观格局变化驱动机制分析.生态学报,2014,34(24):7280鄄7292.
Sun C Z, Yan X L.Driving mechanism analysis of landscape pattern change in the lower reach of liaohe river plain based on gis鄄logistic coupling model.Acta
Ecologica Sinica,2014,34(24):7280鄄7292.
基于 GIS鄄Logistic耦合模型的下辽河平原
景观格局变化驱动机制分析
孙才志1,2,*,闫晓露1
(1. 辽宁师范大学城市与环境学院,大连摇 116029;2. 辽宁省自然地理与空间信息科学重点实验室,大连摇 116029)
摘要:以东北三省开发强度最大的辽河中下游地区—下辽河平原为研究对象,从自然因素和人文因素两个方面,构建下辽河平
原景观格局演变的驱动机制指标体系,其中自然驱动力包括气候因素、DEM提取值;人文驱动力主要包括人口状况、经济发展、
人民生活水平和科学技术进步四大方面。 利用美国地质勘探局(USGS)长时间序列的遥感影像数据,获取了下辽河平原
1980—2010年地表景观格局的分布特征,提取下辽河平原近 30年来各景观类型的空间分布信息,根据各景观类型面积增长和
消退的演变规律,利用 Logistic回归模型分析不同时间段下景观格局演变的驱动机制,结果表明:淤耕地面积的先增后减,林地、
草地面积的先减后增,以及建设用地面积的持续增加是研究区景观格局演变的主要特征;于Logistic回归模型分析的结果表明,
不同时期内景观类型变化的驱动因子及其影响力存在一定的差异,但是总体来讲,在中小尺度下,自然驱动因素相对于人文驱
动因素的影响较弱,人口、经济发展、城市化水平、技术等因子对于下辽河平原各景观类型的变化具有较强的驱动作用。
关键词:下辽河平原;景观格局变化;Logistic模型;驱动机制
Driving mechanism analysis of landscape pattern change in the lower reach of
liaohe river plain based on gis鄄logistic coupling model
SUN Caizhi1,2,*, YAN Xiaolu1
1 College of Urban and Environment,Liaoning Normal University,Dalian 116029,China
2 Liaoning Key Laboratory of Physical Geography and Geomatics,Liaoning Normal University,Dalian 116029,China
Abstract: The pattern of a landscape is formed by a spatial mosaic arrangement of natural and / or man鄄made structures of
differing sizes and shapes. It is not only the manifestation of landscape heterogeneity, but also the consequence of various
ecological processes that interfere on different scales. Studying the dynamic changes of landscapes can help determine
potential order within apparently chaotic patterns, and reveal the mechanisms of interaction between landscape patterns and
ecological processes. This facilitates the simulation, forecasting, and control of the direction, process, and effects of
landscape pattern change. However, in recent decades, because of the increase in anthropogenic activities and urbanization,
the conflict between humans and land has become increasingly prominent. Many scholars have exploited the development of
RS and GIS technology to analyze the mechanisms of landscape pattern change. The scientific management of landscape
patterns can be useful both in facilitating the protection of the environment and in encouraging sustainable development of
ecological systems. This paper provides a case study of the lower reaches of the Liaohe River Plain, which is one of the
areas of most intense human development in northeastern China. It has an enormous population and a long history of land
development. Following the recent rapid development of the regional economy, the landscape patterns have changed
http: / / www.ecologica.cn
dramatically in the study area with accelerated soil erosion just one consequence of the intense development. Therefore, for
sustainable development and management of landscape patterns, the analysis of the driving mechanisms behind landscape
pattern change in the lower reaches of Liaohe River Plain is urgently required. In this study, an index system of the driving
mechanisms behind landscape evolution in the lower reaches of the Liaohe River Plain is built with consideration of two
aspects: natural driving forces and anthropogenic driving forces. The former includes precipitation, temperature, elevation,
and gradient. Anthropogenic driving forces are based on four aspects: 1) the contemporary human condition, 2) economic
progress, 3) standard of living, and 4) standards of science and technology. By extracting information on the spatial
distribution of landscape pattern in the lower reaches of the Liaohe River Plain, using TM images from 1986 to 2010, we
analyze the relationships behind landscape pattern change over a period of nearly 30 years. We use ArcGIS software as the
assessment platform and use the GIS鄄Logistic coupling model to assess the mechanisms driving landscape pattern evolution.
The results indicate that cultivated land is the main landscape type within the study area, and that this area initially
increases, but then decreases during the study period. However, ecologic functional land, such as woodland and grassland,
initially decrease and then increase, whereas areas of construction land continually increase. The results of the regression
model analysis show that the driving factors and their influences on the evolution of landscape pattern have certain
differences. Overall, the effects of anthropogenic driving forces on the pattern of landscape change are more obvious than
natural factors on the small and medium scale. Population, economic development, level of urbanization, and technology
can play significant roles in the evolution of landscape patterns.
