全 文 :第 51 卷 第 11 期
2 0 1 5 年 11 月
林 业 科 学
SCIENTIA SILVAE SINICAE
Vol. 51,No. 11
Nov.,2 0 1 5
doi:10.11707 / j.1001-7488.20151102
收稿日期: 2014 - 12 - 01; 修回日期: 2015 - 09 - 14。
基金项目: 甘肃省科技重大专项计划项目(1302FKDA035) ; 甘肃省科技支撑计划 -社会发展类项目(1011FKCA136)。
甘肃敦煌西湖荒漠 -湿地生态系统土壤
水分含量对植被特征的影响
陈文业1,2,3 赵 明1,2,3 张继强1,2,3 袁海峰3,4 窦英杰3,4 朱 丽1,2,3 陈 旭3,4
(1.甘肃省林业科学研究院 兰州 730020; 2.甘肃林研科技工程公司 兰州 730020; 3.甘肃敦煌西湖湿地生态系统
国家定位观测研究站 敦煌 736200; 4.甘肃敦煌西湖国家级自然保护区管理局 敦煌 736200)
摘 要: 【目的】土壤水分含量是内陆荒漠区湿地生态系统中重要的限制因子,对植被生态特征起着至关重要的
作用,研究土壤水分含量和植被特征的关系,揭示土壤水分含量对植物多样性分布的影响规律,以期为该区域生态
系统植物多样性保育、恢复和管理提供理论依据。【方法】基于甘肃敦煌西湖国家级自然保护区土壤水分含量、植
被高度、植物种类和盖度等的调查,对植被特征与土壤特性等资料进行分析,开展该生态系统土壤水分含量对植物
多样性分布格局影响的研究。【结果】研究区植物群落物种多样性指数均相对较小,Margalef 物种丰富度指数
(Ma)、Simpson 多样性指数(D)和 Shannon-Wiener 多样性指数(H)的最大值分别为 0. 72,0. 72 和 1. 38; 植被平均
盖度、多度、高度和密度分别为 39. 26% ~ 70. 19%、15. 50 ~ 180. 11 株·m - 2、49. 65 ~ 124. 63 cm 和 0. 039 ~ 7. 204
株·m - 2 ; 垂直方向上,各群落各样点土壤水分含量均随土层加深而增大,同一样点相邻土层土壤水分含量变化不
大,变幅为 3. 87% ~ 41. 23%,浅层(0 ~ 60 cm)含水量、深层(60 ~ 200 cm)含水量与 0 ~ 2 m 土层贮水量平均值分别
为 4. 67% ~ 14. 59%,6. 45% ~ 25. 33%和 65. 6 ~ 248. 2 mm; 深层土壤水分含量对乔(灌)木物种多样性的影响显著
高于对草本植物种的影响,对乔(灌)木物种丰富度和多度均有一定影响,但对多度影响远大于对物种丰富度的影
响,且与物种的多度显著正相关,而草本物种多样性更多地依赖于浅层土壤水分含量,且正相关; 各层土壤水分含
量之间及各层土壤水分含量与 0 ~ 2 m 土层贮水量、植被盖度之间均正相关,0 ~ 80 cm 内各土层水分含量与植被高
度和植被密度之间均负相关,80 ~ 200 cm 内各土层土壤水分含量与植被高度之间均正相关,0 ~ 2 m 土层贮水量与
植被盖度、植被高度和植被密度之间均显著正相关,植被盖度与植被高度和植被密度之间均极显著正相关 (P <
0. 01),而植被高度与植被密度之间负相关。【结论】研究区植物群落物种多样性指数均相对较小,土壤水分含量
相对较低; 乔(灌)木物种多样性依赖于深层土壤水分含量,而草本物种多样性更多地依赖于浅层土壤水分含量;
深层土壤水分含量和 0 ~ 2 m 土层贮水量是影响研究区植被特征的主要因子; 植被各种属性之间既相互制约、密切
联系,又存在一定的独立性。
关键词: 敦煌西湖; 荒漠 -湿地生态系统; 土壤水分含量; 植被群落特征; 植物多样性
中图分类号: S718. 55 文献标识码: A 文章编号: 1001 - 7488(2015)11 - 0008 - 09
Influence of Soil Water Content on Vegetation Characteristics in Desert-Wetland
Ecosystem in Xihu of Dunhuang,Gansu
Chen Wenye1,2,3 Zhao Ming1,2,3 Zhang Jiqiang1,2,3 Yuan Haifeng3,4 Dou Yingjie3,4 Zhu Li1,2,3 Chen Xu3,4
(1 . Gansu Forestry Science and Technology Research Academy Lanzhou 730020;
2 . Gansu Forest Science and Technology Engineering Company Lanzhou 730020;
3 . National Positioning Observation Station of Xihu Wetland Ecosystem in Dunhuang of Gansu Dunhuang 736200;
4 . Administrative Bureau of Gansu Dunhuang Xihu National Nature Reserve Dunhuang 736200)
Abstract: 【Objective】Soil water content is a primary limiting factor in inland desert wetland ecosystems and plays a
crucial role in maintaining ecological functions of the vegetation. Relationships between soil water content and other
ecological characteristics were further studied to reveal the influence of soil water content on plant diversity distribution,in
order to provide a theoretical basis for plant diversity conservation,restoration and sustainable management.【Method】
