免费文献传递   相关文献

Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments

不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析


利用汕优63重组自交系与双亲回交产生的BC1F1和BC2F1群体,采用新发展的包括环境互作效应在内的多遗传体系QTL作图方法和基因定位软件,对稻米两种半必需氨基酸(组氨酸和精氨酸)进行三倍体胚乳和二倍体母体植株等不同遗传体系的QTL定位分析。共检测到10个控制组氨酸含量的QTL以及8个控制精氨酸含量的QTL。全部QTL均具有极显著的三倍体胚乳和二倍体母体植株基因的加性主效应,其中4个QTL具有显著或极显著的三倍体胚乳显性主效应,7个QTL还具有明显的环境互作效应。

As a staple cereal crop in the world, rice feeds more than 50% of the world population. The improvement for rice quality including protein content and kinds of amino acid contents is an important work to meet the demands of a growing population. The genetic analysis on rice indicate that the inheritance of nutrient quality traits is complex, which involve the genetic effects from the triploid endosperm nuclear genes and the diploid maternal plant nuclear genes, being further partitioned into additive and dominance effects, and their genotype × environment (GE) interaction effects. So far, the magnitude and prevalence of interactions between quantitative trait loci (QTL) of the triploid endosperm genome or diploid maternal genome for rice traits are still largely unknown. Therefore, it is necessary to study the genetic main effects and GE interaction effects of the QTL from different genomes across environments. Investigations to identify QTL governing histidine (His) and arginine (Arg) contents of rice were conducted using the newly developed QTL mapping method including endosperm and maternal main effects and their GE interaction effects on quantitative traits of seed in cereal crops. Two backcross populations, which were a set of 241 RILs derived from an elite hybrid cross of ‘Shanyou 63’ crossed with ‘Zhenshan 97’ (BC1F1) or ‘Minghui 63’ (BC2F1), were used in two environments. The results showed that significant differences were found between the two parents for both quantitative quality traits. His and Arg of rice for Zhenshan 97 were higher than those for Minghui 63. The distributions of phenotypic values for His and Arg in BC1F1 (RILs × P1) and BC2F1 (RILs × P2) populations revealed normal distributions approximately. Both backcross populations also showed varying distributions in 1999 and 2000, implying that both amino acid traits were subjected to the modification by environments. A total of ten QTL associated with His content were mapped on chromosomes 1, 2, 3, 6, 7, 10, 11, and 12. Significant additive effects (ae and de) of QTL from diploid maternal plant and triploid endosperm were detected for all of these QTL. Two of them were also found to have visible endosperm dominance main effects and five QTL had significant environmental interaction effects. A total of eight QTL associated with Arg content of rice were mapped on chromosomes 2, 3, 5, 6, 7, 10, 11, and 12. Significant additive main effects of QTL from both genomes were all detected for all of these QTL. Two of them were also found to have visible endosperm dominance main effects and two QTL had significant environmental interaction effects. The proportions of phenotypic variation attributable to the total genetic main effects and GE interaction of QTL were 0.147 and 0.055 for His and 0.160 and 0.018 for Arg, respectively. These results showed that the control for His and Arg contents of rice was distributed over several chromosomes and the environmental interaction effects were also important for the performance of these quality traits.


全 文 :作物学报 ACTA AGRONOMICA SINICA 2008, 34(3): 369−375 http://www.chinacrops.org/zwxb/
ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@chinajournal.net.cn

