免费文献传递   相关文献

Applications of minirhizotron techniques to root ecology research

微根窗技术及其在植物根系研究中的应用



全 文 :第 25 卷第 11 期
2005 年 11 月
生  态  学  报
A CTA ECOLO G ICA S IN ICA
V o l. 25,N o. 11
N ov. , 2005
微根窗技术及其在植物根系研究中的应用
白文明, 程维信, 李凌浩
(中国科学院植物研究所植被数量生态学重点实验室, 北京 10093)
基金项目: 中国科学院海外杰出人才团队资助项目
收稿日期: 2005204214; 修订日期: 2005208217
作者简介: 白文明 (1969~ ) , 男, 吉林镇赉人, 博士, 主要从事草地生态学研究. E2m ail: bwm ing@ ibcas. ac. cn
Foundation item: O verseas T alen t T eam P ro ject of Ch inese academ y of Sciences
Rece ived date: 2005204214; Accepted date: 2005208217
Biography: BA IW en2M ing, Ph. D. , m ain ly engaged in grassland eco logy. E2m ail: bwm ing@ ibcas. ac. cn
摘要: 植物根系对固定植株和获得水分和养分起重要作用, 但是土壤不可观测性的限制, 给根系生态学的研究带来一定的困难。
因此, 找到原位观察根系生长的方法对研究根系生态学就显得尤为重要。目前微根窗技术被认为是研究根系生态学最有前途的
方法。从微根窗系统的组成、微根窗管的安装、微根窗图象的收集及微根窗数据的利用等几个方面进行了概述。阐述了在微根窗
使用和操作过程中需要注意的几个问题, 微根窗管与土壤之间的良好接触是获得高质量微根窗图像数据的前提和基础; 图象收
集的频率依赖于测定和计算的根系参数, 如果想得到根系现存量、生产力、更新和寿命的信息, 必须避免采样间隔时间过长。
关键词: 微根窗; 根系生产; 根系周转; 根系死亡
文章编号: 100020933 (2005) 1123076206 中图分类号: S944154 文献标识码: A
Appl ica tion s of m in irh izotron techn iques to root ecology research
BA IW en2M ing, CH EN G W ei2X in, L I L ing2H ao  (L abora tory of Q uan tita tive V eg eta tion E cology , Institu te of B otany , Ch inese
A cad emy of S ciences, B eij ing , 100093, Ch ina). A cta Ecolog ica S in ica , 2005, 25 (11) : 3076~ 3081.
Abstract: P lan t roo t p lays an impo rtan t ro le in ancho rage and w ater and nu trien t acqu irem en t. How ever m ethodo logical
lim ita t ions have troub led m any researchers because of the inaccessib ility of below ground system s. It appears impo rtan t to find
a good app roach fo r in situ observat ion of roo t grow th. T he m in irh izo tron m ethod has been regarded as the mo st p rom ising
m ethod fo r roo t studies so far. T h is art icle aim s to in troduce the m ethod to researchers in Ch ina and to syn thesize several
issues invo lved in the app licat ion of the m in irh izo tron m ethod in term s of it’s hardw are, in sta lla t ion, digita l im age co llect ion,
data acqu isit ion, and subsequen t data analysis.
M in irh izo tron tubes are m ain parts of the m in irh izatron system. M in irh izo tron tubes of differen t m ateria ls m ake differen t
influence on grow th and longevity of p lan t roo ts. Glass is the m ateria l carrying m in im al influence at p resen t. A key
requ irem en t fo r in sta lla t ion of m in irh izo tron tubes is to in su re a good con tact betw een the tube su rface and the su rrounding
so il. M in irh izo tron in stalla t ion usually adop ts a tw o2step tube in stalla t ion m ethod. Bu t th is m ethod m ay no t operate very w ell
in several k inds of so ils such as heavy tex tu red so ils, so ils w ith abundan t rock s and cobb les, so ils w ith argillic (clayey)
ho rizons, o r loo se structu reless so ils. T he angles of m in irh izo tron in stalla t ion are common ly 30°o r 45°off the vert ical.
F requency of m in irh izo tron im age co llect ion has m arked influence on the calcu lated veracity of the grow th and death of
roo ts du ring samp ling in tervals, fo r the grow th and death of roo t occu r frequen tly. T he frequency of im age co llect ion depends
upon the roo t demography and the t im e and resou rces availab le. If info rm ation abou t roo t standing crop , p roduction, tu rnover
and lifespan is desired, long samp ling in tervals shou ld be avo ided.
T he basic info rm ation of b irth, death, roo t num ber and roo t length can be derived from the m in irh izo tron im age, w h ich
m ake it m uch easier to calcu late roo t p roduction and tu rnover (mo rtality). U n iversally, it is based on the changes of co lo r and
mo rpho logy to iden tify living roo ts o r dead roo ts. If the roo t changes from w h ite to b row n o r b lack, o r the roo t becom es
sh rivelling, soften ing, part ia l decompo sed, o r disappeared, it is view ed as dead roo t, bu t no t all the roo ts that have changed
from w h ite to b row n are dead roo ts. So it is st ill d ifficu lt to accu rately discrim inate the living roo ts and dead roo ts on ly th rough
m in irh izo tron im age.
