免费文献传递   相关文献

Bamboo Shoot Growth Model Based on the Stochastic Process and Its Application

基于随机过程的毛竹笋期生长模型构建及应用


毛竹笋期生长与毛竹生长快、产量高、固碳功能强有非常密切的关系,研究毛竹笋期生长模型意义重大。本研究指出毛竹笋期生长受很多随机因素的干扰,其实质上是随机过程,并应用随机过程理论与Sloboda生长方程构建了毛竹笋期生长的随机过程模型,及对该模型的特征函数进行研究。用本文构建的模型结合实测数据资料表明:1)毛竹笋期生长在大约55天完成,其生长过程可以分为2个阶段:1~25天为第1阶段,该阶段毛竹生长比较缓慢,25~55天为第2阶段,该阶段毛竹处于爆发式生长;2)对于给定的生长时间(本文指天数),毛竹的累积生长量是随机变量,其概率分布曲线由左偏峰逐步转化为正态分布,且其分布的峰值起初显著下降,后逐步变为平稳;3)毛竹笋期生长的第1阶段(1~25天),其生物量的累积量不大,但在生长的第2阶段(25-55天),因竹高处在爆发式增长阶段且地径不变,其生物量的累积速度非常快,体现了毛竹超强的固碳功能;4)对于不同的毛竹,Sloboda生长方程参数k,b的值相同,而SI的值服从正态分布。本研究给出的毛竹笋期生长随机过程特征函数(均值函数、相关函数与标准差函数),为进一步研究毛竹其他性质奠定基础。

The shooting period of Moso bamboo (Phyllostachys edulis) is closely related to the feature of fast growth, high yield and strong carbon fixation, thus it is of vital significance to study the growth model of Moso bamboo shoot during the shooting period. This research for the first time pointed out that the growth of bamboo shoots could be interfered by many stochastic factors, that is, the growth is a stochastic process in essence. The stochastic process model was built based on stochastic process theory and Sloboda growth equation, and its characteristic functions were studied. Combined with the measured data, the model built in this paper shows that: 1) The bamboo shooting period finishes in about 55 days, which can be divided into two phases. Moso bamboo shoots grow slowly in the first stage (1st-25th day), and then grow rapidly in the second stage (25st-55th day). 2) For the given growth time (days), the cumulative growth of Moso bamboo shoots is a random variable, and the probability distribution curve gradually transforms from left skew peak into normal distribution. The peak value of distribution initially drops rapidly and then becomes smooth gradually. 3) The parameters (k, b) of Sloboda growth equation are the same for different bamboo shoots, but the values of SI follow a normal distribution. The stochastic process characteristic functions (mean function, correlation function, and standard deviation function) of the growth during the bamboo shooting period lay the foundation for further research on other characteristics of Moso bamboo.


全 文 :第 8? 卷 第 ? 期
4 A 2 5 年 ? 月
林 业 科 学
7;QRS6QL 7Q!ILR 7QSQ;LR
I.(T8?"S.T?
7-H3" 4 A 2 5
D."!2A322=A=UV32AA2F=8>>34A25A?24