基金项目: 国家自然科学基金项目(30571198); 国家高技术研究发展计划(863 计划)项目(2006AA100101); 国家重点基础研究发展计划(973 计
划)项目(2007CB109000); 浙江省重大科技攻关项目(011102471); 浙江省 151人才基金项目
作者简介: 郑希(1983–), 女, 汉族, 硕士生, 专业方向:作物遗传育种。
* 通讯作者(Corresponding author): 石春海(1956–), 男, 汉族, 博士, 教授, 博士生导师, 专业方向:作物遗传育种。
Tel: 0571-86971691, E-mail: chhshi@zju.edu.cn
Received(收稿日期): 2007-09-17; Accepted(接受日期): 2007-10-27.
DOI: 10.3724/SP.J.1006.2008.00369
不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株 QTL分析
郑 希1 吴建国1 楼向阳2 徐海明1 石春海1,*
(1 浙江大学农学系, 浙江杭州 310029; 2 Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville,
VA 22911, USA)
摘 要: 利用汕优 63重组自交系与双亲回交产生的BC1F1和BC2F1群体, 采用新发展的包括环境互作效应在内的多遗
传体系QTL作图方法和基因定位软件, 对稻米两种半必需氨基酸(组氨酸和精氨酸)进行三倍体胚乳和二倍体母体植
株等不同遗传体系的QTL定位分析。共检测到 10个控制组氨酸含量的QTL以及 8个控制精氨酸含量的QTL。全部QTL
均具有极显著的三倍体胚乳和二倍体母体植株基因的加性主效应, 其中 4 个QTL具有显著或极显著的三倍体胚乳显
性主效应, 7个QTL还具有明显的环境互作效应。
关键词: 水稻(Oryza sativa L.); QTL定位; 组氨酸; 精氨酸; 胚乳; 母体植株; 环境互作效应
Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for
Histidine and Arginine in Rice (Oryza sativa L.) across Environments
ZHENG Xi1, WU Jian-Guo1, LOU Xiang-Yang2, XU Hai-Ming1, and SHI Chun-Hai1,*
(1 Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, Zhejiang, China; 2 Department of
Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22911, USA)
Abstract: As a staple cereal crop in the world, rice feeds more than 50% of the world population. The improvement for rice
quality including protein content and kinds of amino acid contents is an important work to meet the demands of a growing popula-
tion. The genetic analysis on rice indicate that the inheritance of nutrient quality traits is complex, which involve the genetic ef-
fects from the triploid endosperm nuclear genes and the diploid maternal plant nuclear genes, being further partitioned into addi-
tive and dominance effects, and their genotype × environment (GE) interaction effects. So far, the magnitude and prevalence of
interactions between quantitative trait loci (QTL) of the triploid endosperm genome or diploid maternal genome for rice traits are
still largely unknown. Therefore, it is necessary to study the genetic main effects and GE interaction effects of the QTL from dif-
ferent genomes across environments. Investigations to identify QTL governing histidine (His) and arginine (Arg) contents of rice
were conducted using the newly developed QTL mapping method including endosperm and maternal main effects and their GE
interaction effects on quantitative traits of seed in cereal crops. Two backcross populations, which were a set of 241 RILs derived
from an elite hybrid cross of ‘Shanyou 63’ crossed with ‘Zhenshan 97’ (BC1F1) or ‘Minghui 63’ (BC2F1), were used in two envi-
ronments. The results showed that significant differences were found between the two parents for both quantitative quality traits.
His and Arg of rice for Zhenshan 97 were higher than those for Minghui 63. The distributions of phenotypic values for His and
Arg in BC1F1 (RILs × P1) and BC2F1 (RILs × P2) populations revealed normal distributions approximately. Both backcross popu-
lations also showed varying distributions in 1999 and 2000, implying that both amino acid traits were subjected to the modifica-
tion by environments. A total of ten QTL associated with His content were mapped on chromosomes 1, 2, 3, 6, 7, 10, 11, and 12.
Significant additive effects (ae and am) of QTL from diploid maternal plant and triploid endosperm were detected for all of these
QTL. Two of them were also found to have visible endosperm dominance main effects and five QTL had significant environ-
mental interaction effects. A total of eight QTL associated with Arg content of rice were mapped on chromosomes 2, 3, 5, 6, 7, 10,
11, and 12. Significant additive main effects of QTL from both genomes were all detected for all of these QTL. Two of them were
370 作 物 学 报 第 34卷