Based on the basic survey of soil moisture,plant height,plant species and coverage at Dunhuang Xihu National Nature
Reserve in Gansu,the characteristics of vegetation and soil properties were analyzed,and also the influences of soil water
第 11 期 陈文业等: 甘肃敦煌西湖荒漠 -湿地生态系统土壤水分含量对植被特征的影响
content on distribution pattern of plant diversity in the ecosystem were investigated.【Result】Overall,all indices of species
diversity were relatively small,and the maximums of Shannon-Wiener,Margalef and Simpson indices were 1. 38,0. 72 ,
and 0. 72,respectively; the averages of plant coverage,abundance,height and density were ranged from 39. 26% to
70. 19%,15. 50 to 80. 11 plant·m - 2,49. 65 to 124. 63 cm,0. 039 to 7. 204 plant·m - 2,respectively. On vertical
direction,the soil water content increased with soil depth across all sample sites and ranged from 3. 87% to 41. 23%,but
changed little on the horizontal direction,for soil layers with depth of 0 - 60 cm,60 - 200 cm and 0 - 2 m,the soil
content ranged from 4. 67% to 14. 59%,6. 45% to 25. 33% and 65. 6 to 248. 2 mm respectively. The effects of soil water
content at deep layer on species diversity of trees and shrubs were higher than that of herbaceous,and the effects on
species richness were larger than on abundance. Furthermore,a significant positive correlation was found between the soil
water contents at deep layers and the species abundance. But the species diversity of herbaceous relied more on soil water
contents at shallow layers,indicating a significant positive correlation between them. There was a significant positive
correlation between soil water contents in each layer,also a significant positive correlations between water content in each
soil layer with moisture storage in 0 - 2 m soil layer and plant coverage,but soil water contents in 0 - 80 cm layer had a
negative effects on plant height and density. The soil water contents at all layers of 80 - 200 cm depth were positively
related to plant height,and soil water contents storage at 0 - 2 m had a significant positive correlation with plant coverage,
plant height and density. In addition,the plant coverage had a significant positive correlation with plant height and
density,and there was a negative correlation between the plant height and density,but plant height was negatively related
to plant density.【Conclusion】The species diversity indices of plant community and soil water contents were relatively
smaller in the study area. The species diversity of trees and shrubs depended on soil water contents at deep layer,but
herbaceous plants on shallow layer. The soil moistures in deep layer and 2 m depth may be the dominant factor affecting
the vegetation characteristics. Different plant species and genera were inter-restricted and closely interacted with each