收稿日期! 4A24 WA? WA8# 修回日期!4A25 WA8 W22’
基金项目!浙江省重点科技创新团队资助项目$4A2AX9AA5A% # 国家重点基础研究发展计划$ .?=5/计划%项目$4A22;N5A4=A9% ’
#周国模为通讯作者’
基于随机过程的毛竹笋期生长模型构建及应用#
施拥军2! 4\刘恩斌2! 4\周国模2! 4\沈振明5\俞淑红2! 4
$23浙江农林大学浙江省森林生态系统碳循环与固碳减排重点实验室\临安 5225AA#
43浙江农林大学环境与资源学院\临安 5225AA# 53临安市林业科技推广总站\临安 5225AA%
摘\要!\毛竹笋期生长与毛竹生长快&产量高&固碳功能强有非常密切的关系"研究毛竹笋期生长模型意义重大’
本研究指出毛竹笋期生长受很多随机因素的干扰"其实质上是随机过程"并应用随机过程理论与 7(.E.D%生长方程
构建了毛竹笋期生长的随机过程模型"及对该模型的特征函数进行研究’ 用本文构建的模型结合实测数据资料表
明!2% 毛竹笋期生长在大约 99 天完成"其生长过程可以分为 4 个阶段!2 f49 天为第 2 阶段"该阶段毛竹生长比较
缓慢" 49 f99 天为第 4 阶段"该阶段毛竹处于爆发式生长# 4% 对于给定的生长时间$本文指天数%"毛竹的累积生
长量是随机变量"其概率分布曲线由左偏峰逐步转化为正态分布"且其分布的峰值起初显著下降"后逐步变为平
稳# 5% 毛竹笋期生长的第 2 阶段$2 f49 天%"其生物量的累积量不大"但在生长的第 4 阶段$49 W99 天%"因竹高处
在爆发式增长阶段且地径不变"其生物量的累积速度非常快"体现了毛竹超强的固碳功能# 8% 对于不同的毛竹"
7(.E.D%生长方程参数 L";的值相同"而 7Q的值服从正态分布’ 本研究给出的毛竹笋期生长随机过程特征函数$均
值函数&相关函数与标准差函数%"为进一步研究毛竹其他性质奠定基础’
关键词!\毛竹笋期生长# 随机过程# 7(.E.D%生长方程
中图分类号!7=9>T2\\\文献标识码!L\\\文章编号!2AA2 W=8>>"4A25#A? WAA>? WA9
3&45"" $.""’W*"B’.2"7/)3&0/7"#’./$’",.&0’(,>*",/00N’0@%%)(,&’("#
70"^ .&CV#&2" 4\!"# R&E"&2" 4\_0.# ‘#.B.2" 4\70-& _0-&B"&C5\ #^ 70#0.&C2" 4
$2%./!0+#1’ 86)5+1,+#$9!7:#;)6#")67)<=#6;)1 =7,$+1’ +1 3)6!-">,)-7-"!*-#1( =#6;)1 ?!@A!-"6#"+)1" ./!0+#1’ &23
41+5!6-+"7\:+1( #1 5225AA# 4%?,/))$)<>15+6)1*!1"#$#1( B!-)A6,!?,+!1,!-" ./!0+#1’ &2341+5!6-+"7\:+1( #1 5225AA
5%:+1( #1 =+"73)6!-"67?,+!1,!#1( E!,/1)$)’7>T"!1-+)1 ?"#"+)1\:+1( #1 5225AA%
@50’*&,’!\60-+0..)"&CH-*".D ./$.+.E%BE..$8/7$)-"#,/7-!(A$+-% "+,(.+-(G*-(%)-D ).)0-/-%)#*-.//%+)C*.J)0"
0"C0 G"-(D %&D +)*.&C,%*E.& /"c%)".&" )0#+")"+./K")%(+"C&"/",%&,-).+)#DG)0-C*.J)0 B.D-(./$.+.E%BE..+0..)D#*"&C
)0-+0..)"&CH-*".D360"+*-+-%*,0 /.*)0-/"*+))"B-H."&)-D .#))0%))0-C*.J)0 ./E%BE..+0..)+,.#(D E-"&)-*/-*-D EG
B%&G+).,0%+)",/%,).*+" )0%)"+" )0-C*.J)0 "+%+).,0%+)",H*.,-++"& -++-&,-360-+).,0%+)",H*.,-++B.D-(J%+E#"()
E%+-D .& +).,0%+)",H*.,-++)0-.*G%&D 7(.E.D%C*.J)0 -P#%)".&" %&D ")+,0%*%,)-*"+)",/#&,)".&+J-*-+)#D"-D3;.BE"&-D
J")0 )0-B-%+#*-D D%)%" )0-B.D-(E#"()"& )0"+H%H-*+0.J+)0%)! 2% 60-E%BE..+0..)"&CH-*".D /"&"+0-+"& %E.#)99
D%G+" J0",0 ,%& E-D"K"D-D "&).)J.H0%+-+3$.+.E%BE..+0..)+C*.J+(.J(G"& )0-/"*+)+)%C-$2+)W49)0 D%G%" %&D )0-&
C*.J*%H"D(G"& )0-+-,.&D +)%C-$49+)W99)0 D%G%34% Z.*)0-C"K-& C*.J)0 )"B-$D%G+%" )0-,#B#(%)"K-C*.J)0 ./$.+.
E%BE..+0..)+"+%*%&D.BK%*"%E(-" %&D )0-H*.E%E"(")GD"+)*"E#)".& ,#*K-C*%D#%(G)*%&+/.*B+/*.B(-/)+b-JH-%b "&).