Key words: m in irh izo tron; fine roo t; p roduction; tu rnover; mo rtality
植物根系不但有固定植株、吸收水分和养分的作用, 而且根系生产和周转直接影响陆地生态系统碳和氮的生物地球化学循
环[1, 2 ]。虽然都清楚地认识到植物根系的功能和作用, 但由于受根系研究方法的限制, 直到目前对陆地生态系统根系生态学的研
究还很薄弱[3 ] , 因此寻找并建立新的根系研究方法就显得至关重要。由于受土壤不可观测性的限制, 根系研究方法进展缓慢, 传
统的研究方法如挖掘法[4 ]、剖面法[5 ]、盆栽法[5 ]及土柱法[6~ 8 ]仍在大量使用。近年来随着光学和电子学的发展, 特别是微根窗法
(M in irh izo tron)的应用, 使根系生态学的研究得到了较快的发展。
当前, 在根系生产力及其周转方面的研究中, 改进的微根窗技术很有前途[9, 10 ]。它是唯一提供多个时间段内原位重复观测
根系的方法, 这种测量方法是非破坏性的, 是传统的研究方法不可替代的[10, 11 ]。所以, 微根窗技术被广泛应用于根系动态及其
功能的研究[12, 13 ]。目前, 在国外, 微根窗技术在森林[14, 15 ]、果园[16, 17 ]、草地[18 ]、沙漠[19, 20 ]和农业生态系统[21, 22 ]等植物根系研究中
已经普遍应用。但是, 由于技术设备和其它一些因素的限制, 微根窗技术在我国的利用受到一定的影响。因此, 从微根窗系统的
组成、微根窗管的安装、微根窗图象的采集及微根窗数据的利用等几个方面进行概述, 以期为微根窗技术在我国广泛应用提供
一定的指导。
图 1 微根窗图象采集系统[30, 32 ]
F ig. 1 M inirh izo tron im age acquisit ion system [30, 32 ]
1 微根窗系统的组成
自Bates[23 ]首次提出微根窗概念后, 微根窗就成为了解根系
形成和功能的一个常用工具。B row n 和U pchurch [24 ]对微根窗的
定义:“一个微根窗系统是由多组分组成的, 在土壤中真实地或
通过图象记录了一般难以接近的植物根系生长情况”。利用微根
窗系统观察根系的工具主要有: 根系潜望镜[25 ]、内窥镜[18 ]、光学
孔径检查仪[26, 27 ]、光学照相机[28 ]、照明镜[29 ]以及微型彩色摄像
机[9, 14 ]等。早期的微根窗研究比较简单, 收集到的数据量少, 随着
光学和电子学的发展, 从微根窗收集到的数据和信息量大幅度
增加, 使微根窗技术得到了长足的发展。目前, 一个典型的微根
窗系统是由一个插入土壤中的微根窗管、摄像机、标定手柄、控
制器和一台计算机组成 (图 1) [30~ 32 ]。
2 微根窗管的安装
微根窗管是微根窗系统的一个重要组成部分, 一般是透明的玻璃或塑料管。管子的形状通常是圆形的[24 ] , 但也有方形
管[18 ]。膨胀管[33 ]或加压管[34 ]也通常被使用。微根窗管一般由树脂玻璃、丁酸盐纤维素 (CAB)、聚碳酸脂、丙烯酸树脂和玻璃制
成。对材料的选择基于成本和实用性。有些研究报道这些材料对根系生长情况没有影响[24, 32, 35 ] , 但W ith ington 等[27 ]比较了玻
璃、丙烯酸树脂和丁酸盐纤维素管对苹果 (M alus d om estica)、阔叶树、松树根系形态和生长动态的影响, 发现这些材料在有些植
物中对根系生长影响较小但对根系的寿命影响比较大, 影响根系寿命最大的材料是丁酸盐纤维素, 同时指出在这些材料中玻璃
对植物根系的生长和寿命影响最小。微根窗管必须是密封的, 地上部是绝缘的, 并将其涂成黑色以减少管子的热量传导, 同时盖
上不透光的盖, 避免光的射入影响根系生长[36 ]。微根窗管的安装应保证对管子周围的土壤扰动最小[37 ] , 其次应使土壤与微根窗
管之间的接触紧密, 如果土壤与管壁没有良好的接触, 土壤中根系的生长就不具有代表性[10 ]。传统的安装方法通常是用钻钻一
个深度和大小与微根窗管直径相符的孔, 然后将管子插入孔中。这种简单的安装方法一般效果都很好[38~ 40 ]。有些研究采用双步
骤安装方法, 即先用一个直径略小于微根窗管直径的螺旋钻移出大部分的土壤, 之后用一个锥形钻头切出最终符合管直径大小
要求的孔, 并在插入管子之前用圆形的细金属刷子在孔内刷出条纹[41, 42 ]。显然土壤类型影响微根窗管安装方法的采用, 在质地
较重的土壤、含有石块的土壤或松散无结构的沙土上用传统方法安装微根窗管有一定的问题[13 ] , Ph illip s 等[20 ]报道使用气压岩
石钻孔机安装微根窗管可以很好地解决在上述土壤中用传统方法安装微根窗管存在的问题。W ilcox 等[43 ]应用了气压岩石钻孔