other,but also independent from each other to a certain extent.
Key words: Dunhuang Xihu; desert and wetland ecological system; soil water contents; vegetation community
characteristic; plant diversity
植被和土壤是陆地生态系统中最重要的组成部
分,二者的分布特征及其相互关系是生态学重要研
究内容之一(Yang et al.,2007),植被与其生存的立
地环境土壤之间是一种相互依赖和制约的关系(张
圆圆等,2014; Li et al.,2005)。在全球诸多生态系
统中,土壤水分含量是土壤 - 植物 - 大气连续体的
一个关键因子,是物质和能量循环的重要载体,它不
但直接影响土壤特性和植物生长,而且间接影响植
被组成、结构、形态和生理特性,决定群落格局,且在
一定程度上影响小气候的变化(李裕元等,2005;
Baskan et al.,2013; Dan et al.,2005)。尤其是在干
旱地区,土壤水分含量是影响环境变化的主要因子,
限制着该区域长期定居的植物种类和数目(Wang et
al.,2013)。同时,植被是自然环境最敏感的要素,
在诸多尺度上对土壤水分含量动态产生重要的反馈
作用(王新平等,2005; Victor et al.,2014)。探讨土
壤和植被间的相互关系,具有重要性和迫切性,对于
认识景观生态学过程和格局具有重要的理论意义。
目前,有关植被与水分关系问题已有较多的论述和
研究,如荒漠区(崔向慧,2010; Ma et al.,2011; 曾
晓玲等,2012; Wang et al.,2013; Fu et al.,2011)、
黄土高原(李小英等,2012; Schneider et al.,2011;
Wang et al.,2009)、盆地(石瑞花等,2009)、河岸带
(刘虎俊等,2012)、绿洲(满苏尔·沙比提等,2010)
和湿地 (李玉霞等,2011 ) 等地区都开展过相关
研究。
甘肃敦煌西湖国家级自然保护区(以下简称敦
煌西湖)位于甘肃省河西走廊最西端,南接阿克塞
哈萨克族自治县,西连罗布泊和库姆塔格沙漠,北接
新疆维吾尔族自治区。该区域湿地属于沼泽湿地,
具有极干旱区湿地生态系统和荒漠生态系统的典型
性和代表性,区位优势明显、特殊。该区以往研究集
中在多样性特征(刘雯霞,2009; 郑姚闽等,2010)、
种群格局(张继强等,2013; 2014; 张谨等,2012)
及植被退化与修复(戚登臣等,2010)等方面,而有
关土壤水分含量对植被多样性影响的研究鲜见报
道。鉴于此,本研究探讨敦煌西湖荒漠 - 湿地生态
系统土壤水分含量和植被的关系,以期进一步探寻
研究区植被对土壤水分含量的适应方式和策略,为
该区域生态系统生物多样性的保育及生态环境建设
提供理论依据。
9
林 业 科 学 51 卷
1 研究区概况
研究区位于敦煌西湖 ( 92° 45—93° 50 E,
39°45—40°36N),面积为 66 万 hm2,其中湿地面积
9. 80 万 hm2,芦苇 ( Phragmites australis)沼泽面积
3. 43 万 hm2,四周均被沙漠和戈壁所隔绝。区内海
拔 820 ~ 2 359 m,地势南高北低,中间为冲积平
原。位于北半球暖温带干旱气候区,年均气温 10
℃ ; 年均风速 2. 3 m·s - 1,年均大风天数 15 天; 年
均降水量 40 mm,年均蒸发量 2 487 mm。由北向
南,5 种植被型组呈沼泽→盐沼→草甸→阔叶林→
荒漠演变。研究区有 8 种典型的植被群落,即芦
苇沼泽群落、多枝柽柳 ( Tamarix ramosissima)沙包
群落、芦苇群落、苏枸杞 ( Lycium ruthenicum)群落、
胡 杨 ( Populus euphratica ) 群 落、胀 果 甘 草
(Glycyrrhiza inflata ) 群 落、疏 叶 骆 驼 刺 ( Alhagi
sparsifolia) 群 落、多 枝 柽 柳 群 落 ( 陈 文 业 等,
2012),土壤以沼泽土为主。
2 研究方法
2. 1 样地设置与调查
在研究区 5 种植被型组中共设立 25 块 50 m ×
50 m 标准样地。采用样线与样方相结合的方法对
植被进行调查。每个样地设置由 3 条平行等距样线
和 3 条垂直等距样线交叉组成的 6 条样线,样线长
50 m,样线间距 15 m。在交叉样线处均匀设置 9 个
草本样方(5 m × 5 m),6 个灌(乔)木样方(20 m ×
20 m)。调查记录灌 (乔)木植物的株数、种类、冠
幅、高度和枝下高及草本植物的高度、种类、频度、株
数和盖度。在调查的同时,用 GPS 定位,记录各样
地的海拔、地貌、土壤类型和经纬度等环境因子(陈
文业等,2012)。
2. 2 土壤取样与土壤水分含量测定
土壤水分含量采用便携式土壤水分测量仪
(TRIME-PICO-IPH TDR,简称 TDR,德国 )分土层
(0 ~ 10,10 ~ 20,20 ~ 40,40 ~ 60,60 ~ 80,80 ~ 100,
100 ~ 120,120 ~ 140,140 ~ 160,160 ~ 180 和 180 ~
200 cm)测定,每个样地每层测定 5 个样点,取其平
均值作为样地该次该层的土壤水分含量。用烘箱法
测定土壤含水量校正 TDR 的观测值。土壤贮水量
的计算公式为: R S = 0. 1hmd,式中: R S 为土壤贮水
量(mm )、h 为土层厚度 ( cm ),m 为质量含水量
(% )、d 为土壤密度( g·cm - 3 ) (环刀法,环刀规格:
直径 50. 46 mm ×高 50 mm,容积 100 cm3)(卢琦等,
2004),依据该公式分别计算出各层的土壤贮水量,
然后累加计算出 0 ~ 2 m 土层贮水量 (王蕙等,
2007)。
野外调查在 2011,2012,2013 和 2014 年的 9 月
10 日至 9 月 30 日进行。
2. 3 数据处理
灌(乔 ) 木盖度 C S计算公式为 C S = ( CEW +
CNS) /B; 灌(乔)木重要值 P S计算公式为 P S = (H +
