全 文 :第 35 卷第 21 期
2015年 11月
生 态 学 报
ACTA ECOLOGICA SINICA
Vol.35,No.21
Nov., 2015
http: / / www.ecologica.cn
基金项目:国家自然科学基金资助项目(41271161,40971301)
收稿日期:2013鄄12鄄27; 摇 摇 网络出版日期:2015鄄04鄄14
*通讯作者 Corresponding author.E鄄mail: zhangjinhe@ nju.edu.cn
DOI: 10.5846 / stxb201312273041
孙晋坤,章锦河,刘泽华,李曼,杨璐.区域旅游交通碳排放测度模型及实证分析.生态学报,2015,35(21):7161鄄7171.
Sun J K, Zhang J H, Liu Z H, Li M, Yang L.Estimation model of carbon dioxide emissions by regional tourism transportation and empirical analysis of
Nanjing and Huangshan cities, China.Acta Ecologica Sinica,2015,35(21):7161鄄7171.
区域旅游交通碳排放测度模型及实证分析
孙晋坤,章锦河*,刘泽华,李摇 曼,杨摇 璐
南京大学国土资源与旅游学系,南京摇 210023
摘要:交通是旅游业发展的基础,旅游交通的碳排放是旅游业碳排放的主体部分。 合理配置区域旅游交通是旅游业可持续发展
的重要保障。 从区域的角度出发,构建区域旅游交通碳排放测算模型,并以南京市和黄山市为例进行分析。 研究发现:(1)区
域经济和旅游发展水平是影响旅游交通碳排放的重要因素,且经济发展水平和旅游发展水平对旅游交通碳排放“贡献冶的大小
和方向不同;(2)区域旅游交通碳排放主要在区外,区内比例较小。 2008至 2012年,南京市旅游交通碳排放中区外部分所占比
例平均达到 89.13%,黄山市平均达到 90.21%,两城市区外与区内部分之比均约为 9 颐1;(3)区域旅游交通碳排放结构中,民航所
占比重最大,其次是公路和铁路,区域交通结构的优化有利于旅游交通碳排放的减少;(4)区域各类交通方式中,外部交通的碳
排放中旅游业的贡献较大,而城市内部交通的碳排放中旅游业的贡献较小。
关键词:旅游交通;碳排放;相对使用率;综合碳排放系数;南京市;黄山市
Estimation model of carbon dioxide emissions by regional tourism transportation
and empirical analysis of Nanjing and Huangshan cities, China
SUN Jinkun, ZHANG Jinhe*, LIU Zehua, LI Man, YANG Lu
Department of Land Resource and Tourism Sciences, Nanjing University, Nanjing 210023, China
Abstract: Transportation is the foundation of the tourism industry; yet, transportation accounts for a significant amount of
energy consumption and greenhouse gas emissions by the tourism industry. Among the greenhouse gases, carbon dioxide is
the main contributor to global warming. Implementing environmentally friendly regional transportation is essential to promote
the sustainability of tourism. Scientific designed, low鄄carbon emission and green transportation represent great opportunities
and challenges to tourism. Thus, the analysis of carbon dioxide emissions by tourism transportation presents an urgent
theoretical and practical problem. Carbon dioxide emissions by regional tourism transportation include two components: a
tourism part and a non鄄tourism part. The key and difficult step of this research is how to separate the tourism emission part
from the total carbon dioxide emissions of regional tourism transportation. From a top鄄down perspective, this study
constructed a model to estimate the carbon dioxide emissions of regional tourism transportation, and made an empirical
comparison between Nanjing and Huangshan cities, with the former city containing more economic and tourism development
than the latter. It was found that regional economic and tourist development levels represent important factors that influence
the carbon dioxide emissions of tourism transportation. The sizes and orientations of the contribution of regional economic
and tourist development levels differed. The carbon dioxide emissions from tourism transportation in Nanjing were 9.72伊105 t
and 1.33伊105 t in Huangshan during 2012. In parallel, regional economic and tourism influenced carbon dioxide emissions
from tourism transportation, which were related to the regional development level. The elasticity coefficient of the economy to
http: / / www.ecologica.cn
carbon dioxide emissions from regional tourism transportation in Nanjing was greater than that of tourism. In contrast, the
opposite trend was documented in Huangshan, with an elasticity coefficient of more than 1. The average per capita carbon
dioxide emissions of tourism transportation in Nanjing and Huangshan were 10.09 kg and 3.31 kg from 2009 to 2012. It was
also found that the carbon dioxide emissions of regional tourism transportation had a significant effect on the inter鄄region,
where most carbon dioxide emissions occurred. From 2008 to 2012, an annual average of 89. 13% and 90. 21% carbon
dioxide emissions by tourism transportation occurred in the inter鄄region of Nanjing and Huangshan, respectively. In the
structure of tourist carbon dioxide emissions by different types of regional transport modes, the civil aviation, highway, and
railway had the greatest quantity of emissions, while tourism carbon dioxide emissions by different types of regional transport
modes increased to differing degrees. To optimize the structure of regional tourism transportation, it is better to cut down
carbon dioxide emissions from regional tourism transportation. Statistical analysis showed that the diversity index of tourism
carbon dioxide emissions from regional types of transport modes were higher in Nanjing compared to Huangshan. Yet, the
composite carbon emissions indexes were the opposite. In all types of regional transport modes, external transportation
contributed more to tourism than internal transportation. When taking the railway and civil aviation as examples, these two
transport modes contributed 30% and 40%, respectively, in Nanjing and over 60% and 80%, respectively, in Huangshan.
However, there were also differences among regions and periods. The government should take policy effectively to adjust and
improve the allocation of city transportation to reduce tourism carbon dioxide emissions of transportation. The society,
economy, and tourism would be much more sustainable by implementing special planning for city transportation and
designing special tour lines for urban traffic.