also found to have visible endosperm dominance main effects and two QTL had significant environmental interaction effects. The
proportions of phenotypic variation attributable to the total genetic main effects and GE interaction of QTL were 0.147 and 0.055
for His and 0.160 and 0.018 for Arg, respectively. These results showed that the control for His and Arg contents of rice was dis-
tributed over several chromosomes and the environmental interaction effects were also important for the performance of these
quality traits.
Keywords: Rice (Oryza sativa L.); Quantitative trait loci (QTL); Histidine; Arginine; Endosperm; Maternal plant; Envi-
ronmental interaction
水稻是世界上重要的粮食作物之一, 稻米营养
品质已日益受到消费者的重视。其中组氨酸和精氨
酸是人体可以合成、但仍需从食物中摄取和补充的
2 种重要半必需氨基酸, 已有学者对其遗传规律进
行了一些研究[1-2]。同时, 许多研究也已对控制稻米
碾磨品质[3]、外观品质[4-6]、蒸煮品质[7-9]以及蛋白质
含量和脂肪含量[10-12]等性状表现的QTL进行了定位
研究, 取得了明显的进展。一些研究结果表明, 控制
稻米品质性状表现的数量基因可以在三倍体胚乳核
基因组中表达、也可以在二倍体母体植株核基因组
中表达, 或者同时在胚乳和母体植株核基因组中表
达[2,13-16]。由于稻米品质性状遗传的复杂性以及对环
境条件的敏感性, 要同时定位不同遗传体系各染色
体上的QTL尚存在定位模型和分析软件等方面的困
难。因此, 至今尚未在不同环境条件下, 同时定位出
控制稻米品质性状表现的三倍体胚乳和二倍体母体
植株核基因组上的QTL。
汕优 63是我国一个强优势籼型杂交稻组合, 本
试验用其重组自交系(RIL)与亲本双向回交产生的
BC1F1和BC2F1群体, 采用包括环境互作效应在内的
多遗传体系QTL作图方法和定位软件, 进行三倍体
胚乳和二倍体母体植株染色体的QTL定位研究。旨
在明确控制稻米组氨酸、精氨酸含量表现的不同遗
传体系QTL效应, 以及不同环境条件下QTL在稻米
胚乳和母体植株等遗传体系染色体上的分布差异 ,
为品质数量性状的多遗传体系分子标记辅助选择育
种提供理论依据, 也为今后克隆相关基因提供更为
可靠的信息。
1 材料与方法
1.1 田间试验及性状测定
1.1.1 田间试验 汕优 63 重组自交系(RIL)群体
衍生于“珍汕 97×明恢 63”, 共有 241 个株系, 由
华中农业大学培育。本试验分别于 1999 年和 2000
年 5月 19日, 将亲本和 241个重组自交系(RIL)群体
种植于浙江大学实验农场, 30 d秧龄, 单本插, 行株
距为 20 cm × 20 cm, 2次重复。抽穗开花时, 利用重
组自交系(RILs)群体作为母本与其亲本进行双向回交
(RIL×珍汕 97 和RIL×明恢 63), 成熟时收获双亲、
重组近交系和双向回交(BC1F1和BC2F1)种子, 其中双
向回交的稻米用于组氨酸和精氨酸含量分析。
1.1.2 稻米组氨酸和精氨酸含量的测定 每个样
品脱壳后利用JB-20 精米机(Ht McGilling, Houston,
USA)磨成精米, 取 10 g精米于 3010-030 型磨粉机
(Udy Co., Fort Collins, Colo., USA)中碾磨为精米粉,
米粉含水量为 11.7%~12.4%。测定时将样品置内径为
3.6 cm的圆形杯中, 利用FOSS 5000型近红外光谱分
析仪(FOSS NIRSystems, Inc., USA)扫描收集光谱(波
长 1 100~2 498 nm)。每个样品扫描 2次, 取平均值作
为待测样品光谱。利用稻米组氨酸和精氨酸含量的定
标方程快速分析收集样品的光谱, 定标方程中的回归
统计方法采用改良最小二乘法(MPLS), 数学处理方法
采用“标准正态变量转换 (SNV)+ 趋势变换法
(De-trending)/ 2,6,6,1/MPLS”的组合处理稻米光谱[17]。
1.2 数据分析及 QTL定位
1.2.1 连锁图谱构建 QTL定位图谱是由华中农
业大学作物遗传改良国家重点实验室构建, 共包括
221个标记(175个RFLP标记、45个SSR标记和 1个
Waxy标记)。该图谱共有 15个连锁群(第 2、4、9号
染色体上分别有一个空隙), 覆盖水稻基因组为 1
796.58 cM, 标记平均距离为 8.13 cM。目前已利用该
图谱进行了QTL定位研究[5,7,18-20]。
1.2.2 统计分析和QTL定位 利用STATISTICA
软件对上述性状进行平均值、标准差、最大(小)值和
频率的统计分析。根据双向回交群体的遗传结构及
基于混合线性模型的QTL定位方法 [21], 采用包括
QTL母体加性效应、胚乳加性效应和显性效应(第 1
显性效应和第 2显性效应之和)以及这些遗传分量与
环境互作效应的基因定位模型, 并用新发展的程序
QTL Network-CL-2.0-Seed进行QTL定位, 以步长 1
cM在染色体上进行扫描, 对 2 个环境下获得的稻米
组氨酸(His)和精氨酸(Arg)含量进行三倍体胚乳和
二倍体母体植株多遗传体系QTL定位研究。QTL命
名原则遵循McCouch等提出的命名方法[21]。
第 3期 郑 希等: 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株 QTL分析 371