C + M) /3; 草本重要值 PH计算公式为 PH = (H +
C + F + SA) /4。式中: CEW和 CNS分别为灌(乔)木东
西冠幅和南北冠幅; B 为样地面积; H 为相对高度;
C 为相对盖度; M 为相对密度; SA 为相对多度; F
为相对频度。本研究采用以下公式对研究区植物多
样性进行分析(陈文业等,2012)。Shannon-Wiener
多样性指数 H:
H = -∑Pi lnPi;
Simpson 多样性指数 D:
D = 1 -∑[Ni(Ni - 1) /N(N - 1)] = 1 -∑P2i ;
Margalef 物种丰富度指数 Ma:
Ma = (S - 1) / lnN;
群落 Pielou 均匀度指数 J:
J = HlnS;
Simpson 优势度指数 C:
C = ∑(Pi) 2。
式中: S 为物种总数; Ni为第 i 种的个体数; N 为物
种总个体数; Pi为物种 i 的重要值。
采用软件 SPSS12. 0 进行试验数据统计分析,用
ANOVA、多重比较和 LSD 法分析土壤水分含量对植
被特征的影响,用 F 值进行差异显著性检验。
3 结果与分析
3. 1 群落及土壤水分含量特征
表 1 显示了研究区主要植物群落物种多样性特
征,研究区主要优势种有多枝柽柳、胀果甘草、胡杨、
疏叶骆驼刺、苏枸杞和芦苇(陈文业等,2012),主要
伴生种有毛穗赖草 ( Leymus paboanus )、盐节木
(Halocnemum strobilaceum)、大花罗布麻 ( Apocynum
venetum)、碱蓬 ( Suaeda glauca)、花花柴 ( Karelinia
caspia)、沙拐枣 ( Calligonum mongolicum ) 和白刺
(Nitraria tangutorum)等。既有喜生于干旱荒漠生
境的特殊生态型植被,如花花柴、碱蓬和沙拐枣等,
又有适生于土壤水分含量较高生境( pH 值较高)的
盐生或适盐植物,如芦苇、苏枸杞、疏叶骆驼刺和多
枝柽柳,往往形成由少数优势种组成的群落或单一
群落。由于敦煌西湖特殊生境条件,造成植被结构
01
第 11 期 陈文业等: 甘肃敦煌西湖荒漠 -湿地生态系统土壤水分含量对植被特征的影响
相对简单,物种相对稀少且分布极不均,植被以喜生
于干旱荒漠生境和较高土壤水分含量生境的植物为
主。总体显示,研究区植物群落物种多样性指数均
较小,Margalef 物种丰富度指数(Ma)、Simpson 多样
性指数(D)和 Shannon-Wiener 多样性指数 (H) 的
最大值分别为 0. 72,0. 72 和 1. 38。植被盖度、多
度、高度和密度分别为 39. 26% ~ 70. 19%、15. 50 ~
180. 11 株·m - 2、49. 65 ~ 124. 63 cm 和 0. 039 ~
7. 204 株·m - 2。
表 2 显示,垂直方向上,各群落各样点土壤水分
含量均随土层加深而增大,同一样点相邻土层土壤
水分含量变化不大,浅层含水量、深层含水量与 0 ~
2 m 土层贮水量平均值分别为 4. 67% ~ 14. 59%、
6. 45% ~ 25. 33%和 65. 6 ~ 248. 2 mm。与其他群落
相比芦苇沼泽群落各土层土壤水分含量均较大,而
多枝柽柳沙包群落各土层土壤水分含量均较小,这
与研究区植被本身特殊的生物学特性和独特而严酷
的生境条件有关。
表 1 研究区主要植物群落特征①
Tab. 1 Species diversity of main plant community types in the study area
项目
Item
多枝柽柳群落
Tamarix
ramosissima
community
胀果甘草群落
Glycyrrhiza
inflata
community
胡杨群落
Populus
euphratica
community
疏叶骆驼
刺群落
Alhagi
sparsifolia
community
多枝柽柳
沙包群落
Tamarix ramosissima
sand bags
community
苏枸杞群落
Lycium
ruthenicum
community
芦苇群落
Phragmites
australis
community
芦苇沼泽
Phragmites
australis
swamp
H 1. 38 ± 0. 05a 1. 27 ± 0. 03b 0. 92 ± 0. 02c 1. 15 ± 0. 06bc 0. 78 ± 0. 08c 1. 08 ± 0. 06c 1. 19 ± 0. 05d 0. 88 ± 0. 05e
D 0. 72 ± 0. 02a 0. 68 ± 0. 02b 0. 54 ± 0. 02c 0. 66 ± 0. 05bd 0. 42 ± 0. 02c 0. 65 ± 0. 04c 0. 66 ± 0. 01d 0. 52 ± 0. 04e
Ma 0. 72 ± 0. 04a 0. 66 ± 0. 02b 0. 33 ± 0. 02b 0. 46 ± 0. 01c 0. 23 ± 0. 02c 0. 41 ± 0. 01c 0. 58 ± 0. 01c 0. 32 ± 0. 02d
J 0. 91 ± 0. 04a 0. 91 ± 0. 06b 0. 84 ± 0. 05c 0. 92 ± 0. 08bd 0. 62 ± 0. 07de 0. 98 ± 0. 02f 0. 89 ± 0. 04g 0. 80 ± 0. 05h
C 0. 28 ± 0. 02a 0. 32 ± 0. 04b 0. 46 ± 0. 04c 0. 34 ± 0. 04bd 0. 58 ± 0. 04bd 0. 35 ± 0. 05bd 0. 34 ± 0. 04bd 0. 48 ± 0. 03e
植被盖度
Vegetation coverage(% )
58. 56 ± 2. 45 42. 89 ± 2. 64 70. 19 ± 5. 07 56. 89 ± 2. 58 44. 00 ± 1. 98 39. 26 ± 3. 87 52. 45 ± 1. 98 69. 12 ± 2. 41
多度
Species abundance
( individual per 100 m2)