Key Words: lower reaches of Liaohe River Plain; landscape pattern change; logistic model; driving mechanism
摇 摇 景观格局是指由自然或人为形成的,一系列大
小、形状各异,排列不同的景观镶嵌体在景观空间的
排列,它既是景观异质性的具体表现,同时又是包括
干扰在内的各种生态过程在不同尺度上作用的结
果[1]。 研究景观格局的动态变化有助于人们从无序
的景观中发现潜在的有序规律,揭示景观格局与生
态过程相互作用的机理,进而对景观变化的方向、过
程、效应进行模拟、预测和调控[2鄄4]。 近几十年来随
着人类活动的增强和城镇化速度的加快,人地矛盾
的问题日益突出。 遥感系统 RS 和地理信息系统
GIS等多样性手段的不断兴起,为景观格局动态变化
的研究提供了强有力的技术手段,诸多学者的研究
已从景观格局现象的时空表达趋向于引起这种演变
的机理分析。
由于各地区自然条件、人口、经济、政策等主客
观条件的限制,景观格局演变的驱动机制研究还不
够充分。 目前国内外的相关领域研究中尚未形成较
为完善的理论框架体系,并且常用的数理统计模型
主要集中于典型相关分析、回归分析、主成分分
析[5鄄7]等。 众多学者的惯有思路是将定性分析与这
些数理统计模型相结合[8鄄10],从动态变化与驱动因
素的统计关系中总结出,自然因素和社会经济因素
是景观格局动态演变的重要原因。 Long[11]通过来
自于罗姆尼湿地样本数据中详细的岩性及测定证据
可知,晚全新世英国东南部海岸湿地受到大面积的
洪水泛滥侵蚀后,泥炭沉积是其海岸湿地规模演变
的关键性驱动因素,或将对海平面和地壳的运动造
成长期深远的影响。 宫兆宁[12]选取具有典型生态
意义的景观格局指数对北京湿地 20 多年的景观格
局特征进行分析,探索其演变机制,其研究对保护生
态系统、种多样性和湿地资源管理具有重要意义。
景观格局的研究主要集中于空间异质性和时间异质
性两个方面,景观格局指数(空间异质性)表征的是
景观格局的即时状态,而空间动态(时间异质性)研
究更具有理论和实践意义。 目前,有关驱动定量的
研究中,线性回归是应用最广泛的统计模型,然而在
许多情况下,线性回归会受到限制,特别当因变量是
一个分类变量而不是一个连续变量时,线性回归就
不适用, Logistic 回归模型能很好地解决这一问
题[13]。 本文作者在景观格局过去的相关研究
中[14鄄15],较为侧重景观综合指数的时空表达,而忽略
对景观格局演变的机理分析。 鉴于此,本文尝试建
立一个 GIS鄄Logistic的耦合模型,在以往的研究基础
上进一步定量分析下辽河平原地区景观格局变化的
1827摇 24期 摇 摇 摇 孙才志摇 等:基于 GIS鄄Logistic耦合模型的下辽河平原景观格局变化驱动机制分析 摇
http: / / www.ecologica.cn
驱动机制,这样不仅考虑了景观格局的时空异质性,
而且通过 Logistic回归模型的原理,探讨在这样一个
空间统计分析上每个驱动机制解释变量的贡献大
小,旨在为下辽河平原地区的景观格局调整和生态
规划提供相应的参考意见。
下辽河平原地处中国七大河流之一辽河的中下
游地区,该区具有长期的土地资源开发历史,在自然
和人类共同作用下,形成了一个具有景观类型多样
性的错综复杂区域。 然而进入 21 世纪后,随着城镇
化进程的日益加快和东北老工业基地的振兴,人类
活动的强烈干扰使得该区景观类型的分布发生了重
大变化。 因此,本文以下辽河平原 1986—2010 年的
Landsat TM影像的遥感解译数据、DEM 高程数据和
自然社会经济指标作为数据源,尝试通过 GIS鄄
Logistic的耦合模型,揭示研究区景观格局的时空异
质性演变及驱动机制的地区和阶段性差异,希冀研
究成果能够对景观格局的合理开发利用具有一定的
应用价值。
图 1摇 下辽河平原地理位置图
Fig.1 摇 The geographic location map of the lower reaches of
Liaohe River Plain
1摇 研究区概况
下辽河平原呈东北—西南方向宽带状斜卧在辽
宁省的中部,地理坐标为东经 120毅42忆 至 124毅45忆,
北纬 40毅43忆至 43毅27忆 之间。 下辽河平原为三面环
山,分别为东部千山山脉,西侧医巫闾山,北部铁法
丘陵,南部临渤海直至辽东湾,呈条带状展布。 本区
属于温带半湿润季风气候,多年平均气温 7. 1—
8.9 益,多年平均降水量自东南向西北递减,由
700—750 mm降至 550 mm。 该区有三大独立水系,
即辽河—双台子河水系、浑河—太子河水系和大凌
河—小凌河水系。 本区土地总面积约 2.65 万 km2,
行政区划隶属于辽宁省 9 市 22 县(图 1),是东北地
区规模最大的区域一体化经济区,也是我国东北乃
至东北亚的经济核心。 研究区内交通十分发达,哈
大高铁、盘营高铁的建成更是加速了本区与其他地
区的贸易往来,为本区的经济发展增添了有利契机。
2摇 研究方法及数据处理
图 2摇 下辽河平原 2010年景观类型图
Fig.2摇 The landscape type map of the lower reaches of Liaohe
River Plain in 2010
2.1摇 遥感影像的获取、处理及分类
本研究选取季相较为一致,平均云量低于 10%,
轨道号为 119 / 31、 119 / 32、 120 / 31、 120 / 32 的四期
Landsat TM影像(1986鄄9鄄18、1995鄄9鄄11、2005鄄10鄄13、
2010鄄9鄄25)为基础数据,以 2000 年辽宁省的行政区
划图( 1 颐 50 万)、2010 年辽宁省土地利用现状图
(1 颐10 万)、地形图(1颐5 万)等为辅助数据。 在 ENVI
4.7软件平台上,对各时期遥感数据进行几何校正,
精度控制在 0.5 个像元内。 根据遥感影像各类型的
波段特征,选择 TM 5,4,3 波段进行假彩色合成,合
成效果最佳。 运用遥感软件对各期影像进行非监督
分类,获得易于监督分类的参考模板后再进行监督
分类,最后根据研究区的土地利用现状图及野外考
察等相关资料,对分类后影像进行修正,精度验证
Kappa系数均达到 85%以上。 根据研究区的土地利
用现状,为减少在较大尺度下类型划分过细导致的
数据冗余及干扰,最终将研究区景观类型划分为耕
2827 摇 生摇 态摇 学摇 报摇 摇 摇 34卷摇
http: / / www.ecologica.cn
地(水田、旱地)、林地、草地、水域(河流、水库、坑
塘)、建设用地(居民点、工矿用地等)、湿地(沼泽、
滩地)和其他(裸地、盐碱地等) 7 种景观类型(图
2)。
2.2摇 景观格局变化的驱动力体系构建
景观格局演变动力学的研究核心是景观格局变
化和驱动力的关系,尽管驱动力随着研究区域的不
同而异,但是仍具有一定的时空规律。 一般认为,景
观类型、格局及功能过程发生变化主要是受到自然
驱动力和社会经济驱动力的共同影响。 在自然系统
中气候、土壤、水文等被认为是主要的驱动力类型;
在社会系统中,通常将驱动力分为人口变化、贫富状
况、技术进步、经济增长、政治经济结构及价值观
念[16]。 通过对下辽河平原地区自然环境和社会经