机在莫哈韦沙漠安装微根窗管研究了四种沙漠灌木根系生长动态和土壤水分的关系。微根窗管安装的角度范围比较大, 可水
平、垂直或成 22°角、30°角、35°角、45°角、60°角等非垂直角度放置在土壤中。成角度放置的微根窗管在获得有关根系垂直分布方
面的信息要优于水平放置的微根窗管, 并且在野外安装时, 成角度放置的微根窗管比水平放置的微根窗管更易安装[32 ]。根据文
献资料分析, 微根窗管安装大多数是与垂直方向成 30°或 45°角 (表 1)。微根窗管的安装角度可能影响根系的生长[29 ], 但关于这
方面的报道非常少。
770311 期 白文明 等: 微根窗技术及其在植物根系研究中的应用  
表 1 植物根系研究中微根窗角度利用的频次
Table 1 Frequency of m in irh izotron tube angle used in f ine root
studies
管安装角度
A ngle of tube
installat ion
次数
Count
占百分比 (% )
Percen t of to tal
参考文献
Reference
010 1 216 [ 44 ]
1510 1 216 [ 45 ]
2110 1 216 [ 46 ]
2215 1 216 [ 47 ]
2813 1 216 [ 48 ]
3010 10 2516 [ 18 ] [ 34 ] [ 49 ] [ 50 ] [ 16 ][ 51 ] [ 19 ] [ 20 ] [ 52 ] [ 17 ]
3510 1 216 [ 24 ]
4010 1 216 [ 53 ]
4510 16 4110 [ 54, 55 ] [ 56 ] [ 57 ] [ 13 ] [ 58 ][ 59, 60 ] [ 61, 62 ] [ 40 ] [ 63 ]
[ 64 ] [ 65 ] [ 66 ] [ 67 ]
6010 3 716 [ 68, 69 ] [ 70 ]
9010 3 716 [ 29 ] [ 71 ] [ 72 ]
To tals 39 100
3 微根窗图象的采集
微根窗图象采集一般是使用微根窗系统的摄像机把图象
收集到录像带里[43, 56 ]。为了确保在微根窗管上同一地点重复
取样, 通常在微根窗管上刻上标记或使用带有刻标定位的自
动手柄[39, 40, 43, 56, 57, 67, 71, 73, 74 ]。微根窗图象采集的频率依赖于测
定的根系参数, 图象采集的时间间隔从文献资料看有 1 周、2
周、4 周或更长时间 6~ 16 周的都有[14, 15, 59, 62, 75 ]。一般在冬季采
样次数减少[55 ]或不采样[56, 57 ]。微根窗图象采集频率对计算根
系生长和死亡的准确性影响很大, 因为在微根窗采样间隔期
内常常出现根系形成和死亡, 所以较长的采样间隔会低估根
系的生长和死亡率[13, 32, 65 ]。D ubach & R usselle[44 ]评价了采样
频率对根系形成和死亡数据准确性估计的影响, 他们设置了
从 1 到 8 周不同的采样间隔, 得出紫花苜蓿 (M ed icag o sa tiva
L. ) 在 2 周或 3 周的采样间隔内计算的根系周转率的准确率
为 97% ; 采样的时间间隔为 8 周时, 计算的根系周转率的准确
率只有 75% (与采样间隔 1 周相比)。同时他们比较了相同的
采样时间对紫花苜蓿和百脉根 (L otus corn icu la tus L. ) 根系死
亡率的影响, 发现采样间隔同为 8 周时对紫花苜蓿根系死亡
率的估计少 25% , 而对百脉根根系死亡率的估计只少 113% 以下, 原因是百脉根根系存活时间比紫花苜蓿长, 因此不同植物种
类有不同的适宜采样时间间隔。Johnson 等为评价采样间隔对根系生产力和死亡的影响, 1997 年在美国俄勒冈州研究了花旗松
(P seud otsug a m enz iesii (M irb. ) )的根系生产力。指出当采样间隔增加到 4 周时, 对根系生产力的估计大约比采样间隔为 2 周时
降低 28% , 当采样间隔进一步增加到 8 周时, 对根系生产力的估计大约降低 54%。根系死亡率显示出同样的趋势, 另外采样时
间间隔对根的数量变化影响不如根长敏感[32 ]。因此选择合适的采样间隔是非常重要的, 因为它不但影响着微根窗根系数据的
质量, 而且它还决定着工作量和资金的投入。
4 微根窗数据的利用
从微根窗图象中获得根系数据和信息或者将微根窗图象数字化通常采用两种方法, 一种用手工描绘[10, 76 ]; 另一种是使用
计算机软件, 目前使用比较多的软件有美国杜克大学生产的“RooT racker”根系分析软件[43, 67, 77 ]和美国密歇根州州立大学生产