45. 19 ± 1. 23 13. 80 ± 2. 32 71. 80 ± 4. 22 67. 95 ± 2. 27 15. 50 ± 2. 41 42. 67 ± 2. 67 132. 38 ± 1. 33 180. 11 ± 2. 56
植被高度
Vegetation height / cm
102. 72 ± 6. 21 49. 65 ± 1. 25 124. 63 ± 4. 37 73. 26 ± 3. 30 50. 28 ± 3. 12 64. 37 ± 2. 41 71. 38 ± 4. 11 102. 38 ± 4. 11
植被密度
Vegetation density /
( individual·m - 2)
0. 113 ± 0. 291 0. 552 ± 0. 174 0. 180 ± 0. 432 2. 718 ± 1. 040 0. 039 ± 0. 024 1. 707 ± 0. 223 5. 295 ± 3. 270 7. 204 ± 2. 023
①同行不同字母表示差异显著 ( P < 0. 05),反之,差异不显著。Different lowercases in the same line mean significant( P < 0. 05) difference,on the contrary,the
difference was not significant。
表 2 研究区主要优势群落土壤水分含量变化
Tab. 2 Change of soil water contents of main plant community types in the study area
土层
Soil layer
多枝柽
柳群落
Tamarix
ramosissima
community
胀果甘草
群落
Glycyrrhiza
inflata
community
胡杨群落
Populus
euphratica
community
疏叶骆驼
刺群落
Alhagi
sparsifolia
community
芦苇群落
Phragmites
australis
community
多枝柽柳
沙包群落
Tamarix
ramosissima
sand bags
community
苏枸杞
群落
Lycium
ruthenicum
community
芦苇沼泽
Phragmites
australis
swamp
0 ~ 10 cm 11. 84% 5. 80% 6. 00% 4. 92% 4. 44% 3. 87% 3. 91% 12. 68%
10 ~ 20 cm 12. 87% 9. 25% 6. 23% 5. 86% 4. 69% 4. 93% 3. 94% 13. 22%
20 ~ 40 cm 19. 07% 13. 02% 8. 33% 8. 30% 8. 08% 5. 22% 6. 36% 19. 63%
40 ~ 60 cm 19. 76% 14. 62% 9. 89% 12. 06% 11. 57% 5. 52% 12. 88% 20. 22 %
60 ~ 80 cm 20. 35% 16. 07% 10. 66% 13. 63% 13. 31% 5. 75% 14. 97% 19. 88%
80 ~ 100 cm 20. 63% 17. 37% 11. 78% 15. 31% 14. 30% 5. 96% 17. 27% 20. 40%
100 ~ 120 cm 21. 35% 19. 64% 12. 52% 15. 49% 13. 80% 6. 27% 17. 70% 20. 87%
120 ~ 140 cm 22. 72% 20. 64% 14. 13% 16. 20% 16. 95% 6. 52% 18. 48% 22. 27%
140 ~ 160 cm 23. 25% 22. 17% 16. 95% 17. 03% 17. 90% 6. 93% 19. 25% 25. 13%
160 ~ 180 cm 23. 39% 22. 40% 18. 89% 19. 07% 18. 50% 7. 29% 21. 27% 32. 68%
180 ~ 200 cm 23. 91% 23. 73% 21. 37% 20. 99% 19. 12% 7. 32% 23. 36% 41. 23
0 ~ 60 cm(浅层 Shallow layer) 14. 59% 9. 36% 6. 85% 6. 36% 4. 67% 4. 74% 15. 17% 14. 59%
60 ~ 200 cm(深层 Deep layer) 21. 92% 19. 58% 14. 52% 16. 22% 6. 45% 18. 15% 25. 33% 21. 92%
0 ~ 2 m 贮水量 Soil moisture storage /mm 219. 1 194. 2 130. 7 148. 9 65. 6 159. 4 142. 6 248. 2
11
林 业 科 学 51 卷
3. 2 土壤水分含量对物种多度与丰富度空间分布
的影响
图 1,2 显示,浅层土壤水分含量与草本物种的
多度显著正相关(P < 0. 01),与物种丰富度无显著
相关,而深层土壤水分含量与草本物种的多度和丰
富度均无显著相关,这与植物种本身的生物学特性
和对生境的特殊适应性密切相关,草本植物根系相
对较浅,对浅层土壤水分含量有较高的依赖性,浅层
土壤水分含量对其有较强影响。
图 3,4 显示,深层土壤水分含量对乔(灌)木物
种丰富度和多度均有一定影响,但对多度影响远大
于对物种丰富度,与物种的多度显著正相关 ( P <
0. 01); 而浅层土壤水分含量与乔(灌)木物种的多
度和物种丰富度均无显著相关。
图 1 浅层土壤水分含量与草本植物多度、物种丰富度之间的关系
Fig. 1 Relationship between soil water contents in shallow layer and herb plant abundance,species richness
图 2 深层土壤湿度与草本植物多度、物种丰富度之间的关系
Fig. 2 Relationship between soil water contents in deep layer and herb plant abundance,species richness
图 3 浅层土壤水分含量与乔(灌)木植物多度、物种丰富度之间的关系