济状况资料的搜集和分析,本着驱动因子的代表性、
科学性、差异性和可获得性原则,从自然驱动力和人
文驱动力两大系统中选取因子构建驱动指标体系,
如表 1。
表 1摇 下辽河平原景观格局演变驱动力指标体系
Table 1摇 Driving forces index system of landscape pattern change
一级指标
First class index
二级指标
Second class index
三级指标
Third class index
数据来源
Data sources
空间量化方法
Space quantization
自然驱动力 气候因素 年均气温
Natural driving force 年均降水量
DEM 高程
坡度
人文驱动力 人口状况 总人口
Human driving force 城镇人口
经济发展 GDP
工业生产总值
城市化水平
地方财政收入
公路里程
固定资产投资
基建占地
社会消费品零售总额
人民生活水平 农民人均纯收入
城乡收入差别
从业人数
人均公共绿地面积
科学技术水平 产业结构升级
化肥施用量
粮食单产
农机总动力
退耕还林还草
有效灌溉面积
国家气象科学数据共享
网、辽宁省水资源公报、
辽宁省水文信息网
克吕格空间插值的空间高
精度模拟,提取并计算不同
阶段随机点的多年平均值
美国地质勘探局(USGS) 直接进行随机点值的提取
1986—2010年辽宁年鉴、
辽宁统计年鉴、辽宁省统
计信息网
分别计算各县在 1986—
1995 年、 1995—2005 年和
2005—2010 年 3 个阶段相
应指标数据的多年平均值,
借助 ArcGIS 9.3 平台的 Join
工具将相应数据赋予下辽
河平原各市县区的相应地
区,且每个驱动因子作为一
个矢量图,实现驱动因子的
空间化,最后将每个驱动因
子图全部转化为分辨率为
30m的栅格图
摇 摇 自然驱动因子体系中,根据国家气象科学数据
共享网、辽宁省水资源公报、辽宁省水文信息网等获
得 1986—2010 年下辽河平原各市县或各观测站点
的逐年降水量、气温统计数据,利用 ArcGIS 9.3 的地
统计模块,结合下辽河平原及其周边多个气象站点,
使用克吕格空间插值,进行空间分布的高精度模拟;
高程、坡度通过数字高程 DEM,利用 ArcGIS 9.3的空
间分析模块进行提取,并且重分类。 人文驱动因子
体系中,本文以下辽河平原 22 个县域为数据统计单
位,其社会经济统计数据主要是根据辽宁年鉴、辽宁
统计年鉴、辽宁省统计信息网等获得。 分别计算
1986—1995 年、1995—2005 年和 2005—2010年 3个
阶段相应指标数据的多年平均值,借助 ArcGIS 9.3
平台的 Join工具将相应数据赋予下辽河平原各县的
3827摇 24期 摇 摇 摇 孙才志摇 等:基于 GIS鄄Logistic耦合模型的下辽河平原景观格局变化驱动机制分析 摇
http: / / www.ecologica.cn
相应地区,且每个驱动因子作为一个矢量图,实现驱
动因子的空间化,最后将每个驱动因子图全部转化
为分辨率为 30 m的栅格图。
2.3摇 二项 Logistic回归模型
目前关于景观格局演变与驱动因子相关性的定
量分析方法较多,国内外学者主要采用经验模型和
统计模型[17],而统计模型中的相关分析法、主成分
分析法和灰色关联分析法[18鄄20]是近些年来常用的数
理统计方法。 在实际生活中当因变量是类别变量
(离散变量) 且不具备一定的分布规律时,若再使用
普通的相关分析或者线性回归,则会违反其许多重
要的假设条件,从而导致结果产生严重误差,以致无
法进行合理的假设检验,因而在驱动力定量研究中
有很大的局限性[13],恰好 Logistic 回归模型能够很
好地解决这个问题,它是对二项变量进行回归分析
时普遍应用的方法。 Logistic 回归模型方法是由生
物数学家 Verhult 在 1838 年创立,后在人口统计和
预测中推广用,并受到广泛关注[21鄄24]。 本文根据研
究区景观格局的变化情况,选择 Logistic 回归模型对
下辽河平原景观格局演变的驱动力进行定量分析,
相关的回归模型如下。
设 p为事件发生概率,取值范围为 0—1,则 1-p
为该事件不发生的概率,其表达式为:
p =
exp(琢 + 茁0 + 茁1x1 + 茁2x2 + … + 茁kxk)
1 + exp(琢 + 茁0 + 茁1x1 + 茁2x2 + … + 茁kxk)
(1)
对式(1)进行 logit 变换,得到一个线性公式,
如式:
ln p
(1 - p
é
ë
êê
ù
û
úú)
= 琢 + 茁0 + 茁1x1 + 茁2x2 + … + 茁kxk (2)
式中,p为研究区景观格局变化发生的概率;x1,x2,
…,xk为影响景观格局变化的驱动因子; 琢 为常数
项; 茁1, 茁2,…, 茁k 为待求的回归系数,若为正(负)值
表示相关的自变量 Xk,i能增加(减少)事件 i 的发生
率, 茁k 的绝对值越大,表示自变量 Xk,i对事件 i 的发
生率的影响越大[25]。
本文采用 Wald 统计量检验模型的回归系数。
如果概率 p值小于给定的显著性水平 琢 ( 琢 = 0.05),
则应拒绝零假设,认为解释变量与概率之间的线性
关系显著,应保留在方程中;反之,不能通过显著性
检验则被去除。 对 Logistic 回归方程拟合度的检验
选用 Homsmer鄄Lemeshow指标(HL),当 HL 指标统计
显著表示模型拟合不好。 相反,当 HL指标统计不显
著表示模型拟合好。
2.4摇 GIS鄄 Logistic 耦合模型的景观格局演变驱动力
分析
Logistic回归分析的被解释变量应是取值 1 或 0
的二值变量,本文以景观格局的变化作为因变量,以
驱动因子作为数据研究的自变量。 其中,因变量取
值编码通常为“0冶和“1冶两个数值,“0冶表示景观格
局没有发生变化,“1冶表示发生变化。 本研究主要以
4种景观类型的变化情况进行讨论,即耕地、林地、建
设用地、湿地。 在 ArcGIS 9. 3 平台下,运用 Spatial
Analyst模块中的 Raster Calculator工具分别将 1986、
1995、2005和 2010 年的景观面积进行空间叠加,得
到研究区 1986—1995 年、1995—2005 年和 2005—
2010年 3 个阶段景观格局变化的栅格图,另外再分
别提取各个阶段的 4 种景观类型的变化栅格图,分
辨率为 30 m伊30 m(图 3)。
Logistic回归模型的应用,需要保证抽样数量足
够多,使数据具有统计性,且避免数据的空间自相关
性,因此本文选用分层随机抽样方法选择均匀分布
在整个研究区的 n 个观测点,利用 ArcGIS 9.3 平台
的 create random point 工具、Extract value to point 工
具,保留具有变化值的 560 个样本点,最终分别提取
3期各景观类型变化栅格图的 560 个样本值作为因
变量的值,同样提取所有驱动因子栅格图上 560 个
样本值作为自变量的值,本文以 1986—1995 年的湿
地变化栅格图和同一阶段的年均气温插值图举例说
明样本值提取情况(图 4)。 最后将所提取的信息导
入到 SPSS 统计分析软件中,通过 Logistic 的回归模