的“ROO T S”根系分析软件[2, 56, 63, 64 ]。在微根窗图象中可以得到根的出生、死亡以及根系数量和根系长度等信息, 也可以根据总
微根窗画面面积来确定总根长, 所以这些二维空间观测数据也能反映区域根长密度 (cm ·cm - 2)。同样, 可以利用观测的根长和
直径乘积计算根面积, 类似地有时也可以计算根面积密度 (cm 2·cm - 2) [37 ]。根系数量对采样间隔不敏感, 所以一些研究利用根
系数量来评价根系生产力和周转[19, 68, 78 ]。但是利用根系数量来估计根系生产力和死亡率时, 其值一般都偏低, 因为它未能说明
根系的伸长生长和现有根系的长度损失[32 ]。利用根系长度可以较好确定根系生产和死亡, 但必须注意确保采样间隔足够短,
Johnson 等[32 ]报道采样间隔在 2 周以内可以保障对根系生产力和死亡率估计的准确性。为了更好地描述生态系统过程和与其
它测量方法进行比较, 在利用微根窗评价根系现存量、生产力和周转时, 常将面积单位转换成体积单位。M errill & U pchurch [50 ]
提出了一个计算单位体积根长密度的公式, 计算方程为 RL D v = E f N oböA ob, 这里 RL D v 是按体积计算的根长密度 (m ·m - 3) ;
N ob为测定的根数; A ob为测定的微根窗的面积 (m - 2) ; E f 为理论转换因素 (m ·m - 1)。也可以使用另一个方程计算每单位体积的
根长密度, 其计算公式为 RL D v = L öA ×DO F , RL D v 是按体积计算的根长密度 (m ·m - 3) , L 是微根窗画面观察的根系长度
(m ) ,A 是微根窗观察的面积 (m 2) ,DO F 是微根窗管到周围土壤的距离 (m )。其中DO F 的取值范围一般是 2~ 3mm [26, 28, 79, 80 ]。
如果知道确切的根长或每克根系生物量的根长, 那么按体积计算的根长密度可以转换成生物量密度。计算方法为RB D v = ∑
i
RL D i
S RL i , 这里RB D v 是按体积计算的根系生物量密度 (g·m
- 3) ; RL D i 指第 i 级根系直径的体积根长密度 (m ·m - 3) ; S RL i 指第
i 级根系直径的根长 (m ·g- 1) [32 ]。微根窗的主要优势之一是可以追踪单个根的生长和死亡, 因此可以很容易估算每个时间间隔
内根系的生产和周转率[13, 81 ]。对微根窗图象内活根和死根的鉴别还是非常困难的, 鉴别死根一般通过颜色和形态的变化, 根系
颜色由白色变为褐色、黑色或根系形态出现枯萎、腐烂、消失的被确认为是死根[2, 82 ] , 但是有时即使是颜色由白色变为褐色的根
也不都是死根[83 ] , 所以有些研究者只将出现腐烂或消失的根确定为死根[67 ]。
尽管利用微根窗技术研究根系生态学具有不可比拟的优点, 但是它也存在一定的局限性和缺点。手工图象分析需要大量时
8703  生 态 学 报 25 卷
间和工作量, 虽然自动化图象分析可以迅速地提取数据, 但是当前的软件还不能很精确地鉴别死根。如何使微根窗及其数据使
用的范围更广阔, 也是需要进一步解决的问题。另外, 在使用微根窗技术时还应注意下面的问题, 在质地疏松的土壤, 安装微根
窗管的关键和必须注意的是确保土壤与微根窗管之间的良好接触。同时在微根窗管安装和图象采集之间要有一定时间的等待
期, 以保证根系在微根窗周围的空间定植和营养水平恢复到扰动前的水平[20, 32 ]。图象采集的频率依赖于测定和计算的根系参
数, 如果想得到根系现存量、生产力、更新和寿命等信息, 必须避免采样间隔时间过长。
References:
[ 1 ] Son Y, Hw ang J H. F ine roo t b iom ass, p roduction and turnover in a fert ilized L arix lep tolep is p lan tation in cen tral Ko rea. E colog ica l
R esearch , 2003, 18: 339~ 346.
[ 2 ] W est J B, E speletaa J F, Donovana L A. F ine roo t p roduction and turnover acro ss a comp lex edaph ic gradien t of a P inus p a lustris2
A ristid a stricta savanna eco system. F orest E cology and M anag em en t, 2004, 189: 397~ 406.