2 结果与分析
2.1 稻米组氨酸和精氨酸含量的表型分析
双亲和回交群体在 1999 年和 2000 年稻米组氨
酸和精氨酸含量分析结果列于表 1。双亲之间差异
显著(P<0.05)。BC1F1(RILs×珍汕 97)和BC2F1(RILs
×明恢 63)群体中稻米组氨酸和精氨酸含量呈连续
变异, 回交后代表现型值基本介于双亲之间, 表现
为受多基因控制的数量性状。此外, 同一群体在不
同环境条件下的表现也不尽相同, 表明两个品质性
状的表现也会受到环境因素的影响。
2.1.1 组氨酸含量性状表现 1999 年珍汕 97 和
明恢 63的稻米组氨酸含量分别为 3.55 mg g−1和 2.52
mg g−1, 差异达 1.03 mg g−1; BC1F1和BC2F1群体的组
氨酸平均含量分别为 3.04 mg g−1和 3.01 mg g−1, 介
于双亲之间, 变异范围分别为 2.34~3.64 mg g−1和
2.28~3.61 mg g−1。2000年珍汕 97和明恢 63的组氨
酸含量分别为 3.26 mg g−1和 2.66 mg g−1, 差异也很
明显; BC1F1和BC2F1群体的组氨酸平均含量分别为
2.97 mg g−1和 2.99 mg g−1, 稍低于 1999年的组氨酸
含量, BC1F1和BC2F1群体组氨酸含量的变幅分别为
2.51~3.63 mg g−1和 2.48~3.58 mg g−1。在 1999年和
2000年两个种植环境下, BC1F1的稻米组氨酸含量平
均值与BC2F1差异不大(表 1)。

表 1 亲本和回交群体的稻米组氨酸和精氨酸性状表现
Table 1 The contents of His and Arg (mg g−1) in the parents and the backcross populations (BC1F1 and BC2F1) of RILs
亲本
Parent

回交群体BC1F1
(RILs × ZS97)

回交群体BC2F1
(RILs × MH63)
年份
Year
性状
Trait 珍汕 97
ZS97
明恢 63
MH63
均值
Mean
标准差
SD
范围
Range
均值
Mean
标准差
SD
范围
Range
1999 His 3.55 a 2.52 b 3.04 0.22 2.34–3.64 3.01 0.21 2.28–3.61
2000 His 3.26 a 2.66 b 2.97 0.24 2.51–3.63 2.99 0.20 2.48–3.58
1999 Arg 9.34 a 5.45 b 7.39 0.71 5.31–9.10 7.23 0.69 4.87–9.32
2000 Arg 8.33 a 5.48 b 7.10 0.80 5.48–9.04 6.99 0.70 5.41–8.70
字母不同表示差异达到 5%显著水平。
Values followed by different letter are significantly different at P=0.05 according to t-test.