型,采用 Backward Conditional,对下辽河平原地区景
观格局变化的相关驱动因子进行分析和诊断,筛选
出对其变化有显著影响的因素,进而分析其驱动
机制。
3摇 结果与分析
3.1摇 下辽河平原各景观类型的面积变化总体趋势
分析
从表 2中可以看出,耕地是下辽河平原的基质
景观类型,面积比例期间虽有增长,但是面积整体为
减少趋势。 作为生态功能用地的林地和草地则明显
减少,但是在 1995—2010 年的这段期间出现了一定
4827 摇 生摇 态摇 学摇 报摇 摇 摇 34卷摇
http: / / www.ecologica.cn
程度的改变,林地的比例从 1995 年的 3.38%上升到
了 2010年的 5.53%,草地比例从 2005 年的 2.15%上
升到了 2010 年的 3.19%,由此可见,在 20 世纪的 80
年代到 21世纪初的社会经济高速发展中,下辽河平
原的生态功能用地前期明显损失,然而在后一阶段,
政府一系列的“退耕还林还草冶等生态环境改善措施
起到了一定的缓解作用。 作为人文景观类型的建设
用地,则在 1986—2010 年间持续扩张。 湿地是下辽
河平原重要的景观类型之一,虽然所占比例不大,但
是其重要的生态功能不容被忽视。 从表 2 中可以看
出,湿地在这近 30 年的时间里,面积持续减少,且各
项生态功能也相应衰退。
图 3摇 下辽河平原各景观类型变化图
Fig.3摇 Landscape type changes of the lower reaches of Liaohe River Plain
图 4摇 下辽河平原湿地(a)和年均气温驱动因子(b)随机采样点图
Fig.4摇 Random sampling points of wetland (a) and annual average temperature (b) in the lower reaches of Liaohe River Plain
5827摇 24期 摇 摇 摇 孙才志摇 等:基于 GIS鄄Logistic耦合模型的下辽河平原景观格局变化驱动机制分析 摇
http: / / www.ecologica.cn
表 2摇 1986—2010 年下辽河平原各景观类型面积比例
Table 2摇 The area proportion of landscape type in the lower reaches of Liaohe River Plain / %
景观类型
Landscape type 1986年 / % 1995年 / % 2005年 / % 2010年 / %
耕地 Plough 60.50 64.22 62.43 48.59
林地 Woodland 7.09 3.38 4.13 5.53
草地 Grassland 4.87 4.47 2.15 3.19
水域 Water area 2.22 2.94 2.54 2.86
建设用地 Construction 18.22 20.07 23.63 33.86
湿地 Wet land 4.08 3.39 2.47 2.54
其他 Others 3.02 1.53 2.65 3.43
3.2摇 耕地变化的驱动力分析
在耕地变化的回归模型中,坡度用 3 个虚拟变
量分别代表坡度级玉(<5毅)、坡度级域(5—15毅)和
坡度级芋(15—25毅),坡度级郁(>25毅)作为它们的
参照对象。 然后将 3个阶段提取的所有因变量和自
变量经过无量纲处理后,代入 Logistic 模型进行回归
计算。 “Hosmer和 Lemeshow 检验冶中,sig.的值在 3
个阶段分别为 0.970、0.781 和 0.813,均大于 0.05,统
计不显著,即模型的拟合效果很好,预测正确率分别
为 83.7%、86.5%和 81.3%,模型较为稳定。 最终回
归模型在 3个阶段的自变量具体见表 3。
表 3摇 下辽河平原 1986—2010 年耕地变化驱动力模型估计结果
Table 3摇 Model estimation of the driving forces of cultivated land change in the lower reaches of Liaohe River Plain
时间段
Period
解释变量
Explanatory
variable
回归系数
Regression
coefficient
标准误差
Standard
error
Wald统计量
Wald
statistics
自由度
Freedom
显著性水平
Significance
level
发生比率
Occurrence
rate
1986—1995 年均降水量 4.223 1.237 11.662 1.00 0.001 0.015
坡度 I(<5毅) -0.155 0.076 4.126 1.00 0.042 1.167
总人口 1.132 0.605 3.507 1.00 0.061 3.103
常量 3.356 1.229 7.459 1.00 0.006 28.680
1995—2005 固定资产投资 13.873 6.183 5.035 1.00 0.025 0.000
坡度 I(<5毅) -0.599 0.327 4.854 1.00 0.067 0.549
基建占地 -21.194 9.726 4.748 1.00 0.029 1.601
工业生产总值 0.879 0.533 2.718 1.00 0.099 0.415
常量 constants -18.889 13.087 2.083 1.00 0.149 0.000
2005—2010 城市化水平 0.575 0.325 3.134 1.00 0.077 0.562
农机总动力 2.003 1.204 2.771 1.00 0.096 0.135
坡度 I(<5毅) -1.171 0.531 2.683 1.00 0.027 0.310
有效灌溉面积 2.589 1.581 2.681 1.00 0.102 13.314
常量 11.309 3.858 8.594 1.00 0.003 81516.692
摇 摇 由表 3 回归系数的显著性水平 (P < 0. 05)和
Wald统计量可知,第 1阶段(1986—1995年)耕地变
化较为重要的解释变量是年均降水量、坡度和总人
口。 第 2 阶段(1995—2005 年)其变化较为重要的
解释变量为固定资产投资、坡度、基建占地和工业生
产总值。 而在第 3 阶段(2005—2010)较为重要的解
释变量为城市化水平、农机总动力、坡度和有效灌溉
面积。 这 3个阶段耕地变化驱动因素不同,1995 年
以前,粗放型开垦方式导致大量土地类型转变为耕
地,耕地面积持续增加,但是随着区域社会、经济发
展和人口的剧增,工业化和城市化的发展则成为导
致耕地减少的主要原因。 在 3 个阶段中, 坡
度玉(<5毅)都是重要的解释变量,说明耕地的分布
主要集中在海拔较低、坡度较小的平原和丘陵缓坡
地带。 第一阶段中的另一个主要自然因素是年均降
水量。 耕地一般分布在降水量大于 400 mm的地区,
6827 摇 生摇 态摇 学摇 报摇 摇 摇 34卷摇
http: / / www.ecologica.cn
根据下辽河平原多年的平均降水量数据显示(图
5),下辽河平原近 30年的时间里平均降水量为 680.