[ 3 ] M atam ala R , Gonzalez2M eler M A , Jastrow J D , et a l. Impacts of fine roo t tu rnover on fo rest N PP and so il C sequestrat ion po ten tial.
S cience, 2003, 21: 1385~ 1387.
[ 4 ] W eaver J W. Investigations on the roo t hab its of p lan ts. A m erica J ou rna l B otany , 1925, 12: 502~ 509.
[ 5 ] Bohm W. m ethod s of study ing root sy stem. Berlin H eidelberg N ew Yo rk: Sp ringer2V erlag, 1979.
[ 6 ] Persson H. F ine roo t p roduction, mo rtality and decompo sit ion in fo rest eco system s. V eg eta tion , 1980, 41: 101~ 109.
[ 7 ] Steen E. U sefu lness of the m esh bag m ethod in quantitat ive roo t studies. Sw ed en J ou rna l A g ricu ltu ra l R esearch , 1991, 14: 93~ 97.
[ 8 ] L udovici K H , M o rris L A. Responses of lob lo lly p ine, sw eet gum and grass roo ts to localized increases in n itrogen in two w atering
regim es. T ree P hy siology , 1996, 16: 933~ 939.
[ 9 ] U pchurch D R , R itch ie J R. Roo t observations using a video reco rding system in m inirh izo trons. A g ronomy J ou rna l, 1983, 75: 1009~
1015.
[ 10 ] Cheng W , Co lem an D C, Box J E. Roo t dynam ics, p roduction and distribu tion in agroeco system s on the Geo rgia P iedmont using
m in irh izo trons. J ou rna l of A pp lied E cology , 1990, 27: 592~ 604.
[ 11 ] C rocker T L , H endrick R L , Ruess R W , et a l. Substitu ting roo t num bers fo r length: imp roving the use of m in irh izo trons to study fine
roo t dynam ics. A pp lied S oil E cology , 2003, 23: 127~ 135.
[ 12 ] T aylo r H M. M inirh izo tron observation tubes: M ethods and app lications fo r m easuring rh izo sphere dynam ics. A m erican S ociety of
A g ronomy , M ad ison W isconsin. A SA Special Publication N um ber 1987, 50.
[ 13 ] H endrick R L , P regitzer K S. T empo ral and dep th related patters of fine roo t dynam ics in no rthern hardwood fo rests. J ou rna l of E cology ,
1996, 84: 167~ 176.
[ 14 ] H endrick R L , P regitzer K S. Patterns of fine roo t mo rtality in two sugar m ap le fo rests. N atu re, 1993, 361: 59~ 61.
[ 15 ] Jo slin J D , W o lfe M H. Impacts of w ater input m anipu lations on fine roo t p roduction and mo rtality in a m ature hardwood fo rest. P lan t
and S oil, 1998, 204: 165~ 174.
[ 16 ] Ko so la K R , E issenstat D M , Grahm J H. Roo t demography of m ature citrus trees: the influence of P hy top h thora n icotianae. P lan and t
S oil, 1995, 171: 283~ 288.
[ 17 ] W ells C E, E issenstat D M. M arked differences in survivo rsh ip among app le roo ts of differen t diam eters. E cology , 2001, 82: 882~ 892.
[ 18 ] V an N oo rdw ijk M , de Jager A , F lo ris J. A new dim ension to observations in m in irh izo tron: a stereo scop ic view on roo t pho tograph s.
P lan t and S oil, 1985, 86: 447~ 453.
[ 19 ] Reyno lds J F, V irgin ia R A , Kemp P R , et a l. Impact of drough t on desert sh rubs: effects of seasonality and degree of resource island
developm ent. E cology M onog rap h, 1999, 69: 69~ 106.
[ 20 ] Ph illip s D L , Johnson M G, T ingey D T , et a l. M in irh izo tron installat ion in sandy, rocky so ils w ith m in im al so il distu rbance. S oil
S cience S ociety of A m erica J ou rna l, 2000, 64: 761~ 764.
[ 21 ] V o lkm ar K M. A comparison of m in irh izo tron techniques fo r estim ating roo t length density in so ils of differen t bu lk densit ies. P lan t and
S oil, 1993, 157: 239~ 245.
[ 22 ] Sam son B K, Sinclair T R. So il co re and m inirh izo tron comparison fo r the determ ination of roo t length density. P lan t and S oil, 1994,
161: 225~ 232.
[ 23 ] Bates G H. A device fo r the observation of roo t grow th in the so il. N atu re, 1937, 139: 966~ 967.
[ 24 ] B row n D A , U pchuech D R. M inirh izo trons: a summ ary of m ethods and instrum ents in curren t use. In: T aylo r, H. M. Eds.
M inirh iz otron O bserva tion T ubes: M ethod s and A pp lica tions F or M easu ring R h iz osp here Dy nam ics. A SA Special Publication N um ber 50.