&.*B%(D"+)*"E#)".&360-H-%b K%(#-./D"+)*"E#)".& "&")"%(GD*.H+*%H"D(G%&D )0-& E-,.B-++B..)0 C*%D#%(G35% 60-
H%*%B-)-*+$L" ;% ./7(.E.D%C*.J)0 -P#%)".& %*-)0-+%B-/.*D"/-*-&)E%BE..+0..)+" E#))0-K%(#-+./7Q/.(.J%
&.*B%(D"+)*"E#)".&360-+).,0%+)",H*.,-++,0%*%,)-*"+)",/#&,)".&+$B-%& /#&,)".&" ,.**-(%)".& /#&,)".&" %&D +)%&D%*D
D-K"%)".& /#&,)".&% ./)0-C*.J)0 D#*"&C)0-E%BE..+0..)"&CH-*".D (%G)0-/.#&D%)".& /.*/#*)0-**-+-%*,0 .& .)0-*
,0%*%,)-*"+)",+./$.+.E%BE..3
A/: B"*70!\$.+.E%BE..+0..)C*.J)0# 7).,0%+)",H*.,-++# 7(.E.D%C*.J)0 -P#%)".&
\\树木生长量反映了森林生态系统中林木与环境之 间物质循环和能量流动的复杂关系"树木生长量的准
林 业 科 学 8? 卷确测定"无论是对林业研究"或是对政府部门制定相关
林业政策都有着十分重要的意义’ 建立一定的生长模
型来推算树木生长量是生产实践中常用的方法$邓红
兵等" 2???# 雷相东等" 4AA?# 王丽梅等" 4AA8%’ 林木
的生长模型主要分为单木生长模型和林分模型"其中
单木生长模型是研究林分的生长模型和林分结构模型
基础’ 目前"常见的单木生长模型有!双曲线型&伯塔
兰菲$N-*)%(%&/G%&单分子$$")+,0-*(",0%&查曼 W理查
兹$;0%HB%&FX",0%*D+%&坎派兹$‘.BH-*)r%&逻辑斯蒂
$!.C"+)",%&考尔夫$Y.*/%等$王丽梅等" 4AA8# 罗辑等"
4AAA# 邓红兵等" 2???# 葛剑平等" 2??4# 刘平等"
4AA># 代全林等" 4AA4# 韦善华等" 4A22%"但这些
方程都不满足描述树木生长曲线族的特性$惠刚盈
等" 2??:# 7(.E.D%" 2?=2%"也有学者用林窗模型研
究树高的动态生长$X%+,0-!"#$%" 4A24%"但也不具
有生长曲线族的特性’
众所周知"林木生长不可避免地受到许多随机
因素的影响"在整个生长过程中"这些因素对它的影
响时大时小"有单独作用"也有综合作用"目前还不
能将其全部精确地测定出来"即便能测定出来"其因
素之间的关系也是随机变化的’ 因此在描述树木生
长过程时"把林木测树因子一般看作随机变量"把林
木生长过程视为一个随机过程来进行描述’
毛竹$8/7$)-"#,/7-!(A$+-%是种特殊的植物"从
笋高度为 5A ,B左右的出笋期开始到其枝叶完全展
开终止"毛竹处于爆发式生长期"其高生长对后期的
碳素积累能力产生重要影响’ 毛竹笋期生长规律的
研究可为研究毛竹整个生长周期的固碳特征以及科
学调控竹林经营提供理论依据’ 目前有关毛竹笋期
爆发式生长规律的研究少见报道’ 7(.E.D%生长方
程能确保拐点参数的生物意义"可以拟合多形指数
曲线$惠刚盈等" 2??:%"故本文以 7(.E.D%生长模型
为基础"应用随机过程理论来研究毛竹笋期生长过
程"其目的!2% 确定毛竹笋期生长模型"揭示毛竹高
生长规律# 4% 随机过程理论方法的应用"为树木生
长过程的研究提供新的理论基础# 5% 对解释毛竹