Key Words: tourism transportation; carbon dioxide emissions; relative usage index; composite carbon emissions index;
Nanjing city; Huangshan city
低碳发展是未来旅游业的必然选择,绿色旅游交通在其中扮演着重要角色[1]。 气候变化与节能减排是
当今世界关注的热点问题,与全球可持续发展密切相关。 其中,CO2的排放是气候变化与节能减排问题中的
重要因素,其研究受到各界学者的强烈关注[2鄄7]。 世界旅游组织统计数据表明,旅游活动所产生的温室气体
占全球温室气体排放总量的 4%—6%,若不采取相关措施,在未来的 30年内,其温室气体排放总量将增加 1.5
倍。 可见,旅游产业中的 CO2排放不容小觑。 交通是旅游业发展的基础,是旅游业中碳排放的重要来源[8鄄12]。
如今我国处于深化社会经济发展的重要转型时期,科学发展,低碳旅游,绿色交通,是旅游业面临的重要机遇
与挑战,如何科学分析旅游业中交通运输的 CO2排放成为亟待解决的理论与实践问题[13]。
各界学者对旅游交通的碳排放问题十分关注,并取得了积极的进展。 目前国内外研究主要包括以下 3 个
方面:一是旅游交通碳排放的环境影响评估[14鄄19],二是不同旅游交通方式的碳排放测算[20鄄25],三是单个景区
内部的交通碳排放测算或从客源地到目的地过程中的交通碳排放测算[26鄄30]。 但以区域为空间尺度的各类交
通的旅游碳排放测算研究则相对薄弱,文章较少[31鄄35]。 从行政区域的角度估算旅游交通碳排放并对不同案
例地进行对比分析,适合行政区域特点鲜明的国情现状,便于采取有效的管理措施。 所以,本文从区域的角度
出发,采用“自上而下冶的研究方法,构建区域旅游交通碳排放测算模型,对区域内与旅游业密切相关的火车、
轮船、飞机、客运汽车、公交车、出租车、地铁、自驾车等的能源消费过程中排放的 CO2量进行估算,并以南京市
和黄山市为例进行实证与对比,拟回答以下 4个问题:(1)区域经济、旅游发展水平与区域旅游交通碳排放有
何关系? (2)区域旅游交通碳排放对区外有何影响? (3)区域中交通方式的旅游碳排放结构有何特点? (4)
不同交通方式的碳排放中旅游业贡献了多少? 在此基础上,以期揭示区域内旅游交通碳排放的特点及规律,
找出旅游交通低碳发展的关键因素和控制措施,丰富旅游交通碳排放研究的视角与方法,并推动旅游业的可
持续发展。
2617 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
1摇 研究设计
1.1摇 研究思路
区域旅游活动是个复杂的过程,旅游交通亦是如此。 区域的交通碳排放可划分为旅游部分和非旅游部
分,将旅游部分从区域交通中剥离出来是区域旅游交通碳排放研究的关键步骤。 由于旅游活动的跨区域性以
及交通的跨区域性,区域旅游交通的碳排放应从区域游客活动的完整性角度进行测算,可分为区内碳排放和
区外碳排放两部分。 区内部分主要从各种交通方式的区内碳源点的角度进行计算,区外部分主要从区域旅游
交通碳排放的区外影响角度进行计算。 区内部分和区外部分之和就是区域旅游交通碳排放总量。
区外旅游交通碳排放是指游客使用交通工具时在区域外的 CO2排放量。 区外旅游交通的类别一般按交
通方式划分。 旅游者从客源地到目的地,需借助航空、铁路、公路与水运等交通方式实现空间转移,而上述交
通方式主要在区外运营,从客源地到达目的地的过程中排放的 CO2将对区外环境产生负面影响。
区内旅游交通碳排放是指游客使用交通工具时在本区域内的 CO2排放量。 值得说明的是,从客源地到达
目的地的火车、飞机和轮船虽在区内有一定的运营里程,但较小,可忽略其在区内的碳排放部分;长途客运汽
车、私家车等公路运输工具在区内有较大的运营里程,需计算其区内部分碳排放。 此外,区内旅游交通的类别
则按交通工具划分,即从碳源点的角度来看,区内旅游交通工具包括长途客运汽车(区内部分)、私家车(区内
部分)、摩托车(区内部分)、公交车、出租车、地铁、自行车、步行等,其中自行车和步行的方式碳排放为零,私
家车和摩托车可统称为自驾车。
综上所述,区域旅游交通碳排放总量、区内旅游交通碳排放、区外旅游交通碳排放 3个方面构成了区域旅
游交通碳排放研究的框架体系(图 1),从一个新的角度解释了区域旅游交通的碳排放问题。
图 1摇 区域旅游交通碳排放测算概念模型
摇 Fig. 1 摇 The conceptual model of estimating regional CO2
emissions of tourism transportation
1.2摇 模型构建
从数据来源角度可将不同的碳排放测算方法分为
“自上而下冶和“自下而上冶两种,而由于后者较多的估
算环节会影响测算结果的准确性,且不便于横向比较。
本文采用“自上而下冶的测算方法,从宏观方面的统计
数据对区域旅游交通的碳排放进行分析。 鉴于区域各
交通方式统计数据的类型不同,采用不同的 CO2排放量
的测算模型。
模型构建面临的第一个问题是交通工具使用主体
的界定。 区外交通(客源地到目的地的往返)工具的使
用主体包括旅游者和非旅游者,其比例可通过抽样调查
获取。 区内交通工具的使用主体包括旅游者和常住居
民,其中旅游者包括外地游客和本地游客。
在区内旅游交通碳排放方面,如何确定旅游者和常
住居民的交通工具使用率是难点。 以往研究中较多采
用游客和居民的运量规模进行剥离,但该方法忽略了由
于乘坐时间的不同而造成的区域内游客和居民对交通工具使用存在的实际差异。 本文从乘坐时间的角度,分
别调查游客和居民在一天之内对区内各种交通工具的乘坐时间,从而得出游客相对于居民对各种交通方式的
相对使用率,用 F i表示( i表示第 i种交通方式)。 为简化计算,将居民对 i种交通工具每天的使用时间设为 1,