Am erican Society of A gronom y, M adison, W I, 1987. 15~ 30.
[ 25 ] R ichards J H. Roo t grow th response to defo liat ion in two A g ropy ron bunchgrasses: field observations w ith an imp roved roo t periscope.
O ecolog ia, 1984, 64: 21~ 25.
[ 26 ]  Itoh S. In situ m easurem ent of roo ting density by m icro2rh izo tron. S oil S cience and P lan t N u trition, 1985, 31: 653~ 656.
[ 27 ] W ith ington E M , E lk in A D , Bulaj B, et a l. T he impact of m aterial used fo r m in irh izo tron tubes fo r roo t research. N ew P hy tolog ist,
970311 期 白文明 等: 微根窗技术及其在植物根系研究中的应用  
2003, 160: 533~ 544.
[ 28 ] Sanders J L , B row n D A. A new fiber op tic technique fo r m easuring roo t grow th of soybeans under field condit ions. A g ronomy J ou rna l,
1978, 70: 1073~ 1076.
[ 29 ] B ragg P L , Govi G, Cannell R Q. A comparison of m ethods, including angled and vertical m in irh izo trons, fo r studying roo t grow th and
distribu tion in a sp ring oat crop. P lan t and S oil, 1983, 73: 435~ 440.
[ 30 ] V am erali T , Ganis A , Bona S, et a l. A n app roach to m in irh izo tron roo t im age analysis. P lan t and S oil, 1999, 217: 183~ 193.
[ 31 ] Patena G, Ingram K T. D igital acquisit ion and m easurem ent of peanut roo t m in irh izo tron im ages. A g ronomy J ou rna l, 2000, 92: 541~
544.
[ 32 ] Johnson M G, T ingey D T , Ph illip s D L , et a l. A dvancing fine roo t research w ith m in irh izo trons. E nv ironm en ta l and E xp erim en ta l
B otany , 2001, 45: 263~ 289.
[ 33 ] Gijsm an A J , F lo ris J , V an N oo rdw ijk M , et a l. A n inflatab le m in irh izo tron system fo r roo t observation w ith imp roved so ilötube contact.
P lan t and S oil, 1991, 134: 261~ 269.
[ 34 ] M errill S D. P ressurized2w all m in irh izo tron fo r field observation of roo t grow th dynam ics. A g ronomy J ou rna l, 1992, 84: 755~ 758.
[35 ] T ierney G L , Fahey T J. Evaluating m in irh izo tron estim ates of fine roo t longevity and p roduction in the fo rest floo r of a temperate
broadleaf fo rest. P lan t and S oil, 2001, 229: 167~ 176.
[ 36 ] L evan M A , Ycas J W , H umm el J W. L igh t leak effects on near2surface soym ean roo ting observed w ith m in irh izo trons. In: T aylo r, H.
M , Ed. M inirh iz otron O bserva tion T ubes: M ethod s and A pp lica tions F or M easu ring R h iz osp here Dy nam ics. A SA Special Publication
N um ber 50. Am erican Society of A gronom y, M adison, W I, 1987. 89~ 98.
[37 ] Johnson D W. T empo ral patterns in so il so lu tions from beech fo rest: comparison of field and model resu lts. S oil S cience S ociety of
A m erica J ou rna l, 1995, 59: 1732~ 1740.
[38 ] Katterer T , Fabiao A , M adeira M , et a l. F ine2roo t dynam ics, so il mo istu re and so il carbon conten t in a E uclyp tus g lobu les p lan tation
under differen t irrigation and fert ilization regim es. F orest E cology and M anag em en t, 1995, 74: 1~ 12.
[ 39 ] W eber E P, D ay F P. T he effect of n itrogen fert ilization on the pheno logy of roo ts in a barrier island sand dune comm unity. P lan t and
S oil, 1996, 182: 139~ 148.
[ 40 ] Jo slin J D , W o lfe M H. D isturbance during m in irh izo tron installat ion can affect roo t observation data. S oil S cience S ociety of A m erica
J ou rna l, 1999, 63: 218~ 221.
[ 41 ] Box J E, Sm ucker A J M , R itch ie J T. M inirh izo tron installat ion techniques fo r investigation roo t responses to drough t and oxygen
stresses. S oil S cience S ociety of A m erica J ou rna l, 1989, 53: 115~ 118.
[ 42 ] F ranco J A , A brisqueta J M. A comparison betw een m inirh izo tron and so il co ring m ethods of estim ating roo t distribu tion in young almond
trees under trick le irrigation. J ou rna l of H orticu ltu ra l S cience, 1997, 72: 797~ 805.
[ 43 ] W ilcox C S, Ferguson J W , Fernandez G C J, et a l. F ine roo t grow th dynam ics of four M o jave D esert sh rubs as related to so il mo istu re
and m icro site. J ou rna l of A rid E nv ironm en ts, 2004, 56: 129~ 148.