Fig. 3 Relationship between soil water contents in shallow layer and tree( shrub) plant abundance,species richness
图 1,2,3 和 4 显示,深层土壤水分含量对乔
(灌)木植物多样性的影响显著高于对草本植物的
影响。
3. 3 土壤水分含量与植被特征的关系
表 3 显示,各层土壤水分含量之间及各层土
壤水分含量与 0 ~ 2 m 土层贮水量、植被盖度之
间均极显著正相关 ( α = 0. 01 ) ; 20 ~ 80 cm 以下
各层土壤水分含量与 0 ~ 2 m 土层贮水量均极显
著正相关 ( α = 0. 01)、180 ~ 200 cm 土层含水量
与 0 ~ 2 m 土层贮水量显著正相关 ( α = 0. 05 ) ;
21
第 11 期 陈文业等: 甘肃敦煌西湖荒漠 -湿地生态系统土壤水分含量对植被特征的影响
40 cm 以下各层土壤含水量与植被盖度之间均极
显著正相关( α = 0. 01 ),20 ~ 40 cm 土层含水量
与植被盖度均显著正相关( α = 0. 05 ) ; 0 ~ 80 cm
各层土壤水分含量与植被高度和植被密度之间
均负相关; 80 ~ 200 cm 各层土壤水分含量与植
被高度之间均正相关; 0 ~ 2 m 土层贮水量与植
被盖度、植被高度和植被密度之间均显著正相
关,是由于较大的植被盖度可以阻挡太阳照射,
减少土壤的蒸发,改善了表层的土壤有机质,往
往导致较高的土壤水分含量; 植被盖度与植被高
度和植被密度之间均极显著正相关 ( α = 0. 01 ),
而植被高度与植被密度之间负相关,表明研究区
植被各种属性之间既相互制约、密切联系,又存
在一定的独立性。
图 4 深层土壤湿度与乔(灌)植物多度、物种丰富度之间的关系
Fig. 4 Relationship between soil water contents in deep layer and tree( shrub) plant abundance,species richness
4 结论与讨论
土壤水分含量对植物物种多度、物种丰富度分
布的影响,反映了植被适应生境及其维持多样性的
特点,决定着该区域植被物种的组成、结构及其种群
的大小。土壤水分含量对植物物种丰富度分布的影
响不显著,说明该区域植被通过漫长演化进而适应
了该生境,具有特殊的生理生态特性应对土壤水分
含量的变化。本研究区兼有荒漠和湿地生境特点,
在荒漠生境,物种组成以中旱生、旱生和超旱生等生
态型植被为主,大多数属于灌乔木,具有深根系大冠
幅、要求较高的生态位等特点,植物多样性更多地依
赖于深层土壤含水量; 在湿地生境,以湿生植被为
主,大多数属于草本植物,毛细根主要分布在浅层土
壤中,具有喜水耐盐的特性,植物多样性更多地依赖
于浅层土壤含水量。土壤水分含量对植物物种多度
分布的影响显著说明系统演化过程中,物种通过控
制种群大小来应对土壤水分含量的变化,说明研究
区植被在沿沼泽→盐沼→草甸→阔叶林→荒漠演变
过程中,随着土壤水分含量的递减,对物种多样性的
影响首先从种群水平进行应对,减少种群规模,进而
威胁到植物种的物种丰富度。随着土壤水分含量梯
度的变化,深层土壤水分含量对乔灌木物种多度和
物种丰富度的格局起决定性作用,而对草本物种多
度和物种丰富度格局起决定性作用的因子是浅层土
壤水分含量。
在本研究中,各层土壤水分含量之间及各层土
壤水分含量与 0 ~ 2 m 土层贮水量、植被盖度与植被
高度与植被密度、植被高度和植被密度之间均显著
正相关,这与邱开阳等 (2011)的研究结果一致,表
明研究区各层土壤水分之间密切联系,植被各种属
性之间密切联系、相互制约。0 ~ 2 m 土层贮水量与
植被盖度、植被高度和植被密度之间均显著正相关,
因为土壤水分含量是研究区生态系统中决定植被特
征的关键限制因素之一。0 ~ 80 cm 各层土壤水分
含量与植被高度和植被密度之间均负相关,80 ~ 200
cm 各层土壤水分含量与植被高度之间均正相关,这
与王蕙等(2007)研究结果一致,表明深层土壤湿度
是制约研究区植被结构的关键因素。这与研究区特
殊生境条件和植被组成有关,植被主要以深根系为
主,由于根系分布密集区通常是对水分利用率最高
的区域(曾晓玲等,2012; Moeslund et al.,2013)。
植被高度与植被密度之间负相关,由于研究区土壤
条件比较贫瘠,有限的水肥条件导致随着植被密度
的增加而植被高度递减。
土壤水分含量变化不仅直接影响着研究区植物
群落多样性,而通过影响别的环境因子又间接影响
着植物多样性的维持(李新荣等,2008)。研究区年
均降水量仅为 39. 0 mm 左右,土壤水分含量的变化
主要受地下水位影响,制约着天然植被植物的生长
状况,进而造就了与其相适应的荒漠 - 湿地植被
景观。
31
林 业 科 学 51 卷41
第 11 期 陈文业等: 甘肃敦煌西湖荒漠 -湿地生态系统土壤水分含量对植被特征的影响
参 考 文 献
陈文业,张继强,赵 明,等 . 2012. 甘肃敦煌西湖荒漠 - 湿地植物群
落物种多样性特征研究 .中国沙漠,32(6) : 1639 - 1646.
(Chen W Y,Zhang J Q,Zhao M,et al. 2012. Species dciversity
characteristics of plant community in Xihu Desert Wetland of
Dunhuang,Gansu Province. Journal of Desert Research,32 ( 6 ) :
1639 - 1646.[in Chinese])
崔向慧 . 2010.干旱半干旱沙区人工植被与土壤水分环境相互作用关
系研究进展 .世界林业研究,23(6) : 50 - 54.
(Cui X H. 2010. Research advances in the interaction relationships
between artificial vegetations and soil moisture in arid and semi-arid
sandy regions of China. World Forestry Research,23(6) : 50 - 54.
[in Chinese])
李小英,段争虎 . 2012.黄土高原土壤水分与植被相互作用研究进展 .
土壤通报,43(6) : 1508 - 1514.