超强固碳功能"编制毛竹生长过程表"指导毛竹生产
实践及预估毛竹林的生长提供理论依据’
2\理论与方法
EDEF毛竹笋期生长随机过程的描述
毛竹 .作为一个样本空间"每株毛竹 $是一个
样本"部分毛竹组成的集合是事件"以 .某些子集
组成的集合类 /为事件域"并在 /上定义一个集合
函数 8"满足!2% 8$&% $ A"+&, /# 4% 8$.% O
2# 5% &+, /"+O 2" 4"+" 两两互不相容"且有
8$&
|
+O2
&+% O&
|
+O2
8$&+%" 则称 8为 /上的概率’ 由
此可以定义一个有关毛竹的概率空间 $."/"8%"
有了这个概率空间就可以对毛竹笋期生长的随机过
程作如下描述’
由于随机因素的干扰与立地条件的不同"使不
同毛竹在某一特定时间 "的累计生长量 X$$""%$$
,.% 是随机变化的"对于固定的时间 ""X$$""%$$
, .% 是一个随机变量"则 X$""$%"", E"E-{ }B
是一个随机变量族"当 $, .固定时"则 X$""$%$"
,E"E-B% 是某一株毛竹的生长函数"也称为样本
曲线"当$""都固定时"X$""$% 是一个确定的实数"
其含义是某一特定时间"某一毛竹样本的累计生长"
对于随机变量X$""$% $"固定且",E%所有可能的
取值"称为毛竹生长过程的状态空间"而每一个可能
取的值称为状态’ 由此可见毛竹生长过程是一个随
机过程’
EDGF毛竹笋期高生长的随机过程模型
由上可知"随机过程模型能描述毛竹样本空间 .
的笋期生长"结合毛竹生长特性"所构建的模型满足
如下条件$7(.E.D%" 2?=2%!2% 坐标原点具有结点的
特性"各样本曲线应有共同的起始点"且 X轴为所有
曲线的切线# 4% 每条样本曲线有各自的拐点"且这些
拐点可组成一条$T"7%曲线# 5% 每一条样本曲线具
有各自的渐近线"均与 X轴平行# 8% 各样本曲线之
间互不相交’ 根据这 8 个条件"7(.E.D%$2?=2%利用数
学分析手段"推导出如下生长微分方程!
D7
D"
O ;7
"#Q& ,( )7
’ $2%
式中!# i2";",iA 均为参数""为时间"对于毛竹笋
期高生长来说""为生长天数"7为竹高’ 其积分
形式!
7O,-cH$R(%-cH$ ;
$# R2%"#R2
%’ $4%
式中!( 是积分常数"可根据树木生长环境给定’
再对该方程进行整理得!
X$$""% O7Q-cH$ ;
L"L
%’ $5%
式中!7Q为某立地条件下的最大竹高"随立地条件
的改变而变化# ;"L为模型的形状参数"与立地条件
无关’ 因此"可根据每株毛竹的生长环境给定 7Q的
值’ 从图 2 可以看出"对不同的毛竹"其样本函数的
形状基本相同"而其生长的立地条件互不相同"故参
数 7Q的值是变化的"而 ;"L的值是相同的’ 因此可
A?
\第 ? 期 施拥军等! 基于随机过程的毛竹笋期生长模型构建及应用
以把 7Q看做是随机变量"这样$5%式所示函数就是
毛竹生长的随机过程模型’
EDCF毛竹笋期高生长随机过程的特征函数
均值函数&自相关函数与标准差函数是随机过
程最基本的特征函数"假设随机变量 7Q的概率密度
函数为 <$7Q%"则毛竹笋期生长随机过程的均值函
数为!
*$"% O>,X$$""%- O.7Q-cH ;L"( )L <$7Q%(7Q’$8%
式中! 7Q";"L的含义与$5%式相同" <$7Q%为随机变
量 7Q的概率密度函数’
自相关函数为!
B$"2""4% O>,X$$""2%X$$""4%- O
.7Q-cH ;L"2( )L*7Q-cH ;L"4( )L*<$7Q%(7Q’ $9%
\\标准差函数为!