[ 44 ] D ubach M , Russelle M P. Reducing the co st of estim ating roo t tu rnover w ith ho rizon tally installed m in irh izo trons. A g ronomy J ou rna l,
1995, 87: 258~ 263.
[ 45 ] W atson C A , Ro ss J M , Bagnaresi U , et a l. Environm ent2induced modifications to roo t longevity in L olium p erenne and T rif olium
rep ens. A nna ls of B otany , 2000, 85: 397~ 401.
[ 46 ] Kubiske M E, P regitzer K S, Zak D R , et a l. Grow th and C allocation of Populus trem ulo ides geno types in response to atmo spheric CO 2
and so il N availab ility. N ew P hy tolog ist, 1998, 140: 251~ 260.
[ 47 ] P rice J S, H endrick R L. F ine roo t length p roduction, mo rtality and standing crop roo t dynam ics in an in tensively m anaged sw eetgum
(L iqu id am bar sty racif lua L. ) copp ice. P lan t and S oil, 1998, 205: 193~ 201.
[ 48 ] P regitzer K S, Zak D R , Curtis P S, et a l. A tmo spheric CO 2, so il n itrogen and turnover of fine roo ts. N ew P hy tolog ist, 1995, 129: 579
~ 585.
[ 49 ] H eeram an D A , C row n P H , Jum a N G. A co lo r compo site technique fo r detecting roo t dynam ics of barley (H ord eum vu lg are L. ) from
m inirh izo tron im ages. P lan t and S oil, 1993, 157: 275~ 287.
[ 50 ] M errill S D , U pchurch D R. Converting roo t num bers observed at m in irh izo trons to equivalen t roo t length density. S oil S cience S ociety of
A m erica J ou rna l, 1994, 58: 1061~ 1067.
[ 51 ] Kirkham M B, Grecu S J , Kanem asu E T. Comparison of m in irh izo trons and the so il2w ater2dep letion m ethod to determ ine m aize and
soybean roo t length and dep th. E u rop ean J ou rna l of A g ronomy , 1998, 8: 117~ 125.
[ 52 ] P regitzer K S, Zak D R , M aziasz J , et a l. In teractive effects of atmo spheric CO 2 and so il2N availab ility on fine roo ts of Populus
trem ulo ides. E cology A pp lica tion, 2000, 10: 18~ 33.
[ 53 ] Ruess R W , H endrick R L , B ryant J P. Regulation of fine roo t dynam ics by m amm alian brow sers in early successional A laskan taiga
fo rests. E cology , 1998, 79: 2706~ 2720.
[ 54 ] A erts R , Berendse F, Klerk N M , et a l. Roo t p roduction and roo t tu rnover in two dom inant species of w et heath lands. O ecolog ia, 1989,
81: 374~ 378.
[ 55 ] A erts R , Bakker C, Calluw e H D. Roo t tu rnover as determ inant of cycling of C, N , and P in a dry heath land eco system. B iog eochem ity ,
0803  生 态 学 报 25 卷
1992, 15: 175~ 190.
[ 56 ] H endrick R L , P regitzer K S. T he demography of fine roo ts in a no rthern hardwood fo rest. E cology , 1992, 73: 1094~ 1104.
[ 57 ] Kloeppel B D , Gow er S T. Construction and installat ion of acrylic m in irh izo tron tubes in fo rest eco system s. S oil S cience S ociety of
A m erica J ou rna l, 1995, 59: 241~ 243.
[ 58 ] Rytter R M , H ansson A C. Seasonal amount, grow th and dep th distribu tion of fine roo ts in an irrigated and fert ilized S a lix v im ina lis L.
p lan tation. B iom ass and B ioenergy , 1996, 11: 129~ 137.
[ 59 ] T ingey D T , Johnson M G, Ph illip s D L , et a l. Effect of elevated CO 2 and nitrogen on the synch rony of shoo t and roo t grow th in
pondero sa p ine. T ree P hy siology , 1996, 16: 905~ 914.
[ 60 ] T ingey D T , Ph illip s D L , Johnson M G, et a l. Effect of elevated CO 2 and N fert ilization on fine roo t dynam ics and fungal grow th in
seedling P inus p ond erosa. E nv ironm en ta l and E xp erim en ta l B otany , 1997, 37: 73~ 83.
[ 61 ] T hom as S M , W h itehead D , A dam s J A , et a l. Seasonal roo t distribu tion and so il surface carbon fluxes fo r one2year2o ld P inus rad ia ta
t rees grow ing at am bien t and elevated carbon diox ide concentration. T ree P hy siology , 1996, 16: 1051~ 1021.
[ 62 ] T hom as S M , W h itehead D , Reid J B, et a l. Grow th, lo ss, and vertical distribu tion of p inus radiata fine roo ts grow ing at am bien t and
elevated CO 2 concentration. G loba l Chang e B iology , 1999, 5: 107~ 121.