( Li X Y,Duan Z H. 2012. Review on the interaction between soil
moisture and vegetation on the Loess Plateau. Chinese Journal of
Soil Science,43(6) : 1508 - 1514.[in Chinese])
李新荣,何明珠,贾荣亮 . 2008.黑河中下游荒漠区植物多样性分布对
土壤水分变化的响应 .地球科学进展,23(7) : 685 - 691.
(Li X R,He M Z,Jia R L. 2008. The response of desert plant species
diversity to the changes in soil water content in the middle-lower
reaches of the Heihe River. Advances in Earth Science,23(7) : 685
- 691.[in Chinese])
李玉霞,周华荣 . 2011.干旱区湿地景观植物群落与环境因子的关系 .
生态与农村环境学报,27(6) : 43 - 49.
(Li Y X,Zhou H R. 2011. Relationship between wetland landscape plant
communities and environment factors in arid zone. Journal of Ecology
and Rural Environment,27(6) : 43 - 49.[in Chinese])
李裕元,邵明安 . 2005.黄土高原北部紫花苜蓿草地退化过程与植物
多样性研究 .应用生态学报,16(12) : 2321 - 2327.
(Li Y Y,Shao M A. 2005. Degradation process and plant diversity of
alfalfa grassland in North Loess Plateau of China. Chinese Journal of
Applied Ecology,6(12) : 2321 - 2327.[in Chinese])
刘虎俊,刘世增,李 毅,等 . 2012. 石羊河中下游河岸带植被对地下
水位变化的响应 .干旱区研究,29(2) : 335 - 341.
( Liu H J,Liu S Z,Li Y,et al. 2012. Response of riparian vegetation to the
change of groundwater level at middle and lower reaches of the
Shiyang River. Arid Zone Research,29 ( 2 ) : 335 - 341. [in
Chinese])
刘雯霞 . 2009.敦煌西湖自然保护区生物多样性特征及生境质量评
价 .干旱区资源与环境,23(3) : 171 - 174.
(Liu W X. 2009. Biodiversity characters and eco-environment quality
evaluation on Nature Reserve of Xihu in Dunhuang. Journal of Arid
Land Resources and Environment,23 ( 3 ) : 171 - 174. [in
Chinese])
卢 琦,李新荣,肖洪浪,等 . 2004.荒漠生态系统观测方法 . 北京: 中
国环境科学出版社 .
(Lu Q,Li X R,Xiao H L,et al. 2004. Desert ecosystem observation
method. Beijing: China Environmental Science Press. [ in
Chinese])
满苏尔·沙比提,胡江玲 . 2010.新疆渭干河 -库车河三角洲绿洲地下
水特征对天然植被的影响分析 .冰川冻土,32(2) : 422 - 428.
(Mansuer S B T,Hu J L. 2010. Effects of groundwater characteristics on
vegetation in the oasis on the Ugan-Kuqa River Delta,Xinjiang
Region,China. Journal of Glaciology and Geocryology,32 ( 2 ) :
422 - 428.[in Chinese])
戚登臣,陈文业,张继强,等 . 2010.敦煌西湖湿地生态系统现状、退化
原因及综合修复对策 .草业学报,19(4) : 194 - 203.
(Qi D C,Chen W Y,Zhang J Q,et al. 2010. Status,degraded causes and
comprehensive treatment of Dunhuang Xihu wetland ecosystem. Acta
Prataculturae Sinica,19(4) : 194 - 203.[in Chinese])
邱开阳,谢应忠,许冬梅,等 . 2011. 毛乌素沙地南缘沙漠化临界区域
土壤水分和植被空间格局 .生态学报,31(10) : 2697 - 2707.
(Qiu K Y,Xie Y Z,Xu D M,et al. 2011. Spatial pattern of soil moisture
and vegetation attributes along the critical area of desertification in
Southern Mu Us Sandy Land. Acta Ecologica Sinica,31(10) : 2697
- 2707.[in Chinese])
石瑞花,李 霞,董新光,等 . 2009. 焉耆盆地天然植被与地下水关系
研究 .自然资源学报,24(12) : 2097 - 2103.
( Shi R H,Li X,Dong X G,et al. 2009. Research on the relationship
between natural vegetation growth and groundwater in Yanqi Basin.
Journal of Natural Resources,24(12) : 2097 - 2103.[in Chinese])
王 蕙,赵文智,常学向 . 2007.黑河中游荒漠绿洲过渡带土壤水分与
植被空间变异 .生态学报,27(5) : 1731 - 1739.
(Wang H,Zhao W Z,Chang X X. 2007. Spatial variability of soil moisture
and vegetation in desert oasis ecotone in the middle reaches of Heihe
River Basin. Acta Ecologica Sinica,27 ( 5 ) : 1731 - 1739. [in
Chinese])
王新平,张志山,张景光,等 . 2005. 荒漠植被影响土壤水文过程研究
述评 .中国沙漠,25(2) : 198 - 201.
(Wang X P,Zhang Z S,Zhang J G,et al. 2005. Review to researches on
desert vegetation influencing soil hydrological processes. Journal of
Desert Research,25(2) : 198 - 201.[in Chinese])
曾晓玲,刘 彤,张卫宾,等 . 2012. 古尔班通古特沙漠西部地下水位
和水质变化对植被的影响 .生态学报,32(5) : 1490 - 1501.