!$"% O B$"""% R*4$"槡 %’ $:%
4\资料来源
GDEF研究区特征
研究区设在浙江省西北部的临安市青山镇"地理
位置为 22?l8=m44nR"5Al25m89nS"海拔为 9A f25A B’
属中亚热带季风气候’ 年平均气温29T? o"平均气
温 4 o’ 年均降雨量 2 :25 BB"平均降雨日 29> 天"
降水明显集中在春季和初夏’ 平均日照时数2 ?4A 0"
年无霜期 45= 天"土壤为黄红壤’
GDGF数据获取与处理
在青山镇的人工经营毛竹林中"随机选取 28A
株毛竹$笋%作为测量样本"在毛竹$笋%边上竖立序
号标牌进行样本标记’ 从 4AA? 年 5 月 2> 日竹笋刚
刚出土开始"每日定时$25!AA)2=!AA%对其进行高
生长的连续跟踪测量"至 4AA? 年 9 月 24 日"毛竹开
始抽枝展叶结束高生长为止"共连续测量 9= 天’ 当
竹笋高度小于 4 B时"采用钢卷尺测量其高度# 当
竹笋高度超过 4 B时"采用徕卡 6;X=A4j*%&C-型
精密全站仪根据.悬高测量法/精确测量其高度"测
量标称精度达到毫米级’ 对采集到的样本数据进行
质量检验"去除记录信息不全 $研究过程中竹笋死
亡或遭到人为损坏%和有粗差的样本"最后得到有
效毛竹样本数据 ?9 株’ 样本数据的地径为 > f2=
,B"生长稳定后的竹高为 2 A95T4 f2 :=4T? ,B’
5\结果与分析
CDEF毛竹实测笋期生长曲线
根据实测的 28A 株毛竹高生长数据"把各个时
刻具有最大生长量与最小生长量的曲线作为上包迹
线与下包迹线"再在上下包迹线所形成的范围内选
取 ?A 株典型毛竹样本数据"利用 B%)(%E 软件的 H(.)
函数作典型毛竹生长曲线$图 2%’
图 2\实测毛竹笋期生长曲线
Z"C32\$-%+#*-D E%BE..+0..)+C*.J)0 ,#*K-
从图 2 可以看出"毛竹笋期高生长在 99 天左右
完成"在第 49 天附近可以把笋期生长分为 4 个阶
段" 2 f49 天为第 2 阶段"毛竹生长较为平缓" 49 f
99 为第 4 阶段"毛竹处于爆发式生长’
CDGF毛竹样本函数族的拟合
利用 7177 软件与每株调查毛竹笋期生长数据
分别对$5%式进行拟合"得各株毛竹样本函数的参
数 L";分别为 4T2>8 2 与 W?2? :T=92 >"7Q的值分
布在区间$2 >>:T4=4 5"5 9?4T2?: 8%"各株毛竹拟
合确定系数 B4 在 AT?45 fAT???"这说明$5%式对每
株调查毛竹样本的拟合精度都非常高"具体见图 :
的蓝色曲线’
CDCF随机变量 $8%竹高的概率分布
概率分布的研究方法有参数检验与非参数检验
4 种"参数检验需要事先给定某种分布函数"然后再
对拟合分布进行检验"该方法的缺陷是事先给定何
种分布"具有一定的主观随意性"而非参数检验对概
率分布的描述"完全取决于给定的数据"不含任何人
为主观因素’ 核密度估计是最常用的非参数检验方
法"事实证明它对概率分布的描述优于 h-"E#(分
布$崔恒建等" 2??:%’ 因此本文用核密度估计来描
述随机变量的概率分布’ 核密度估计描述随机变量
7Q的概率分布如图 4 所示’
\\为了得到随机过程的特征函数"必须要先知道
7Q的理论概率分布函数"从图 4 可以看出随机变量
7Q的概率分布与正态分布非常接近"因此选用正态
分布描述 7Q的概率分布"经 7177 非线性回归拟合
得 ! O 5A:T85: 2"A O 4 =>:T>5: ?" 此时 B4 k
AT?>5"拟合精度非常高’
2?