则游客对其的使用时间为 F i。 通过 F i可将游客对 i种交通工具使用的人天数转换为当地居民使用的人天数,
从而将游客对区内交通的使用部分剥离出来。 假定居民每年在本区域内居住 365d,则区内旅游交通碳排放
可以表示为:
3617摇 21期 摇 摇 摇 孙晋坤摇 等:区域旅游交通碳排放测度模型及实证分析 摇
http: / / www.ecologica.cn
C intra鄄regional =移
NDFi
365P - Nr + NDFi
C i (1)
式中,C intra鄄regional是旅游交通碳排放的区内部分,N是区域年游客量,D是区域游客年平均停留天数,F i是 1d 之
内游客相对于居民对 i种交通方式的相对使用率,P 是区域内年末常住人口数量,Nr是本地游客的年人次数
(因本地游客的平均停留天数为 1,故 Nr等同于本地游客的年人天数),常住居民对 i 种交通工具每天的使用
时间为 1,Nr 是本地游客的年人次数(因本地游客的平均停留天数为 1,故 Nr 等同于本地游客的年人天数),
本地游客对 i种交通工具每天的使用时间也为 1,C i是 i种交通方式碳排放总量。 由于“自上而下冶的测算方
法需要各交通方式每年的能源消耗数据或者旅客周转量数据,不同交通方式的统计的口径数据也有所不同,
客运汽车方面的统计数据是旅客周转量,自驾车、公交车、出租车和地铁方面的统计数据是能源消费量,所以
对区内交通的碳排放总量估算需通过以下两种方法:
C i =移Pki茁i (2)
式中,Pki是 i种交通方式的年游客周转量,茁i是 i种交通方式的 CO2排放系数。 或
C i =移E ij酌 j (3)
式中,E ij是 i种交通方式 j种能源的年消费量, 酌 j是 j种能源的 CO2排放系数。
在区外旅游交通碳排放方面,适宜采用现场调查的方法在火车站、飞机场和码头统计出不同月份旅客中
游客的比例,从而将区外交通中旅游碳排放剥离出来。 长途客运汽车和自驾车的区外碳排放部分仍采用公式
(1)的剥离方法。 航空、铁路和水运 3 种交通工具的统计数据均是旅客周转量,所以区外旅游交通碳排放可
表示为:
C inter鄄regional = C i姿 i (4)
式中,C inter鄄regional是旅游交通碳排放的区外部分,姿 i是 i种交通方式乘客中旅游者的比例。 C i的计算仍然根据不
同的统计数据采用式(2)或式(3)的方法。
然而,受国内城市统计年鉴中交通旅客周转量统计口径的限制:公路(主要指客运汽车)方面,遵循属地
统计的原则,即只抽样调查统计本市户籍的车辆在一年中的运营情况(包括区内和区外运输);铁路方面,遵
循境内统计的原则,区域内的铁路线长度是计算铁路旅客周转量的基础,只统计列车在市域内铁路线上行驶
时的旅客周转量;航空方面,航空周转量这一指标的使用是为地方统计 GDP 服务的,一直延续至今,其统计范
围只包括在本城市设有航空分公司的航班,其他航班的运营情况并不在本市的统计范围之内。 这 3种交通方
式的统计口径均与本文的计算口径相差较大,在区域交通研究中存在很大问题,不能直接采用。 但是,城市公
路旅客发送量的抽样调查数据、铁路旅客发送量数据以及航空旅客发送量数据与本文的计算口径较为符合,
可通过全国公路、铁路、航空旅客周转量和旅客发送量得出旅客平均运距,进而估算出各城市公路、铁路和航
空的旅客周转量。
区域旅游交通碳排放总量即是区内部分与区外部分之和,可表示为:
C t = C intra鄄regional + C inter鄄regional (5)
式中,C t是区域旅游交通碳排放总量。
1.3摇 多样性指数和优势度指数
旅游交通碳排放的多样性指数和优势度指数借助生物学中生物多样性指数和生物优势度指数的概念,可
用来表示旅游交通碳排放的多样性和集中性,其计算公式如下:
D =- 移pi lnpi (6)
式中,D为区域旅游交通碳排放的多样性指数,pi为区域中各类交通方式的碳排放量占区域旅游交通碳排放
的比例。
A = ( - 移 1n ln
1
n
) - D (7)
4617 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
式中,A为区域旅游交通碳排放的优势度指数,n为区域中交通方式的种类,D为区域旅游交通碳排放的多样
性指数。
2实证分析
2.1摇 案例地选择
南京市历史悠久,长三角地区核心城市之一,下辖 11 个区,2012 年末常住人口 816.1 万人,面积 6587.02
km2,2012年接待国内外游客约 8113万人次;黄山市地处安徽省最南端,下辖 3 区 4 县,2012 年末常住人口
147.28万人,面积 9807 km2,2012年接待国内外游客约 4315 万人次。 南京市和黄山市在常住人口、市域面
积、经济发展水平、交通发达程度、旅游发展方式等方面具有较大的差别(表 1),且两者都是国内同等级别的
城市中旅游业发展较好的城市,具有一定的代表性与突出性,由此选择南京市和黄山市作为本研究的案例地。
通过对不同经济、旅游发展水平城市的旅游交通碳排放的测算,以揭示不同区域旅游交通碳排放的特点及规
律,找出旅游交通低碳发展的关键因素和控制措施。
表 1摇 南京市与黄山市 2012年相关数据对比
Table 1摇 Data contrast between Nanjing and Huangshan in 2012
指标 Indicator 南京市 黄山市
常住人口 Population / 104人 816.1 147.28
GDP /亿元 GDP / 109元 7201.57 424.90
旅游业收入 Tourism revenues / 109元 1272.50 303.00
游客数 Tourists /万人次 8113.16 3641.30
公路旅客周转量 Highway passenger鄄kilometers / 109人 km* 220.76 14.12