2.1.2 精氨酸含量性状表现 精氨酸含量的亲本
表现与组氨酸含量相类似, 1999年珍汕 97和明恢 63
分别为 9.34 mg g−1和 5.45 mg g−1, 相差 3.89 mg g−1;
BC1F1和BC2F1群体介于双亲之间, 分别为 7.39 mg
g−1和 7.23 mg g−1, 变异范围分别为 5.31~9.10 mg g−1
和 4.87~9.32 mg g-1。2000年珍汕 97和明恢 63的精
氨酸含量分别为 8.33 mg g-1和 5.48 mg g−1, 相差 2.85
mg g−1; BC1F1和BC2F1群体的精氨酸含量均值也介
于双亲之间, 分别为 7.10 mg g−1和 6.99 mg g−1; 2000
年的精氨酸含量稍低于 1999年, BC1F1和BC2F1群体
的精氨酸含量变幅分别为 5.48~9.04 mg g−1和
5.41~8.70 mg g−1。同时, 在 1999年和 2000年两个
种植环境下, BC1F1群体的稻米精氨酸含量平均值均
稍高于BC2F1(表 1)。
2.2 QTL定位
有关稻米组氨酸和精氨酸含量分别检测到 10 个
和 8个 QTL(表 2和图 1)。其中有 2对 QTL在两个性
状中可以同时检测到, 另外有 5对是位于染色体相近
的位置上。全部 QTL 均具有极显著的三倍体胚乳加
性主效应和二倍体母体植株基因的加性主效应, 其中
4个 QTL同时具有显著或极显著的三倍体胚乳显性主
效应, 7个 QTL还具有明显的 QTL环境互作效应。
2.2.1 组氨酸含量 QTL 定位分析 10 个控制组
氨酸含量的 QTL分别被定位于 1、2、3、6、7、10、
11和 12号染色体, 其遗传主效应和环境互作效应的
贡献率分别为 0.147和 0.055。它们均具极显著的胚
乳和母体植株的基因加性主效应, 其中 2 个具有明
显的三倍体胚乳显性主效应, 5个还具有明显的环境
互作效应。存在于第 10 染色体 RM258 和 RG5610
标记之间的 qHIS-10 具有最大的基因加性主效应,
其中胚乳加性主效应是来自明恢 63 亲本等位基因
的减效作用, 母体植株加性主效应是来自珍汕 97等
位基因的增效作用; 该 QTL同时具有的显著胚乳显
性主效应 , 是来自于珍汕 9 7 亲本的增效作用 ;
qHIS-10 同时还具有显著的胚乳加性互作效应以及
母体加性互作效应, 说明该 QTL的表达还容易受到
环境条件的影响。位于第 12染色体 RM20B和 C732
标记之间的 qHIS-12 加性主效应次之, 其中胚乳加
372 作




34卷


表 2 稻米组氨酸、精氨酸含量的 QTL定位及其效应
Table 2 QTL locations and effects for histidine and arginine contents of rice
QTL 标记区间 Marker interval
位置
Position
范围
Range
贡献率
R2 a
e de am 1
eae 1
ede 1
mae 2
eae 2
ede 2
mae
qHIS-1 RG101–G393 169.7 165.4–171.7 0.015 0.081** 0.001 −0.080** 0.003 0.024** 0.021** –0.003 –0.023* –0.020**
qHIS-2 RM53–RZ599
