林 业 科 学 !" 卷#
图 )#随机变量 +J的概率分布
(./0)#,=3E8E.*.62;.96=.EA6.35 3:=85;3>B8=.8E*4+J
从图 % 可以看出"对于给定的 ("毛竹的累计生
长量是随机变量"用核密度估计描述第 % 阶段与第
) 阶段实测 %!K 株毛竹样本各个时间段累计生长量
的典型概率分布图像#图 ’"!$%
图 ’#% L)I 天毛竹累计生长量的概率分布
(./0’#,=3E8E.*.62;.96=.EA6.35 3:G393E8>E33
7A>A*86.B4/=3F61 ;A=.5/% &)I ;829
以上曲线是所有样本在各个时间累计生长量的典型概率分布%
D148E3B47A=B4.962<.78*<=3E8E.*.62;.96=.EA6.35 3:8*98><*49(9
7A>A*86.B4/=3F61 .5 4871 6.>40下同% D1498>4E4*3F0
从图 ’"! 可以看出’ %$ 随着毛竹的生长其累
计生长量概率分布曲线由左偏峰逐渐转变为正态分
布& )$ 概率分布的峰值逐步减小"且起初减小幅度
较大"后逐步变为平稳%
!"#$毛竹笋期生长随机过程的特征函数
毛竹笋期生长随机过程的特征函数包括’均值
函数与方差函数#标准差函数$% 但要得到标准差
函数需要相关函数% 由随机过程的相关理论得到毛
竹笋期生长均值函数’
+#($ 0!
’ I")1%"H !
% MMH1)N) ’
+J4@< &" %"H1NI% M
)1%M! %()1( )%M! % %’KH1!’H % )槡!
4@< 2#+J2) NMH1M’H "$
)
%1"’% " 3%K( )I 4+J%
##用分布积分法整理得’
+#($ 0) NHM1K!I )4@< 2" %"H1NI% M
) 1%M! %()1( )%M! % % #N$
图 !#)I LII 天毛竹累计生长量的概率分布
(./0!#,=3E8E.*.62;.96=.EA6.35 3:G393E8>E33
7A>A*86.B4/=3F61 ;A=.5/)I &II ;829
图 I#毛竹笋期生长实测样本曲线!均值函数
曲线及标准差函数曲线
(./0I#OA=B43:<=876.78*98><*49" 9685;8=; ;4B.86.35" 85; >485
:A576.3593:G393E8>E33913369E894; 35 >489A=4; 98><*49
图 H#毛竹笋期生长理论样本曲线!均值
函数曲线及标准差函数曲线
(./0H#OA=B43:4@364=.78*98><*49" 9685;8=; ;4B.86.35" 85; >485
:A576.3593:G393E8>E33913369E894; 35 >489A=4; 98><*49
##用 G86*8E 软件的 <*36函数作 "K 株典型毛竹笋
期生长均值函数图像"见图 I"H 的红色曲线"其中"
)"
\第 ? 期 施拥军等! 基于随机过程的毛竹笋期生长模型构建及应用
图 9 蓝色曲线是 ?A 株典型毛竹笋期生长的实测曲
线"图 : 的蓝色曲线是相应理论曲线’
由于本文研究的是一个随机过程"所以相关函
数 B$"2""4% 就是自相关函数’ 具体表达式为!
B$"2""4% O= =?: :2:%98> 9-cH$
R? 2?:%=92 >
4 %2>8 2"2
4%2>8 2 %
-cH$ R? 2?:%=92 >
4 %2>8 2"4
4%2>8 2 %’ $>%
\\由 B$"""% R*4$"槡 % 即可得标准差函数"用
$%)(%E 软件的 H(.)函数作毛竹笋期生长标准差函数
图像"见图 9": 的绿色曲线’
由图 9": 可得!2% 蓝色的曲线是毛竹笋期生长
实测与理论样本函数"它们只是某些毛竹的样本曲
线"而毛竹是一个整体性概念"任何一株毛竹都是它
的一个元素"任何一些毛竹的组合都是它的一个子
集"所以任何一个样本函数或任何一些样本曲线都不
能表示毛竹笋期生长函数# 4% 红色的曲线是其均值
函数"它综合了所有样本函数的信息"理论上可以代
表毛竹笋期生长曲线# 5% 绿色曲线是标准差函数"表
示毛竹样本曲线在各个时间 "对均值函数的分散程
度"所以毛竹笋期生长的第 4 阶段比第 2 阶段的分散
程度要大# 8% 由常用生物量模型可知"毛竹笋期生物
量的累积量是地径与竹高的函数"由于毛竹笋期生长