铁路旅客周转量 Railway passenger鄄kilometers / 109人 km 158.91 4.28
航空旅客周转量 Civil aviation passenger鄄kilometers / 109人 km 103.91 8.60
公交车数 Bus /辆 6569 365
出租车数 Taxi /辆 10643 847
地铁数 Metro /辆 480 0
摇 摇 数据来源:南京市和黄山市 2012年国民经济和社会发展统计公报;*pkm为旅客周转量的计量单位,即每人每公里
2.2摇 数据来源与处理
区域旅游交通碳排放的测算与对比所需数据主要来自 5 个方面:一是中国、南京市和黄山市近 5 年统计
年鉴及社会经济发展统计公报,主要包括公路、铁路、水运、航空的旅客周转量和发送量数据,以及常住人口数
据。 其中,由于城市统计年鉴中交通运输统计口径的限制,为了准确地测算,本文通过全国的公路、铁路、水
运、航空的旅客发送量和旅客周转量数据,以及南京市和黄山市公路、铁路、水运、航空的旅客发送量数据换算
出旅客周转量数据。 二是南京市和黄山市交通主管部门的统计资料,主要包括公交车、出租车、地铁等的能源
消费数据。 三是南京市和黄山市旅游主管部门的统计资料,主要包括历年游客数量,游客平均停留天数、本地
居民本地旅游的出游率等。 四是以往研究以及相关机构出台的文件,如 IPCC(政府间气候变化专门委员会)
的评估文件中的标准数据,国内外专家学者研究的经验数据等[11,28,34](表 2)。 五是项目组历年统计调查数
据,主要包括 2008—2012 年南京市和黄山市铁路、水运和航空旅客中游客的比例,游客和居民在公路、公交
车、出租车、地铁等的使用情况(考虑到淡旺季可能存在的差异性,项目组在每年的 1、4、7、10月份分别在两城
市的数个采样点进行访谈与问卷调研),以及公路交通在区内和区外行驶的距离(通过对两城市汽车客运站
所有客运汽车行驶时间的统计,南京市的客运汽车在区内与区外行驶时间分别约为 1.49 h 和 3.53 h,黄山市
则为 1.58 h和 3.64 h,得出其在区内与区外运营距离之比均约为 3 颐7)等。
2.3摇 结果分析
由于自驾车能源消费数据获得的困难性,以及计算过程中发现水运交通碳排放量过低且较多年份数据缺
5617摇 21期 摇 摇 摇 孙晋坤摇 等:区域旅游交通碳排放测度模型及实证分析 摇
http: / / www.ecologica.cn
失,故自驾车和水运未纳入实证测算范围。 所以在估算范围方面,南京市主要包括公路(不包括城市内部的
公共交通,如公交车、出租车等)、铁路、航空、公交车、出租车和地铁 6 种交通方式,其中由于地铁所使用的电
力来自区外,下文中地铁旅游碳排放被视为区外部分;黄山市主要包括公路、铁路、航空、公交车、出租车 5 种
交通方式。
表 2摇 各类交通工具的碳排放指数
Table 2摇 The carbon emissions index of kinds of vehicles
指标 Indicator 客运汽车 Coach 火车 Railway 飞机 Airplane 公交车 Bus 出租车 Taxi 地铁 Metro
碳排放指数 / (kg 人-1 km-1)
Carbon emissions index
0.07 0.027 0.14 0.08 0.133 0.027
2.3.1摇 旅游交通碳排放总量与人均碳排放
南京市与黄山市旅游交通碳排放量的计算结果(图 2)显示:2008至 2012的五年间,两城市旅游交通碳排
放量逐年增加,南京市每年的旅游交通碳排放总量均远高于黄山市,但黄山市增幅高于南京市。 黄山市旅游
交通碳排放量从 2008年的 5.09伊104 t增长到 2012年的 13.30伊104 t,增加 8.21伊104 t,增幅为 161%,而同期南京
市从 44.05伊104 t增长到了 97.15伊104 t,增加 53.1伊104 t,增幅为 121%,黄山市旅游交通碳排放年均增长率
27.14%,高于南京市的 21.86%。
图 2摇 南京市与黄山市旅游交通碳排放量(2008—2012年)
摇 Fig.2摇 Annual number of CO2 emissions from tourism
transportation in Nanjing and Huangshan(2008—2012)
区域经济和旅游发展水平对旅游交通碳排放都有
一定的影响,通过对两城市旅游交通碳排放量与区域
GDP、旅游业总收入的弹性分析发现,不同的区域经济、
旅游发展水平对旅游交通碳排放影响的大小和方向不
同。 选取 2008—2012 年两城市 GDP 和旅游业总收入
的数据与旅游交通碳排放数据分别求弹性系数,结果显
示(表 3):南京市两弹性系数均大于 1,但旅游交通碳
排放的 GDP 弹性系数均小于旅游业总收入弹性系数
(2009年除外)表明南京市经济发展水平对旅游交通碳
排放增长的“贡献冶小于旅游发展,也说明南京市良好
的经济发展基础与水平的“旅游效应冶逐步得到释放与
显现,城市发展有力推动了区域旅游发展。 黄山市两弹
性系数也都大于 1(2009 年除外),但旅游交通碳排放
的 GDP 弹性系数均大于旅游业总收入弹性系数,表明黄山市整体社会经济的发展对旅游交通碳排放的“贡
献冶大于旅游发展,黄山市以“旅游立市冶,结果旅游发展对旅游交通碳排放的“贡献冶反而低于区域经济发展
的影响,表面看起来该结果好像是“悖论冶。 究其原因在于黄山市原有经济基础与水平较为薄弱,区域经济发
展促进了整个交通状况优化,改善了旅游交通环境,进而推动旅游业发展,经济发展对旅游业发展的带动作用
显现,因此导致整体经济发展对旅游交通碳排放的“贡献冶大于旅游业发展自身,这也表明区域经济发展在一
定程度上制约区域旅游业发展,区域旅游业发展水平的提升需要依托区域整体经济发展水平的提高。