(Zeng X L,Liu T,Zhang W B,et al. 2012. Variations in groundwater
levels and quality and their effects on vegetation in the western
Grurbantonggut Desert. Acta Ecologica Sinica,32 ( 5 ) : 1490 -
1501.[in Chinese])
张继强,陈文业,康建军,等 . 2013. 敦煌西湖盐化草甸芦苇植物群落
特征及多样性沿水分梯度的分布格局 . 水土保持通报,33 (2) :
173 - 176.
(Zhang J Q,Chen W Y,Kang J J,et al. 2013. Dunhuang Westlake salt
meadow reed plant community structure and diversity distribution
pattern along altitudinal gradien. Bulletin of Soil and Water
Conservation,33(2) : 173 - 176.[in Chinese])
张继强,陈文业,康建军,等 . 2014. 甘肃敦煌西湖湿地芦苇群落种间
关联性研究 .西北植物学报,34(2) : 358 - 363.
(Zhang J Q,Chen W Y,Kang J J,et al. 2014. Study on interrelated
dominant community between species of Phragmites communis in
Dunhuang Westlake wetland of Gansu. Acta Botanica Boreali-
Occidentalia Sinica,34(2) : 358 - 363.[in Chinese])
张 谨,陈文业,张继强,等 . 2013. 甘肃敦煌西湖荒漠 - 湿地生态系
统优势植物种群分布格局及种间关联性 . 中国沙漠,33 ( 2 ) :
51
林 业 科 学 51 卷
349 - 357.
(Zhang J,Chen W Y,Zhang J Q,et al. 2013. Spatial distribution pattern
and interspecific association of the dominant populations in wetland
ecological system enclosed by extremely dry desert region in
Dunhuang Xihu,Gansu,China. Journal of Desert Research,33 (2) :
349 - 357.[in Chinese])
张圆圆,徐先英,刘虎俊,等 . 2014. 石羊河流域中下游河岸植被与土
壤特征及其相关分析 .干旱区资源与环境,28(5) : 115 - 120.
(Zhang Y Y,Xu X Y,Liu H J,et al. 2014. The correlation between the
riparian vegetation and soil properties at middle and lower reaches of
Shiyang River. Journal of Arid Land Resources and Environment,28
(5) : 115 - 120.[in Chinese])
郑姚闽,崔国发,雷 霆,等 . 2010. 甘肃敦煌西湖多枝柽柳群落特征
和种群格局 .北京林业大学学报,32(4) : 34 - 44.
(Zheng Y M,Cui G F,Lei T,et al. 2010. Community characteristics and
population patterns of Tamarix ramosissima in Dunhuang Xihu of
Gansu Province,northwestern China. Journal of Beijing Forestry
University,32(4) : 34 - 44.[in Chinese])
Baskan O,Kosker Y,Erpul G. 2013. Spatial and temporal variation of
moisture content in the soil profiles of two different agricultural fields
of semi-arid region. Environmental Monitoring and Assessment,185
(12) : 10441 - 10458.
Dan L,Ji J,Zhang P. 2005. The soil moisture of China in a high resolution
climate-vegetation model. Advances in Atmospheric Sciences,22
(5) : 720 - 729.
Fu A,Li W,Chen Y,et al. 2011. Analysis of dominant factors influencing
moisture change of broad-ovate leaves of Populus euphratica Oliv. in
extremely arid region. Photosynthetica,49(2) : 295 - 308.
Li X. 2005. Influence of variation of soil spatial heterogeneity on
vegetation restoration. Science in China Series D-Earth Sciences,48
(11) : 2020 - 2031.
Ma X D,Chen Y N,Zhu C G,et al. 2011. The variation in soil moisture
and the appropriate groundwater table for desert riparian forest along
the Lower Tarim River. Journal of Geographical Sciences,21 ( 1 ) :
150 - 162.
Moeslund J,Arge L,Bocher P,et al. 2013. Topographically controlled soil
moisture drives plant diversity patterns within grasslands. Biodivers
Conserv,22(10) : 2151 - 2166.
Schneider K,Leopold U,Gerschlauer F,et al. 2011. Spatial and temporal
variation of soil moisture in dependence of multiple environmental
parameters in semi-arid grasslands. Plant and Soil,340(1 /2) : 73 -
88.
Victor M,Rodríguez M,Stephen H. 2014. Vegetation response to
hydrologic and geomorphic factors in an arid region of the Baja
California Peninsula. Environmental Monitoring and Assessment,186
(2) : 1009 - 1021.
Wang Y,Zhu H,Li Y. 2013. Spatial heterogeneity of soil moisture,
microbial biomass carbon and soil respiration at stand scale of an
arid scrubland. Environmental Earth Sciences,70 ( 7 ) : 3217 -
3224.
Wang Z,Liu B,Zhang Y. 2009. Soil moisture of different vegetation types
on the Loess Plateau. Journal of Geographical Sciences,19 ( 6 ) :
707 - 718.
Yang X,Zhang K,Hou R,et al. 2007. Exclusion effects on vegetation
characteristics and their correlation to soil factors in the semi-arid
rangeland of Mu Us Sandland,China. Frontiers of Biology in China,
2(2) : 210 - 217.
(责任编辑 于静娴)
61