53.0 47.0–59.1 0.022 −1.433** 0.012 1.399** −0.009 0.000 –0.001 0.008 0.000 0.001
qHIS-3 R321–RM55 112.6 100.2–113.6 0.012 0.423** −0.002 −0.448** −0.001 0.000 –0.001 0.001 0.000 0.001
qHIS-6-1 RZ398–RM204 33.7 27.9–39.7 0.012 −0.619** 0.000 0.635** 0.001 0.008 0.021** –0.001 –0.008 –0.021**
qHIS-6-2 RG424–R2549 117.8 111.8–122.8 0.023 1.324** 0.007 −1.360** 0.001 0.000 0.021** –0.001 0.000 –0.021*
qHIS-7 RG528–RG128 1.0 0.0–4.0 0.024 1.699** 0.003 −1.735** 0.000 −0.006 –0.001 –0.001 0.007 0.001
qHIS-10 RM258–RG561 81.4 74.4–90.4 0.022 −4.509** 0.025** 4.465** 0.016* −0.003 –0.040** –0.016 0.003 0.040**
qHIS-11-1 C1003B–RG103 70.4 66.6–75.4 0.015 1.082** 0.022** −1.082** 0.001 −0.013 –0.022** –0.001 0.012 0.021**
qHIS-11-2 RG118–C794 148.6 143.6–152.5 0.020 −0.585** −0.013 0.550** 0.000 0.000 –0.001 0.000 0.000 0.001
qHIS-12 RM20b–C732 1.0 0.0–4.1 0.035 2.550** −0.006 −2.594** 0.001 0.000 –0.001 –0.001 0.000 0.001
qARG-2 RM53–RZ599 50.0 44.0–56.0 0.023 0.266** 0.056* −0.385** −0.008 0.000 –0.046 0.008 0.000 0.045
qARG-3 R321–RM55 112.6 111.7–113.6 0.018 −5.217** 0.005 5.119** −0.010 0.000 0.000 0.011 0.000 0.000
qARG-5 C734b–RZ649 66.2 62.0–72.2 0.016 1.150** 0.007 −1.253** 0.000 0.000 0.000 0.000 0.000 0.000
qARG-6 RG424–R2549 112.8 99.5–117.8 0.021 −5.811** −0.006 5.691** 0.049* 0.000 0.006 –0.049* 0.000 –0.006
qARG-7 RG528–RG128 0.0 0.0–4.0 0.023 5.285** −0.001 −5.398** 0.000 −0.002 0.000 0.000 0.002 0.000
qARG-10 RM258–RG561 83.4 71.4–100.4 0.021 −1.480** 0.057* 1.334** −0.002 −0.003 –0.081* 0.002 0.003 0.079*
qARG-11 R3203–RM20a 163.7 162.4–168.7 0.022 11.824** −0.019 −11.939** −0.001 −0.004 0.000 0.001 0.004 0.000
qARG-12 RM20b–C732 1.0 0.0–7.1 0.033 −5.882** −0.039 5.745** 0.000 −0.007 0.000 0.000 0.007 0.000
位置: 距离QTL所在标记区间左端标记的图距(单位: cM)。范围: 95%置信区间的QTL定位范围(单位: cM)。贡献率: 单个QTL所解释的表型变异。* 和 ** 分别表示 5%和 1%的显著水平。
: 胚乳加性效应; : 胚乳显性效应; : 母体植株加性效应; : 环境 1 胚乳加性互作效应; : 环境 1 胚乳显性互作效应; : 环境 1 母体加性互作效应; : 环境 2 胚乳加性互作效
应; : 环境 2胚乳显性互作效应; : 环境 2母体加性互作效应。
ea ed ma ae 1
ede 1
mae 2
eae
2
ede 2
mae
ea ed ma 1
eae
1
ede 1
mae 2
eae
2
ede 2
mae
1
e
Position: the map distance of QTL from the left marker in the marker interval of the QTL located (unit: cM). Range: the 95% confidence intervals for the QTL (unit: cM). R2: Phenotypic variation
explained by each QTL. *, **: significant at the probability levels of 5% and 1%, respectively. : endosperm additive effect; : endosperm dominance effect; : maternal additive effect; ,
endosperm additive interaction effect in environment 1; : endosperm dominance interaction effect in environment 1; : maternal additive interaction effect in environment 1; : endosperm
additive interaction effect in environment 2; : endosperm dominance interaction effect in environment 2; : maternal additive interaction effect in environment 2.

第 3期 郑 希等: 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株 QTL分析 373



图 1 稻米组氨酸和精氨酸含量 QTL在胚乳和母体植株核基因组上的位置和效应
Fig. 1 The distribution of QTLs and their effects in endosperm and maternal plant nuclear genomes for the histidine and arginine
contents of rice
374 作 物 学 报 第 34卷