表 3摇 区域旅游交通碳排放的经济发展和旅游发展弹性系数
Table 3摇 Elasticity coefficient of economic and tourism to CO2 emissions of regional tourism transportation
案例地 Case 指标 Indicator 2009 2010 2011 2012
南京市 GDP 弹性系数 / % 141.11 136.83 105.05 124.83
旅游业总收入弹性系数 / % 103.85 158.71 141.94 141.30
黄山市 GDP 弹性系数 / % 192.41 162.63 155.42 236.55
旅游业总收入弹性系数 / % 98.31 109.01 148.96 138.29
6617 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
摇 摇 两城市人均旅游交通碳排放量的计算结果显示:游客在南京市年人均旅游交通碳排放量从 2008 年的
8.67 kg上升到 2012年的 11.97 kg,年均增长 8.39%,每人每天的排放量也从 4.50 kg增加到 5.23 kg,年均增长
3.83%;与之不同,黄山市年人均量则从 3.95 kg下降到 3.08 kg,降幅为 22.03%,每人每天的排放量也从 1.75
kg降至 1.08 kg,降幅达 38.29%。 随着南京市旅游业整体吸引力和接待水平的提高,客流在空间上扩散到市
郊及周边县域,游客旅行里程增加,碳排放量的增长速度超过了游客量的增长速度,导致了年人均碳排放量的
增加,每人每天的碳排放量有所增长;而黄山市在交通设施普遍改善后,相对分散的景区之间连通更加便捷,
游客乘坐各类交通的时间有所减少,碳排放量的增长速度低于游客量的增长速度,导致人均碳排放量有所减
少,每人每天的碳排放量有所下降。
2.3.2摇 区内与区外旅游交通碳排放
环境影响与生态责任的区外转移是旅游业发展的重要特征,旅游活动和交通运输的跨区域性导致了区域
旅游交通碳排放的区外影响,其大小取决于区外部分占区域旅游交通总的碳排放比例的大小。
通过对南京市和黄山市区内和区外旅游交通碳排放的测算,得到以下结果:
(1)区域旅游交通碳排放中,区外部分占主导。 2008至 2012年,南京市旅游交通碳排放中区外部分均在
86%以上(图 3),平均达到 89.13%;黄山市旅游交通碳排放中区外部分在 85.93%—91.37%之间(图 4),平均
达到 90.21%。 这表明区域旅游发展,从 CO2排放角度而言,对区外的环境影响远大于对区内环境的影响,两
城市区外与区内部分之比均约为 9 颐1。
图 3摇 南京市旅游交通区内、区际碳排放量占比(2008—2012年)
摇 Fig. 3 摇 Annual scale of intra鄄regional and inter鄄regional CO2
emissions from tourism transportation in Nanjing(2008—2012)
图 4摇 黄山市旅游交通区内、区际碳排放量占比(2008—2012年)
摇 Fig. 4 摇 Annual scale of intra鄄regional and inter鄄regional CO2
emissions from tourism transportation in Huangshan(2008—2012)
摇 摇 (2)区域旅游交通碳排放中区外部分有下降的趋势,而区内部分有上升的趋势。 南京市区外部分由 2008
年的 92.92%下降到 2012年的 86.23%(图 3),黄山市由 2008 年的 91.37%下降到 2012 年的 85.93%(图 4)。
这表明两地的客源市场相对稳定,游客区内逗留时间在延长,传统观光型旅游在向目的地深度游转变。
(3)区域旅游交通碳排放的区内部分中外地游客占主要部分。 这主要与区域游客中外地游客人天数与
本地游客的人天数的比例大小有关,2008至 2012年,南京市外地游客人天数比例平均为 56.25%,黄山市外地
游客人天数比例平均为 53.76%,所占比例均较高。 同时也表明区域内主要景区的位置越靠近主城区、景区性
质(如城市公园)与居民日常休闲需求越接近,居民在本区域内的出游率就越高。
2.3.3摇 各种交通方式的旅游碳排放结构
区域内各类不同交通方式对旅游交通碳排放总量和区内、区外旅游交通碳排放量都具有不同的影响。 每
种交通方式的旅游碳排放都有各自的特点,合理发展各类交通,协调区域交通配置是区域旅游业持续发展的
重要途径。
7617摇 21期 摇 摇 摇 孙晋坤摇 等:区域旅游交通碳排放测度模型及实证分析 摇
http: / / www.ecologica.cn
通过对南京市和黄山市各类交通方式旅游碳排放结构的分析,得到以下结果:
(1)区域旅游交通碳排放中,民航所占比重最大,其次是公路和铁路,然后是出租车,其余交通方式所占
比重较小。 2008至 2012年,南京市航空旅游碳排放占区域旅游交通碳排放总量的比例在 55.41%—60.12%
之间(图 5),平均达到 57.52%,公路平均达到 19.22%,铁路达到 17.05%,出租车达到 3.63%;黄山市方面(图
6),航空所占比重均在 64%以上,平均达到 69.09%,公路平均达到 14.24%,铁路和出租车分别为 11.19%和
5.03%。 南京市民航与出租车的旅游交通碳排放量比例低于黄山市,而铁路碳排放量比例高于黄山市,一方
面表明区域经济发展水平以及交通结构对交通碳排放量具有重要影响,另一方面表明黄山市旅游业发展应提
高远程客源市场的铁路可进入性,大力进行铁路尤其是高铁的建设。
图 5摇 南京市旅游交通碳排放总量中各交通方式所占比例(2008—2012年)