[ 63 ] Burton A J , P regitzer K S, H erdrick R L. Relationsh ip s betw een fine roo t dynam ics and nitrogen availab ility in M ich igan no rthern
hardwood fo rests. O ecolog ia, 2000, 125: 389~ 399.
[ 64 ] D ilustro J J , D ay F P, D rake B G, et a l. A bundance, p roduction and mo rtality of fine roo ts under elevated atmo spheric CO 2 in an oak2
scrub eco system. E nv ironm en ta l and E xp erim en ta l B otany , 2002, 48: 149~ 159.
[ 65 ] T ingey D T , Ph illip s D L , Johnson M G. Op tim izing m inirh izo tron samp le frequency fo r an evergreen and deciduous tree species. N ew
P hy tolog ist, 2003, 157: 155~ 161.
[ 66 ] Edw ards E J , Benham D G, M arland L A , et a l. Roo t p roduction is determ ined by radiation flux in a temperate grassland comm unity.
G loba l Chang e B iology , 2004, 10: 209~ 221.
[ 67 ] M ajdi H , O h rvik J. In teractive effect of so il w arm ing and fert ilization on roo t p roduction, mo rtality, and longevity in a N o rw ay sp ruce
stand in N o rthern Sw eden. G loba l Chang e B iology , 2004, 10: 182~ 188.
[68 ] F itter A H , Graves J D , Self G K, et a l. Roo t p roduction, tu rnover and resp iration under two grassland types along an alt itudinal
gradien t: influence of temperature and so lar radiation. O ecolog ia, 1998, 114: 20~ 30.
[ 69 ] F itter A H , Self G K, B row n T K, et a l. Roo t p roduction and turnover in an up land grassland subjected to art ificial so il w arm ing respond
to radiation flux and nutrien ts, no t temperature. O ecolog ia, 1999, 120: 575~ 581.
[ 70 ] Ko so la K R. L aparascop ic samp ling of roo ts of know n age from an expandable2w all m in irh izo tron system. A g ronomy J ou rna l, 1999, 91:
876~ 879.
[ 71 ] H ansson A G, Zhao A F, A ndren O. F ine roo t grow th dynam ics of two sh rubs in sem iarid rangeland in Inner M ongo lia, Ch ina. A m bio,
1994, 23: 225~ 228.
[72 ] M ajdi H , Kangas P. D emography of fine roo t in response to nutrien t app lications in a N o rw ay sp ruce stand in southw estern Sw eden.
E coscience, 1997, 4: 199~ 205.
[ 73 ] Ferguson J G, Sm ucker A J M. M odifications of the m in irh izo tron video cam era system fo r m easuring spatial and tempo ral roo t
dynam ics. S oil S cience S ociety A m erica J ou rna l, 1989, 53: 1601~ 1605.
[ 74 ] Johnson M G, M eyer P. M echanical advancing handle that simp lifies m in irh izo tron cam era registrat ion and im age co llection. J ou rna l of
E nv ironm en ta l Q ua lity , 1998, 27: 710~ 714.
[ 75 ] Fo rbes P J , B lack K E, Hooker J E. T emperature2in2duced alteration to roo t longevity in L olium p erenne. P lan t and S oil, 1997, 190: 87
~ 90.
[ 76 ] López B, SabatéS, Gracia C A. F ine2roo t longevity of Q uercus ilex. N ew P hy tolog ist, 2001, 151: 437~ 441.
[ 77 ] A rnone J A , Zaller J G, Spehn E M , et a l. D ynam ics of roo t system s in native grasslands: effects of elevated atmo spheric CO 2. N ew
P hy tolog ist, 2000, 147: 73~ 85.
[ 78 ] Rytter R M , Rytter L. Grow th, decay, and turnover rates of fine roo t of basket w illow s. Canad a J ou rna l F orest R esearch , 1998, 28:
893~ 902.
[ 79 ] T aylo r H M , H uck M G, Klepper B, et a l. M easurem ent of so il2grow n roo ts in a rh izo tron. A g ronomy J ou rna l, 1970, 62: 807~ 809.
[ 80 ] Steele S J , Gow er S T , V ogel J G, et a l. Roo t p roduction, net p rim ary p roduction and turnover in aspen, jack p ine and black sp ruce
fo rests in Saskatchew an and M anitoba, Canad a. T ree P hy siology , 1997, 17: 577~ 587.
[ 81 ] M ajdi H. Roo t samp ling m ethods2app lications and lim itat ions of m in irh izo tron technique. P lan t and S oil, 1996, 185: 255~ 258.
[82 ] E speleta J F, Donovan L A. F ine roo t demography and mo rpho logy in response to so il resources availab ility among xeric and m esic
sandh ill tree species. F unctiona l E cology , 2002, 16: 113~ 121.
[ 83 ] E issenstat D M , Yanai R D. T he eco logy of roo t lifespan. A d vances E cology R esearch , 1997, 27: 1~ 60.
180311 期 白文明 等: 微根窗技术及其在植物根系研究中的应用