性主效应是来自珍汕 97等位基因的增效作用, 母体
植株加性主效应则是来自明恢 63 亲本等位基因的
减效作用; 但未发现该 QTL 的环境互作效应, 说明
qHIS-12在不同环境条件下都能够稳定表达。从总的
情况来看, 10个 QTL的母体和胚乳加性效应占总遗
传效应值的主要部分, 说明位于二倍体母体植株和
三倍体胚乳核基因的QTL表达对组氨酸的表现均有
着重要的作用。由于近半数 QTL可以检测到明显的
环境互作效应, 说明环境条件对控制组氨酸含量表
现的 QTL表达也有着显著的作用。
2.2.2 精氨酸含量 QTL定位分析 8个控制精氨
酸含量的 QTL分别被定位于 2、3、5、6、7、10、
11 和 12 号染色体, 其遗传主效应和环境互作效应的
贡献率分别为 0.160和 0.010。各 QTL均具极显著的
胚乳和母体植株的基因加性效应, 其中 2个具显著的
胚乳显性效应, 2 个还具明显的环境互作效应。存在
于第 11 条染色体上 R3203 和 RM20A 标记之间的
qARG-11具有最大的基因加性主效应, 其中胚乳加性
主效应来自明恢 63 亲本等位基因的减效作用, 而母
体植株加性主效应来自珍汕 97等位基因的增效作用;
由于本试验中该 QTL未检测到显著的环境互作效应,
故其在不同环境下具有稳定的 QTL 表达效应。就总
体而言, 控制精氨酸含量的 8 个 QTL 所表达的母体
加性主效应和胚乳加性主效应也是总遗传效应值的
大部分, 说明母体植株和胚乳核基因 QTL 的表达对
精氨酸含量的表现有着很重要的作用。与组氨酸含量
的表现相比, 环境因素对精氨酸含量的影响较小, 其
中仅 qARG-6和 qARG-10具有显著的胚乳互作效应或
母体互作效应, 说明位于胚乳或母体植株基因组上
这两个 QTL的表达容易受到环境条件的影响。
3 讨论
水稻产量和品质等重要经济性状往往受制于许
多基因, 表现为数量性状遗传。由于在种子品质性
状的形成过程中, 胚乳和母体植株等遗传体系染色
体上的一些基因(QTLs)有选择性地表达, 对种子品
质性状的表现会产生不同程度的影响。Wu等[2]发现
稻米中组氨酸和精氨酸含量会同时受制于胚乳、细
胞质和母体植株等 3 套遗传体系的基因主效应以及
相应的环境互作效应。这一遗传特征表明, 对其QTL
进行遗传分析的模型中需要整合多套遗传体系的
QTL效应; 还需同时考虑不同遗传体系QTL与环境
间的互作效应[20]。但利用现有QTL定位软件和有关
的统计分析方法只能定位出单一胚乳染色体上的
QTL, 且目前已经定位的稻米品质QTL均尚未检测
出多遗传体系QTL的环境互作效应, 这可能与禾谷
类作物中多遗传体系QTL的实际分布情况有着较大
差异。本试验采用包括环境互作效应在内的三倍体
胚乳和二倍体母体植株两套遗传体系的QTL定位软
件, 能够同时定位出在三倍体胚乳和二倍体母体植
株等不同遗传体系染色体上表达的QTL, 并进一步
分析出相应的遗传效应和环境互作效应, 使检测到
的结果更符合实际情况。此外, 本试验中检测到分
别控制组氨酸和精氨酸含量的两对QTL, 即qHIS-3
与qARG-3、qHIS-12与qARG-12, 位于染色体的相同
位置 , 可能是属于同一基因 , 另外还有 5 对
QTL(qHIS-2与qARG-2、qHIS-6-2与qARG-6、qHIS-7
与 qARG-7、 qHIS-10 与 qARG-10、 qHIS-11-2 与
qARG-11)也几乎位于同一位置, 表明控制两个性状
的这些QTL可能紧密连锁或一因多效, 有待进一步
深入研究。此外, 对精氨酸含量性状有较大作用的
QTL(qARG-11)以及控制组氨酸含量的QTL(qHIS-
11-2)位置也与Aluko等[11]所定位到的一个影响蛋白
含量的QTL(pro11)位置以及Shinya等 [23]在该位置所
定位到的一个具有较大贡献率、控制糙米蛋白质含
量的QTL(位于第 11染色体标记RM206旁)相近。由
于蛋白质由各种不同氨基酸构成, 组氨酸和精氨酸
等氨基酸的含量和组成会直接影响蛋白质的质量。
通过对控制各种氨基酸表现的QTL的深入研究, 有
利于明确不同环境条件下的QTL效应, 以及QTL在
稻米三倍体胚乳和二倍体母体植株等遗传体系染色
体上的分布情况; 同时也有利于进一步了解氨基酸
与蛋白质之间以及各种氨基酸之间的关系, 为品质
数量性状的多遗传体系分子标记辅助选择育种提供
理论依据。
本实验所采用的QTL作图方法和基因定位软件,
可以更深入地分析包括环境互作效应在内的QTL在
不同遗传体系染色体上的分布情况, 从分子水平上
进一步阐明水稻稻米品质的遗传规律, 也可为其它
禾谷类作物的种子品质性状QTL定位提供一种新的
分析途径与方法。
4 结论
研究结果发现, 与组氨酸含量有关的 QTL位于
1、2、3、5、6、7、10、11和 12号染色体, 均具极
显著的胚乳和母体植株的基因加性主效应, 其中 2
个具明显的胚乳显性主效应, 5个还具明显的环境互
作效应。与精氨酸含量有关的 QTL位于 2、3、5、6、
第 3期 郑 希等: 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株 QTL分析 375