01 mm,且 1995年前的下辽河平原地区降水较为充
沛,耕地的面积则为大幅增加。 人口的增长是影响
耕地数量变化的最根本原因之一,从 1986 年到 1995
年,研究区的总人口数量从 2583. 1 万人增加到
2837郾 8 万人,人口的增加,意味着粮食需求的增大,
耕地面积也会相应扩大。 自然因素是影响耕地变化
的长期主导因素,短期内主要是人类活动造成
的[26],因此在第二、三阶段,社会经济发展是导致耕
地变化的主要因素。 从表 3 中可以看出,自 20 世纪
90年代以来,辽宁省的经济实力增长较快,固定资产
投资额的增加以及基建占地面积的不断扩大,区域
内耕地资源不可避免的要被占用。 根据 《辽宁省
2006年度土地利用变化情况分析报告》中可以了解
到,年内减少的耕地主要去向为各类建设占用、农业
结构调整和灾毁。 其中,建设用地占用主要包括城
市用地、工矿交通运输用地和水利设施用地。 在第 3
个时间段,城市化、农机总动力和有效灌溉面积是其
耕地变化的主要因素。 城市化对耕地资源存在正负
两方面的影响:城市的发展必然造成对耕地资源的
占用,但是城市的集中、规模效益的发挥有利于提高
土地利用效率。 然而在这个阶段,城市化的扩大依
然加速地减少耕地资源,可见辽宁省的城市规模效
益水平还有待于提高。 农业科技进步为耕地资源减
少提供了可能,农业科技进对耕地资源的保护起到
了积极的作用,有效地弥补了耕地的损失。
图 5摇 下辽河平原多年降水量变化图
Fig.5摇 The annual average precipitation change in the lower reaches of Liaohe River Plain
3.3摇 林地变化的驱动力分析
将 3个阶段林地变化提取的所有因变量和自变
量代入到 Logistic回归模型中,HL 指标检验 sig.值分
别为 0.909、0.603和 0.890,拟合效果均较为理想,预
测正确率在 3 个阶段均为 95.7%,模型较为稳定。
最终回归模型在 3个阶段的自变量具体见表 4。
森林是生存和发展的基础,其丰富的生物多样
性和复杂的结构,使之成为自然界最为稳定的生态
系统,它对于保护人类赖以生存的环境起到了决定
性的作用。 根据表 4 中回归系数的显著性水平(P<
0.05)和 Wald统计量可知,3个阶段的驱动因子除了
自然因素中的高程、坡度重要的解释变量外,人文因
素中的人口数量,社会需求和经济发展对于林地的
变化影响也颇为显著。
在第一阶段,除了自然因素中的坡度因素影响
外,林地变化较为重要的解释变量为化肥施用量、总
人口、GDP 和农民人均纯收入。 20 世纪 80 年代中
期,辽宁省的经济发展进入到重要的起步阶段,而这
期间也是林地资源减少速度加快的阶段。 1986 年到
1995 年下辽河平原地区人口的持续增长和人类从事
各种社会经济活动的加剧,必然导致一些低海拔地
区等水热自然条件较好的林地被开垦为耕地,为此
本文进一步利用 ArcGIS 中的空间分析工具进行林
地的转移矩阵分析,结果如表 5。 在第一个阶段,林
地向其他景观类型转化的主要方向为耕地和建设用
地。 总体看来,粗放式的开垦方式导致大量林地被
乱砍乱伐,林地资源的大量锐减在这一阶段最为
明显。
7827摇 24期 摇 摇 摇 孙才志摇 等:基于 GIS鄄Logistic耦合模型的下辽河平原景观格局变化驱动机制分析 摇
http: / / www.ecologica.cn
表 4摇 下辽河平原 1986—2010 年林地变化驱动力模型估计结果
Table 4摇 Model estimation of the driving forces of woodland change in the lower reaches of Liaohe River Plain
时间段
Period
解释变量
Explanatory
variable
回归系数
Regression
coefficient
标准误差
Standard
error
Wald统计量
Wald
statistics
自由度
Freedom
显著性水平
Significance
level
发生比率
Occurrence
rate
1986—1995 化肥施用量 -20.041 9.089 4.863 1.00 0.027 0.000
总人口 2.112 0.959 4.847 1.00 0.028 8.266
GDP -2.250 1.108 4.126 1.00 0.042 0.105
农民人均纯收入 -1.417 0.783 3.275 1.00 0.070 0.242
坡度域(5—15毅) 366.853 314.650 1.359 1.00 0.044 0.210
常量 -44.711 19.803 5.098 1.00 0.024 0.000
1995—2005 退耕还林还草 2.017 0.856 5.550 1.00 0.018 0.133
GDP -1.622 0.768 4.468 1.00 0.035 0.197
坡度域(5—15毅) 599.976 382.230 2.464 1.00 0.016 0.368
高程 -0.420 0.270 2.417 1.00 0.020 0.657
常量 -620.389 395.016 2.467 1.00 0.116 0.000
2005—2010 GDP 1.901 0.860 4.887 1.00 0.027 6.694
高程 0.391 0.177 4.865 1.00 0.027 1.479
固定资产投资 -13.638 10.374 1.728 1.00 0.189 0.000
坡度域(5—15毅) 397.542 334.865 1.409 1.00 0.035 0.446
常量 -2.720 2.040 1.778 1.00 0.182 0.066
表 5摇 1986—1995 年下辽河平原林地与其他景观类型转变面积统计表
Table 5摇 The area of conversion between woodland and other landscape types in the lower reaches of Liaohe River Plain
转出类型
Roll鄄in type
转出面积 / (104 hm2)
Roll鄄in area
转入类型
Roll鄄out type
转入面积 / (104 hm2)
Roll鄄out area
净变化面积 / (104 hm2)
Net changes area
耕地 Land 7.3 耕地 3.2 -4.1
草地 Grass 0.7 草地 0.2 -0.5
水域 Water 0.4 水域 0.2 -0.2
建设用地 Construction land 3.3 建设用地 0.7 -2.6
湿地 Wetland 0.5 湿地 0.4 -0.1
其他 Other 0.5 其他 0.4 -0.1
合计 Total 12.7 合计 5.1 -7.6
摇 摇 在第二、三阶段中,下辽河平原地区的林地资源
总量有所增加,除了自然因素中的高程和坡度因素
影响外,这两个阶段重要的解释变量为退耕还林还
草、GDP 和固定资产投资。 自从 1998 年国家明确推
出“退耕还林冶等政策并有效实施以来,辽宁省在相
关地区逐步开展退耕还林、荒山荒地造林等计划。
目前,辽宁省森林覆盖率较“九五冶末提高了多个百
分点。 尤其是辽西、辽东地区,通过实施退耕还林,
土地治理度大幅提高,土壤流失下降近四成,这对于
生态环境改善,社会经济发展都起到了积极的作用。
然而,林地资源的乱砍乱伐现象虽然得到了一定的
遏制,但是就目前而言,也不能盲目乐观,由于政府
为追求地区经济的高速发展,仍然会以牺牲林地资
源为代价,因此今后应进一步加强林地资源的经营
看护,使下辽河平原对林地资源的利用实现真正意
义上的可持续发展。
3.4摇 建设用地变化的驱动力分析
建设用地的变化在相对的短期内,受自然资源
条件的影响较小,因此本文在讨论建设用地变化的
驱动力分析时,主要考虑经济发展和政策因素对其
变化的影响。 在建设用地变化的回归模型中,将 3
个阶段建设用地变化提取的所有因变量和自变量带
入到 Logistic回归模型中,HL指标检验 sig.值分别为
0.892、0.832和 0.998,拟合效果均较为理想,预测正
确率在 3 个阶段分别为 92.9%、84.2%和 95.4%,模
型较为稳定。 最终回归模型在 3 个阶段的自变量具
8827 摇 生摇 态摇 学摇 报摇 摇 摇 34卷摇