Fig.5摇 Annual scale of CO2 emissions of kinds of transport modes in Nanjing(2008—2012)
图 6摇 黄山市旅游交通碳排放总量中各交通方式所占比例(2008—2012年)
Fig.6摇 Annual scale of CO2 emissions of kinds of transport modes in Huangshan(2008—2012)
8617 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
摇 摇 (2)区域各类交通方式的旅游碳排放量基本保持不同程度的增长,其中出租车增长幅度较为明显。 2008
至 2012的 5年间,南京市各类交通方式的旅游碳排放中(图 7),公路、铁路、民航、公交车、出租车和地铁的年
平均增长率分别为:36.52%、8.69%、19.40%、25.30%、69.08%和 41.98%;黄山市各类交通方式的旅游碳排放
中(图 8),公路、铁路、民航、公交车、出租车的年平均增长率分别为:54. 00%、- 4. 17%、25. 60%、57. 53%、
34.95%。 黄山市铁路出现负增长,主要是由于黄山市火车站和火车等级不高,火车过站时间不合理,导致远
程客源选择铁路到达的较少,而铁路是碳排放指数最小的交通方式之一,从绿色交通的角度讲,黄山市要大力
发展铁路交通。
图 7摇 南京市各交通方式旅游碳排放量增长率(2009—2012年)
摇 Fig.7摇 Annual growth rate of CO2 emissions of kinds of transport
modes in Nanjing(2009—2012)
图 8摇 黄山市各交通方式旅游碳排放量增长率(2009—2012)
摇 Fig.8摇 Annual growth rate of CO2 emissions of kinds of transport
modes in Huangshan(2009—2012)
摇 摇 (3)区域交通结构的优化有利于旅游交通碳排放的减少。 2008 至 2012 年,南京市旅游交通碳排放多样
性指数均在 1以上(表 4),大于黄山市,且保持不断增长,优势度指数均在 0.9 以下,且保持不断下降;而黄山
市有所不同,旅游交通碳排放多样性指数均在 0.9—1之间,基本保持稳定,优势度指数基本保持在 0.7 左右。
一般地,区域的旅游交通碳排放多样性指数越高,旅游交通结构越合理,其与区域旅游交通的碳排放强度有着
密切的关系。 通过将区域旅游交通碳排放中各交通方式所占的比例与其碳排放指数相乘并累加,可得到区域
旅游交通的综合碳排放指数(CCEI)。 与各种交通方式的碳排放指数相对应,区域旅游交通的综合碳排放指
数可用来表征区域中所有旅游交通方式综合的碳排放指数,可作为区域旅游交通碳排放强度的综合指标。
2008 至 2012年,南京市旅游交通综合碳排放指数平均为 0.1049kg 人-1 km-1(表 4),低于同期黄山市的 0.1168
kg / pkm。 表明区域旅游交通碳排放多样性指数越高,其综合碳排放指数越低,越有利于区域旅游交通碳排放
的减少。
表 4摇 区域旅游交通碳排放多样性指数及综合碳排放指数
Table 4摇 Diversity index of CO2 emissions of kinds of transport modes and composite carbon emissions index
年份
Year
多样性指数
Diversity index
优势度指数
Dominance index
综合碳排放指数 / (kg 人-1 km-1)
Composite carbon emissions
index
南京市 黄山市 南京市 黄山市 南京市 黄山市
2008 1.075 0.971 0.856 0.638 0.1033 0.1133
2009 1.135 0.904 0.796 0.705 0.1025 0.1174
2010 1.154 0.906 0.777 0.703 0.1053 0.1175
2011 1.203 0.915 0.728 0.694 0.1076 0.1188
2012 1.223 0.992 0.708 0.617 0.1058 0.1168
9617摇 21期 摇 摇 摇 孙晋坤摇 等:区域旅游交通碳排放测度模型及实证分析 摇
http: / / www.ecologica.cn
2.3.4摇 各类交通方式的碳排放量中旅游业的贡献
2008至 2012年,南京市各类交通碳排放中(表 5),旅游业的“贡献冶均在不断增长,航空中旅游业的碳排
放比例均在 35%以上,2011年更是达到 38.12%,其次是铁路,平均达到 31.25%,出租车平均达到 15.01%,公
路平均达到 10.55%,其他均不到 10%;同期黄山市各种交通碳排放中(表 5),旅游业的“贡献冶也在不断增长,
民航中旅游业的碳排放年均达到 72.65%,铁路平均达到 60.97%,出租车 22.24%,公路 16.30%。 总体而言,区
域各类交通方式的碳排放中,对外交通中的旅游业贡献较大,而城市内部交通的旅游业贡献较小。
表 5摇 南京市和黄山市各交通方式碳排放量中旅游业的贡献大小 / %
Table 5摇 The proportion of tourism in CO2 emissions of kinds of transport modes in Nanjing and Huangshan
交通方式
Transport mode
南京市 黄山市
2008 2009 2010 2011 2012 2008 2009 2010 2011 2012
公路 Highway 7.91 8.86 10.92 11.34 13.74 9.66 10.44 11.95 18.11 31.35