的第 2 阶段$2 f49 天%"其竹高增长相对较平稳而地
经不变"所以其生物量的累积量不大"但在生长的第
4 阶段$49 f99 天%"因竹高处在爆发式增长阶段且地
径不变"所以在该阶段其生物量的累积速度非常快"
体现了毛竹超强的固碳功能# 9% 生长的第 2 阶段"由
于标准差函数较平稳"故各毛竹竹高生长量与生物量
的累积量相差不大"反映了该阶段立地条件对毛竹生
长量与生物量的累积量影响不大# 但在第 4 阶段由
于立地条件的不同"使标准差函数斜率迅速变大"各
毛竹竹高生长量与生物量的累积量差异较大"且生长
的时间越长这种差异就越大"反映了该阶段立地条件
对毛竹生长量与生物量的累积量影响非常大’
8\结论
由于很多随机因素的干扰"任何树种的生长过程
实质上是一个随机过程"因此必须用随机过程来描
述’ 7(.E.D%生长方程可以描述多形指数曲线"具有
很多其他生长模型不具备的特点"同时能确保拐点参
数的生物意义$惠刚盈等" 2??:%"结合已有研究成
果&随机过程理论及实测数据"本文得到如下结论’
2% 毛竹笋期生长在大约 99 天完成"其生长过
程可以分为 4 个阶段!2 f49 天为第 2 阶段"该阶段
毛竹生长比较缓慢" 49 f99 天为第 4 阶段"该阶段
毛竹处于爆发式生长’
4% 对于给定的生长时间"毛竹的累计生长量是
随机变量"其概率分布曲线由左偏峰逐步转化为正
态分布"且其分布的峰值起初显著下降"后逐步变为
平稳’
5% 对于不同的毛竹"$5%式所示的 7(.E.D%生
长方程参数 L";的值相同"而 7Q的值服从正态
分布’
8% 本研究给出了毛竹笋期生长随机过程模型
及其特征函数 $均值函数&相关函数与标准差函
数%"为进一步研究毛竹其他性质奠定了基础" 也为
研究树木生长过程提供了新的理论方法’
9% 毛竹笋期生长的第 2 阶段"生物量的累积量
不大"但在第 4 阶段"竹高爆发式增长"生物量的累
积量非常大"体现了毛竹超强的固碳功能’
参 考 文 献
崔恒建" 王雪峰32??:3核密度估计及其在直径分布研究中的应用3
北京林业大学学报" 2>$4% ! := W=43
代全林" 陈存及" 肖书平34AA43茶秆竹高生长模型的比较及组合
选择3福建林学院学报" 44$4% ! 24? W2543
邓红兵" 郝占庆" 王庆礼32???3红松单木高生长模型的研究3生态
学杂志" 2>$5% ! 2? W443
葛剑平" 李景文" 郭海燕32??43天然红松树木生长特征与林分结
构的研究3东北林业大学学报" 4A$4% ! ? W2:3
惠刚盈" 盛炜彤32??:37(.E.D%树高生长模型及其在杉木人工林中
的应用3林业科学研究" ?$2% ! 5= W8A3
雷相东" 李永慈" 向\玮34AA?3基于混合模型的单木断面积生长
模型3林业科学" 89$2% ! =8 W=?3
刘\平" 马履一" 贾黎明34AA>3油松人工林单木树高生长模型研
究3林业资源管理" $9% ! 9A W9:3
罗\辑" 程根伟"杨\忠" 等34AAA3贡嘎山暗针叶林不同林型的优
势木生长动态3植物生态学报" 48$2% ! 44 W4:3
王丽梅" 潘\辉" 魏建文34AA837(.E.D%树高生长模型在火炬松人
工林中的应用研究3北华大学学报!自然科学版" 9$4% ! 29? W
2:23
韦善华" 覃\静" 朱贤良" 等34A223南宁地区灰木莲人工林生长规
律研究3西北林学院学报" 4:$9% ! 2=8 W2=>3
X%+,0-!" Z%0+-!" _"&CCL" !"#$%4A243R&0%&,"&CC%H B.D-(
%,,#*%,GEGB.D-("&CDG&%B",0-"C0)C*.J)0 %&D DG&%B",B%c"B#B
)*--0-"C0)3R,.(.C",%($.D-("&C" 454! 255 W2853
7(.E.D%N32?=23_#*a%*+)-(#&CK.& h%-0+)#B+H*.r-++-& B")<"(/-K.&
a"/-*-&)"%(C(-"-0#&C-& -*+)-*@*D&#&C3$")-"(#&C-& D-*N%D-&F
h#-*)-BE-*C"+-0-& Z.*+)("-0-& I-*+#-0+F#&D Z.*+-0#&C+%&+)%()"
54! 2 W2A?3
!责任编辑\郭广荣"
5?