http: / / www.ecologica.cn
体见表 6。
从表 6可以看出,在这 3 个阶段,建设用地变化
较为重要的解释变量大体可以归为三类,即人口、经
济发展和城市化水平。 人口是建设用地变化的主要
驱动因素,随着城市规模的不断扩大,外来人口不断
涌入城市中,导致居民对交通、住房、公共设施的需
求增大,从而使城市不断向外延伸扩张。 建设用地
的扩张是经济发展的需要,根据数据调查分析可知,
研究区的年均固定资产投资额在前两个阶段增幅极
为显著,表明了社会经济发展是建设用地空间扩展
的根本动力。 城市化水平是衡量一个国家或地区城
市化最重要的指标,由城镇人口占总人口的比重表
示,那么建设用地的扩张就是城市化水平在空间布
局上的具体反映。 研究区在 3 个阶段的年均城市化
水平分别为 7.94、8.25和 9.27,城镇人口的增加和社
会经济的快速发展必然导致城市化水平的提高,三
者是相辅相成、紧密联系的。 另外,建设用地的变化
也深受研究区政府政策的影响,城市规划、投资等政
策引导了建设用地扩张的模式和方向。 然而,目前
辽宁省的经济发展和城镇扩张仍主要以耕地资源的
减少为代价,因此,科学制定城市规划,合理确定城
市规模,对于防止土地资源浪费具有重要作用。
表 6摇 下辽河平原 1986—2010 年建设用地变化驱动力模型估计结果
Table 6摇 Model estimation of the driving forces of construction land change in the lower reaches of Liaohe River Plain
时间段
Period
解释变量
Explanatory
variable
回归系数
Regression
coefficient
标准误差
Standard
error
Wald统计量
Wald
statistics
自由度
Freedom
显著性水平
Significance
level
发生比率
Occurrence
rate
1986—1995 人均公共绿地面积 19.770 7.330 7.274 1.00 0.007 0.385
固定资产投资 31.358 11.666 7.275 1.00 0.007 0.000
从业人数 22.997 8.728 6.942 1.00 0.008 0.972
基建占地 23.141 9.283 6.214 1.00 0.013 0.012
总人口 3.907 1.719 5.165 1.00 0.023 0.020
常量 -70.478 24.470 8.295 1.00 0.004 0.000
1995—2005 人均公共绿地面积 15.371 4.234 13.179 1.00 0.000 0.473
固定资产投资 6.983 2.148 10.572 1.00 0.001 0.107
粮食单产 -11.746 3.758 9.772 1.00 0.002 0.000
总人口 -4.778 2.140 4.982 1.00 0.026 0.008
常量 -1.986 2.796 0.504 1.00 0.478 0.137
2005—2010 工业生产总值 0.232 0.066 12.133 1.00 0.000 1.261
社会消费品零售总额 4.976 2.488 4.001 1.00 0.045 0.007
地方财政收入 5.174 2.610 3.930 1.00 0.047 176.660
城市化水平 0.864 0.520 2.758 1.00 0.097 0.421
常量 -132.000 73.043 0.000 1.00 0.099 0.000
3.5摇 湿地变化的驱动力分析
在湿地变化的模型中,将 3 个阶段提取的所有
因变量和自变量经过无量纲处理后,带入 Logistic 模
型使用向后条件法进行回归计算。 HL 指标检验 sig.
值在 3 个阶段分别为 1.000、1.000 和 0.718,均大于
0.05,统计不显著,即模型的拟合效果很好,预测正
确率分别为 95.2%、98.8%和 98.9%,模型较为稳定。
最终回归模型在 3个阶段的自变量具体见表 7。
根据表 7中回归系数的显著性水平(P<0.05)和
Wald统计量可知,第一阶段湿地变化较为重要的解
释变量是总人口、GDP 和年均降水量。 第二阶段为
城镇人口、工业生产总值、年均降水量和农民人均纯
收入。 而在第 3 阶段重要的解释变量为年均气温、
城镇人口和年均降水量。 从表中 3 个阶段的解释变
量中可以看出,下辽河平原湿地面积的大幅度减少
是自然因素和人文因素共同作用导致的。
湿地变化的 3 个阶段中,自然影响因素最为重
要的解释变量为年均气温和年均降水量,根据图 5
和图 6,分析下辽河平原近 30 年的气候因子的变化
趋势可知,年均气温整体呈上升趋势,年均降水量整
体呈下降趋势,但是幅度均不是很大。 气温和降水
是湿地变化的主要生态环境因子,气温的升高导致
9827摇 24期 摇 摇 摇 孙才志摇 等:基于 GIS鄄Logistic耦合模型的下辽河平原景观格局变化驱动机制分析 摇
http: / / www.ecologica.cn
蒸发量持续增加,再加上同期降水量的减少,湿地的
水分收支不平衡,最终导致湿地面积的大幅度萎缩。
自然因素中的气候要素在中小尺度上的时空分异可
能是造成湿地面积缩减的直接原因,然而,随着人类
社会发展到一定程度,人口、社会经济的压力对湿地
资源的影响也越来越深刻。 随着人口的增长,必然
要求耕地和建设用地的增加,进而导致人们不断开
垦湿地。 近些年,人们逐步发展水产养殖和种植经
济作物,芦苇湿地和滩涂湿地也大面积减少。
表 7摇 下辽河平原 1986—2010 年湿地变化驱动力模型估计结果
Table 7摇 Model estimation of the driving forces of wetland change in the lower reaches of Liaohe River Plain
时间段
Period
解释变量
Explanatory
variable
回归系数
Regression
coefficient
标准误差
Standard
error
Wald统计量
Wald
statistics
自由度
Freedom
显著性水平
Significance
level
发生比率
Occurrence
rate
1986—1995 总人口 -17.494 3.566 24.073 1.00 0.000 0.000
GDP 3.351 1.212 7.640 1.00 0.006 28.521
年均降水量 -25.063 13.189 3.611 1.00 0.057 0.000
常量 10.823 23.447 0.123 1.00 0.044 50.152
1995—2005 城镇人口 11.504 5.766 3.980 1.00 0.046 0.990
工业生产总值 -8.031 4.355 3.402 1.00 0.065 0.000
年均降水量 -18.137 10.282 3.112 1.00 0.078 0.000
农民人均纯收入 2.112 1.232 2.939 1.00 0.086 8.266
常量 1114.213 9438.945 0.014 1.00 0.096 0.000
2005—2010 年均气温 62.896 30.167 4.347 1.00 0.037 2.070
城镇人口 -18.503 9.207 4.039 1.00 0.044 0.000
年均降水量 -22.882 14.339 2.547 1.00 0.111 0.000
常量 49.602 23.159 4.587 1.00 0.032 0.000
图 6摇 下辽河平原多年气温变化图
Fig.6摇 The annual average temperature change in the lower reaches of Liaohe River Plain
4摇 结论
景观格局是自然环境和人类活动长期相互作用
形成的,探讨区域的景观格局演变机制,不仅可以深
刻了解目前区域的资源环境状况,从而制定相应的
整改措施,并且对未来的区域规划也起到了一定的
警示和指导作用。 本文以下辽河平原为研究对象,
基于多时期遥感影像,分 3 个时段对 1986—2010 年
区域的景观格局变化过程进行了研究。 从自然驱动
力和人文驱动力这两个方面构建景观格局演变的评
价指标体系,采用 GIS鄄Logistic 模型耦合的方法,通