铁路 Railway 32.11 31.23 29.63 30.43 32.86 60.12 59.32 61.51 62.34 61.56
航空 Civil aviation 36.23 35.78 37.41 38.12 37.91 72.03 74.29 73.15 72.34 71.46
公交车 Bus 2.10 2.37 2.97 3.10 3.83 1.58 1.72 2.00 3.21 6.41
出租车 Taxi 11.42 12.72 15.53 16.09 19.28 13.82 14.88 16.92 24.91 40.65
地铁 Metro 4.12 4.63 5.78 6.01 7.38
3摇 结论与讨论
从区域的角度探讨旅游交通碳排放,有利于决策者提出科学合理的管理措施,走低碳旅游、绿色交通之
路。 通过对南京市和黄山市旅游交通碳排放的测算与对比,主要得出以下结论:
(1)区域经济和旅游发展水平是影响旅游交通碳排放的重要因素,且经济发展水平和旅游发展水平对旅
游交通碳排放影响“贡献冶的大小和方向不同。 2008 至 2012 的 5 年间,黄山市旅游交通碳排放量从 2008 年
的 5.09伊104 t增长到 2012 年的 13.30伊104 t,增加 8.21伊104 t,增幅为 161%,而同期南京市远高于黄山市,从
44.05伊104 t增长到了 97.15伊104 t,增加 53.1伊104 t,增幅为 121%。 另一方面,南京市旅游交通碳排放的 GDP 弹
性系数和旅游业总收入弹性系数均大于 1,但前者均小于后者(2009 年除外),而黄山市两弹性系数也都大于
1(2009年除外),但前者均大于后者。 5年来南京市人均旅游交通碳排放量平均为 10.09 kg,逐年上升,黄山
市为 3.31 kg,但基本呈逐年递减态势。
(2)区域旅游交通碳排放主要在区外,区内比例较小。 现阶段中国居民出游目的仍以观光为主,在旅游
地停留时间较短,且飞机和公路的碳排放系数较高,势必对区外产生较大影响。 2012 年南京市有 85.21%的
旅游交通 CO2排放在区外,黄山市也达到了 71.73%,比例较大。 区域旅游交通碳排放的区内部分中外地游客
占绝大部分。 在可预见的未来,由于人们的出行意愿不断加强以及在旅游地停留时间的增加,区域旅游交通
碳排放中区外部分的总量将越来越大,但区外部分的相对比例将有所减少。
(3)区域旅游交通碳排放中,民航所占比重最大,其次是公路、铁路和出租车,区域交通结构的优化有利
于旅游交通碳排放的减少。 2008至 2012年,南京市航空旅游碳排放占区域旅游交通碳排放总量的比例平均
达到 57.52%,公路、铁路、出租车分别达到 19.22%、17.05%、3.63%;黄山市方面,航空所占比重均在 64%以
上,平均达到 69.09%,公路、铁路、出租车分别为 14.24%、11.19%和 5.03%。 各类交通方式的旅游碳排放量基
本保持不同程度的增长,其中出租车增长幅度较为明显,两城市出租车年均分别增长 69.08%和 57.53%。 5年
来,南京市旅游交通综合碳排放指数平均为 0.1049kg / pkm,低于同期黄山市的 0.1168 kg 人-1 km-1。
(4)区域各类交通方式的碳排放中,对外交通旅游业的贡献较大,而城市内部交通的旅游业贡献较小。
2008至 2012年,两城市各类交通碳排放中旅游业的“贡献冶均在不断增长,南京市航空中旅游业的碳排放比
例均在 35%以上,铁路、出租车、公路年平均分别达到 31.25%、 15.01%和 10.55%;同期黄山市各种交通碳排
0717 摇 生摇 态摇 学摇 报摇 摇 摇 35卷摇
http: / / www.ecologica.cn
放中,民航中旅游业的碳排放年均达到 72.65%,铁路、出租车、公路平均达到 60.97%、22.24%和 16.30%。
鉴于此,为促进区域旅游与经济的健康发展,应合理调整与改善区域交通配置状况,选择低碳环保的交通
方式及能源,如配置城市公共自行车;开设城市内部的旅游交通专线,提高区域内景区景点的连通性;提高区
域旅游各要素的服务质量,以增加游客的平均停留时间。 本文计算的仅是各类交通方式能源消费过程中碳排
放量,并没有包括其交通站点等处的碳排放量,若全面考虑整个交通运营的碳排放量,其结果将大不相同;自
驾车旅游在国内仍处于起步阶段,所占比例较小且数据难以统计,本文未将其计算在内,但作为未来旅游新的
热点,其碳排放问题是今后研究的重点及难点。
参考文献(References):
[ 1 ]摇 The World Tourism Organization and the United Nations Environment Programme. Climate Change and Tourism: Responding to Global Challenges.
Madrid: the World Tourism Organization, 2008.
[ 2 ] 摇 Peeters P, Dubois G. Tourism travel under climate change mitigation constraints. Journal of Transport Geography, 2010, 18(3): 447鄄457.
[ 3 ] 摇 G觟ssling S. Global environmental consequences of tourism. Global Environment Change, 2002, 12(4): 283鄄302.
[ 4 ] 摇 林剑艺, 孟凡鑫, 崔胜辉, 于洋, 赵胜男. 城市能源利用碳足迹分析———以厦门市为例. 生态学报, 2012, 32(12): 3782鄄3794.
[ 5 ] 摇 童抗抗, 马克明. 居住鄄就业距离对交通碳排放的影响. 生态学报, 2012, 32(10): 2975鄄2984.