过提取不同时段的所有自变量和因变量,根据回归
系数的显著性水平(P<0.05)和 Wald 统计量,找出
下辽河平原景观格局演变的驱动机制。 结果表明:
(1)从下辽河平原各景观类型的面积变化总体
趋势可以看出,作为基质景观类型的耕地,在 3 个时
0927 摇 生摇 态摇 学摇 报摇 摇 摇 34卷摇
http: / / www.ecologica.cn
段呈先增加后减少的变化趋势;作为生态用地的林
地和草地,在早些年的经济发展中,大量被乱砍乱
伐,直接导致资源的大幅减少,后来在国家退耕还林
的举措下,林地和草地的面积有所回升;作为人文景
观类型的建设用地,一直保持持续增加,特别是在第
二个时段,增幅较为剧烈;作为本研究区特有的景观
类型—湿地,在 3 个时段所表现出的趋势变化为持
续减少,这与干扰密不可分。
(2)通过 Logistic 回归模型对下辽河平原景观
格局演变的驱动力进行定量分析,各景观类型总体
变化在各个阶段具有不同的重要驱动因素。 总体来
讲,在中小尺度下,自然驱动因素相对于人文驱动因
素的影响相对较弱,人口、经济发展、城市化水平、技
术等因子对于下辽河平原各景观类型的变化具有较
强的驱动作用。
(3)由于数据获取的限制,本文景观格局演变的
驱动指标评价体系构建还不够完善。 研究中的一部
分指标获取了下辽河平原 9 市的驱动因子值,而另
一部分指标获取了下辽河平原 22 县区的驱动因子
值,如果使用更高精度的小尺度数据进行建模分析,
将可以得到更好的回归结果。 另外,在自然驱动力
因子选取时,没有更多地考虑有关水文因子的影响,
如何在庞大和复杂的体系里构建更为全面的驱动模
型,有待深入研究。
References:
[ 1 ]摇 Wu J G. Landscape Ecology Pattern, Process, Scale and
Hierarchy. Beijing: High Education Press, 2000.
[ 2 ] 摇 Fu B J, Chen L D, Ma K M, Wang Y L. Theory and Application
of Landscape Ecology. Beijing: Science Press, 2001: 68鄄95.
[ 3 ] 摇 Brogaard S, Zhao X Y. Rural reforms and changes in land
management and attitudes: a case study from Inner Mongolia.
China, 2002, 31(3): 219鄄225.
[ 4 ] 摇 Lambin E F. Modeling and monitoring land鄄cover change processes
in tropical regions. Progress in Physical Geography, 1997, 21
(3): 375鄄393.
[ 5 ] 摇 Wrbka T, Erb K H, Schulz N B, Peterseil J, Hahn C, Haberl H.
Linking pattern and process in cultural landscapes. An empirical
study based on spatially explicit indicators. Land Use Policy,
2004, 21(3): 289鄄306.
[ 6 ] 摇 Lu P, Su Y R, Niu Z, Wu J S. Landscape pattern changes and
driving force at county level in Hunan Province. Science of Soil
and Water Conservation, 2006, 4(5): 71鄄76.
[ 7 ] 摇 Li W F, Wang Y L, Peng J, Li G C. Landscape spatial changes
in Shenzhen and their driving factors. Chinese Journal of Applied
Ecology, 2004, 15(8): 1403鄄1410.
[ 8 ] 摇 Li X Z, Bu R C, Chang Y, Hu Y M, Wen Q C, Wang X G, Xu
C G, Li Y H, He H S. The response of landscape metrics against
pattern scenarios. Acta Ecologica Sinica, 2004, 24(1): 123鄄134.
[ 9 ] 摇 B俟rgi M, Hersperger A M, Schneeberger N. Driving forces of
landscape change鄄current and new directions. Landscape Ecology,
2004, 19(8): 857鄄868.
[10] 摇 Wu Y, Yang G S, Wan R R, Chen J L. Analysis on the
socioeconomic driving forces differences of cultivated land area
change in Suzhou city. Geography and Geo鄄Information Science,
2007, 23(2): 75鄄79.
[11] 摇 Long A J, Waller M P, Stupples P. Driving mechanisms of coastal
change: peat compaction and the destruction of late Holocene
coastal wetlands. Marine Geology, 2006, 225(1鄄4): 63鄄84.
[12] 摇 Gong Z N, Zhang Y R, Gong H L, Zhao W J. Evolution of
wetland landscape pattern and its driving factors in Beijing. Acta
Geographica Sinica, 2011, 66(1): 77鄄88.
[13] 摇 Wang J C, Guo Z G. Logistic Regression Model: Methods and
Applications. Beijing: Higher Education Press, 2001.
[14] 摇 Sun C Z, Yan X L, Zhong J Q. Evaluation of the landscape
ecological security and analysis of spatial structure in the lower
reaches of Liaohe River Plain. Journal of Safety and Environment,
2014,14(2): 1鄄7.
[15] 摇 Sun C Z, Yan X L, Zhong J Q. Landscape patterns vulnerability
assessment and spatial correlation patterns analysis in the lower
reaches of Liaohe River Plain. Acta Ecologica Sinica, 2014, 34
(2): 247鄄257.
[16] 摇 Hao X M, Li W H, Chen Y N, Zhao R F. Analysis of
socioeconomic driving forces on land use and land cover change in
Tarim River Basin. Journal of Desert Research, 2007, 27( 3):
405鄄411.
[17] 摇 Gao C J, Zhou D M, Luan Z Q, Zhang H Y. Review on
researches of wetland landscape pattern change. Resources and
Environment in the Yangtze Basin, 2010, 19(4): 460鄄464.
[18] 摇 Long H L, Wang W J, Zhai G, Liu S, Zhang Q C. Analysis on
land use changes and their driving forces in Anhui province.
Resources and Environment in the Yangtze Basin, 2002, 11(6):
526鄄530.
[19] 摇 Liu M, Wang K L. Landscape pattern change and its driving forces
in middle and upper reaches of Dongting Lake watershed. Chinese
Journal of Applied Ecology, 2008, 19(6): 1317鄄1324.
[20] 摇 Wang B, Liu G B, Wang B D, Ma J J, Pan W G. Changes of
landscape patterns based on grey relation analysis of hydropower
station. Bulletin of Soil and Water Conservation, 2009, 29(6):
70鄄73.
[21] 摇 Xu C Q, Xu X H, Yu X J, Qiao Y H, Zeng Y J. The logistic
regression model about risk factors of late mortality related with
heart valve replacement. Beijing Biomedical Engineering, 2005,
1927摇 24期 摇 摇 摇 孙才志摇 等:基于 GIS鄄Logistic耦合模型的下辽河平原景观格局变化驱动机制分析 摇
http: / / www.ecologica.cn
24(1): 13鄄16.
[22] 摇 Huang H, Ma F, Ma Y H. Logistic curve model for regional
economy medium鄄term and long鄄term forecast. Journal of Wuhan
University of Technology: Information & Management
Engineering, 2011, 33(1): 94鄄97.
[23] 摇 Li X P, Tang H M, Chen S. Application of GIS鄄based logistic
regression modal on spatial prognosis studying of landslide. Journal
of Highway and Transportation Research and Development, 2005,
22(6): 152鄄155.
[24] 摇 Du W X, Huang X J. Regional difference and influencing factors
of farm households忆 willingness of rural land transmission: a case
study of Shanghai, Nanjing, Taizhou and Yangzhou cities in
Yangtze鄄Delta Region. Resources Science, 2005, 27(6): 90鄄95.
[25] 摇 Sheng S, Liu M S, Xu C, Yu W, Chen H. Application of CLUE鄄
S model in simulating land use changes in Nanjing metropolitan
region. Chinese Journal of Ecology, 2008, 27(2): 235鄄239.
[26] 摇 Yang Y L. Study on Land Use Dynamic Change in Xinjiang [D].
Urumqi: Xinjiang Agricultural University, 2005.
参考文献:
[ 1 ]摇 邬建国. 景观生态学———格局、过程、尺度与等级. 北京: 高等
教育出版社, 2000.
[ 2 ] 摇 傅伯杰, 陈利顶, 马克明, 王仰麟. 景观生态学原理及应用.
北京: 科学出版社, 2001: 68鄄95.
[ 6 ] 摇 路鹏, 苏以荣, 牛铮, 吴金水. 湖南省桃源县县域景观格局变
化及驱动力典型相关分析. 中国水土保持科学, 2006, 4(5):
71鄄76.
[ 7 ] 摇 李卫锋, 王仰麟, 彭建, 李贵才. 深圳市景观格局演变及其驱
动因素分析. 应用生态学报, 2004, 15(8): 1403鄄1410.
[ 8 ] 摇 李秀珍, 布仁仓, 常禹, 胡远满, 问青春, 王绪高, 徐崇刚,
李月辉, 贺红什. 景观格局指标对不同景观格局的反应. 生态
学报, 2004, 24(1): 123鄄134.
[10] 摇 吴业, 杨桂山, 万荣荣, 陈江龙. 苏州市耕地面积变化的社会
经济驱动力差异性分析. 地理与地理信息科学, 2007, 23
(2): 75鄄79.
[12] 摇 宫兆宁, 张翼然, 宫辉力, 赵文吉. 北京湿地景观格局演变特
征与驱动机制分析. 地理学报, 2011, 66(1): 77鄄88.
[13] 摇 王济川, 郭志刚. Logistic回归模型———方法与应用. 北京: 高
等教育出版社, 2001.
[14] 摇 孙才志,闫晓露, 钟敬秋. 下辽河平原景观生态安全评价及空
间结构分析. 安全与环境学报, 2014, 14(2): 1鄄7.
[15] 摇 孙才志,闫晓露, 钟敬秋. 下辽河平原景观格局脆弱性评价及
空间关联格局分析. 生态学报, 2014, 34(2): 247鄄257.
[16] 摇 郝兴明, 李卫红, 陈亚宁, 赵瑞峰. 塔里木河干流土地利用 /
覆盖变化的社会经济驱动力分析. 中国沙漠, 2007, 27(3):
405鄄411.
[17] 摇 高常军, 周德民, 栾兆擎, 张海英. 湿地景观格局演变研究评
述. 长江流域资源与环境, 2010, 19(4): 460鄄464.
[18] 摇 龙花楼, 王文杰, 翟刚, 刘松,张清春. 安徽省土地利用变化
及其驱动力分析. 长江流域资源与环境, 2002, 11 ( 6):
526鄄530.
[19] 摇 刘明, 王克林. 洞庭湖流域中上游地区景观格局变化及其驱
动力. 应用生态学报, 2008, 19(6): 1317鄄1324.
[20] 摇 王兵, 刘国彬, 王伯铎, 马俊杰, 潘文光. 基于灰色关联度的
水电站建设区景观格局及其变化研究. 水土保持通报, 2009,
29(6): 70鄄73.
[21] 摇 许传青, 徐小虎, 于晓军, 乔元华, 曾衍钧. 心瓣膜置换术远
期死亡因素的 Logistic 回归模型与分析. 北京生物医学工程,
2005, 24(1): 13鄄16.
[22] 摇 黄豪, 马斐, 马玉华. Logistic 曲线模型在区域经济长期预测
中的应用. 武汉理工大学学报: 信息与管理工程版, 2011, 33
(1): 94鄄97.
[23] 摇 李雪平, 唐辉明, 陈实. 基于 GIS 的 Logistic 回归在区域滑坡
空间预测中的应用. 公路交通科技, 2005, 22(6): 152鄄155.
[24] 摇 杜文星, 黄贤金. 区域农户农地流转意愿差异及其驱动力研
究———以上海市、南京市、泰州市、扬州市农户调查为例. 资源
科学, 2005, 27(6): 90鄄95.
[25] 摇 盛晟,刘茂松,徐驰,郁文,陈红. CLUE鄄S模型在南京市土地
利用变化研究中的应用. 生态学杂志, 2008, 27(2): 235鄄239.
[26] 摇 杨燕玲. 新疆土地利用动态变化研究 [D]. 乌鲁木齐: 新疆农
业大学, 2005.
2927 摇 生摇 态摇 学摇 报摇 摇 摇 34卷摇