[ 6 ] 摇 舒娱琴. 中国能源消费碳排放的时空特征. 生态学报, 2012, 32(16): 4950鄄4960.
[ 7 ] 摇 吴燕, 王效科, 逯非. 北京市居民食物消费碳足迹. 生态学报, 2012, 32(5): 1570鄄1577.
[ 8 ] 摇 Peeters P, Egmond T V, Visser N. European tourism, transport and environment. Breda: NHTV Centre for Sustainable Tourism and
Transport, 2004.
[ 9 ] 摇 陆化普. 城市绿色交通的实现途径. 城市交通, 2009, 7(6): 23鄄27.
[10] 摇 何吉成, 李耀增. 1975—2005年中国铁路机车的 CO2排放量. 气候变化研究, 2010, 6(1): 35鄄39.
[11] 摇 石培华, 吴普. 中国旅游业能源消耗与 CO2排放量的初步估算. 地理学报, 2011, 66(2): 235鄄243.
[12] 摇 明庆忠, 陈英, 李庆雷. 低碳旅游: 旅游产业生态化的战略选择. 人文地理, 2010, 25(5): 22鄄26, 127鄄127.
[13] 摇 蔡萌, 汪宇明. 低碳旅游: 一种新的旅游发展方式. 旅游学刊, 2010, 25(1): 13鄄17.
[14] 摇 G觟ssling S. Sustainable tourism development in developing countries: some aspects of energy use. Journal of Sustainable Tourism, 2000, 8(5):
410鄄425.
[15] 摇 Peeters P, Szimba E, Duijnisveld M. Major environmental impacts of European tourist transport. Journal of Transport Geography, 2007, 15(2):
83鄄93.
[16] 摇 Becken S. Analysing international tourist flows to estimate energy use associated with air travel. Journal of Sustainable Tourism, 2002, 10(2): 114鄄
131.
[17] 摇 Becken S. Tourism and Transport in New Zealand Implications for Energy Use. TRREC report no. 54. Lincoln, New Zealand: Lincoln
University, 2002.
[18] 摇 Lumsdon L. Transport and tourism: cycle tourism a model for sustainable development?. Journal of Sustainable Tourism, 2000, 8(5): 361鄄377.
[19] 摇 Kwon T H. Decomposition of factors determining the trend of CO2 emissions from car travel in Great Britain (1970—2000). Ecological Economics,
2005, 53(2): 261鄄275.
[20] 摇 李立, 汪德根. 城市低碳公共交通对旅游景点通达性影响研究———以苏州市为例. 经济地理, 2012, 32(3): 166鄄172.
[21] 摇 Sgouridis S, Bonnefoy P A, Hansman R J. Air transportation in a carbon constrained world: long鄄term dynamics of policies and strategies for
mitigating the carbon footprint of commercial aviation. Transportation Research Part A: Policy and Practice, 2011, 45(10): 1077鄄1091.
[22] 摇 Tol R S J. The impact of a carbon tax on international tourism. Transportation Research Part D: Transport and Environment, 2007, 12( 2):
129鄄142.
[23] 摇 汪清蓉. 旅游线路产品能源消耗及二氧化碳排放量估算方法及实证分析. 生态经济, 2012, (8): 79鄄84.
[24] 摇 Becken S, Simmons D G, Frampton C. Energy use associated with different travel choices. Tourism Management, 2003, 24(3): 267鄄277.
[25] 摇 胡莹菲, 王润, 余运俊. 厦门城市交通系统碳足迹评估研究. 上海环境科学, 2010, 29(3): 98鄄101, 116鄄116.
[26] 摇 肖潇, 张捷, 卢俊宇, 钟士恩, 尹立杰. 旅游交通碳排放的空间结构与情景分析. 生态学报, 2012, 32(23): 7540鄄7548.
[27] 摇 窦银娣, 刘云鹏, 李伯华, 刘沛林. 旅游风景区旅游交通系统碳足迹评估———以南岳衡山为例. 生态学报, 2012, 32(17): 5532鄄5541.
[28] 摇 包战雄, 袁书琪, 陈光水. 不同游客吸引半径景区国内旅游交通碳排放特征比较. 地理科学, 2012, 32(10): 1168鄄1175.
[29] 摇 Kuo N W, Chen P H. Quantifying energy use, carbon dioxide emission, and other environmental loads from island tourism based on a life cycle
assessment approach. Journal of Cleaner Production, 2009, 17(15): 1324鄄1330.
[30] 摇 Lin T P. Carbon dioxide emissions from transport in Taiwan忆s national parks. Tourism Management, 2009, 31(2): 285鄄290.
[31] 摇 谢园方, 赵媛. 长三角地区旅游业能源消耗的 CO2排放测度研究. 地理研究, 2012, 31(3): 429鄄438.
[32] 摇 魏艳旭, 孙根年, 马丽君, 李静. 中国旅游交通碳排放及地区差异的初步估算. 陕西师范大学学报: 自然科学版, 2012, 40(2): 76鄄84.
[33] 摇 Lee J W, Brahmasrene T. Investigating the influence of tourism on economic growth and carbon emissions: Evidence from panel analysis of the
European Union. Tourism Management, 2013, 38: 69鄄76.
[34] 摇 G觟ssling S, Peeters P, Ceron J P, Gubois G, Patterson T, Richardson R B. The eco鄄efficiency of tourism. Ecological Economics, 2005, 54(4):
417鄄434.
[35] 摇 陶玉国, 张红霞. 江苏旅游能耗和碳排放估算研究. 南京社会科学, 2011, (8): 151鄄156.
1717摇 21期 摇 摇 摇 孙晋坤摇 等:区域旅游交通碳排放测度模型及实证分析 摇