7、10、11 和 12 号染色体, 均具极显著的胚乳和母
体植株的基因加性效应, 其中 2 个还具显著的胚乳
显性效应, 2个则具明显的环境互作效应。在检测到
的 18个 QTL中, 有 5个位于染色体的相近位置, 一
些 QTL与已报道的 QTL位置相近。

致谢: 群体和遗传图谱由华中农业大学作物遗传改
良国家重点实验室张启发教授提供, 特致谢意!
References
[1] Cai Q-H (蔡秋红), Shi M-T (施木田), Yang R-C (杨仁崔).
Genetic analysis of the protein content and the composition of
amino acid in early indica rice. J Fujian Agric Univ (福建农
业大学学报), 1995, 24(2): 149−153 (in Chinese with English
abstract)
[2] Wu J G, Shi C H, Zhang X M, Katsura T. Genetic analysis of
endosperm, cytoplasmic and maternal effects for histidine and
arginine in indica rice (Oryza sativa L.) across environments.
Cereal Res Commun, 2004, 32: 435−442
[3] Mei H-W (梅捍卫), Luo L-J (罗利军), Guo L-B (郭龙彪),
Wang Y-P (王一平), Yu X-Q (余新桥), Ying C-S (应存山), Li
Z-K (黎志康). Molecular mapping of QTLs for rice milling
yield traits. Acta Genet Sin (遗传学报), 2002, 29(9): 791−797
(in Chinese with English abstract)
[4] He P, Li S G, Qian Q, Ma Y Q, Li J Z, Wang W M, Chen Y,
Zhu L H. Genetic analysis of rice grain quality. Theor Appl
Genet, 1999, 98: 502−508
[5] Xing Y-Z (邢永忠), Tan Y-F (谈移芳), Xu C-G (徐才国), Hua
J-P (华金平), Sun X-L (孙新立). Mapping quantitative trait
loci for grain appearance traits of rice using a recombinant
inbred line population. Acta Bot Sin (植物学报), 2001, 43(8):
840−845 (in Chinese with English abstract)
[6] Li Z-F (李泽福), Wan J-M (万建民), Xia J-F (夏加发), Zhai
H-Q (翟虎渠). Mapping quantitative trait loci underlying ap-
pearance quality of rice grains (Oryza sativa L.). Acta Genet
Sin (遗传学报), 2003, 30(3): 251−259 (in Chinese with Eng-
lish abstract)
[7] Tan Y F, Li J X, Yu S B, Xing Y Z, Xu C G. The three impor-
tant traits for cooking and eating quality of rice grains are
controlled by a single locus in an elite rice hybrid, Shanyou
63. Theor Appl Genet, 1999, 99: 642−648
[8] Huang L-Z (黄祖六), Tan X-L (谭学林), Xu C-W (徐辰武),
Vanavichit A. Molecular mapping QTLs for gel consistency.
Sci Agric Sin (中国农业科学), 2000, 33(6): 1−5 (in Chinese
with English abstract)
[9] Yan C-J (严长杰), Xu C-W (徐辰武), Yi C-D (裔传灯), Liang
G-H (梁国华), Zhu L-H (朱立煌), Gu M-H (顾铭洪). Genetic
analysis of gelatinization temperature in rice via microsatel-
lite (SSR) markers. Acta Genet Sin (遗传学报), 2001, 28(11):
1006−1011 (in Chinese with English abstract)
[10] Wu C-M (吴长明), Sun C-Q (孙传青), Chen L (陈亮), Li Z-C
(李自超), Wang X-K (王象坤). Study on QTL underlying
content of amylose and indica japonica differentiation using
recombinant inbred lines in rice. J China Agric Univ (中国农
业大学学报), 2000, 5(5): 6−11 (in Chinese with English ab
stract)
[11] Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard J
H. QTL mapping of grain quality traits from the interspecific
cross Oryza sativa × O. glaberrima. Theor Appl Genet, 2004,
109: 630−639
[12] Hu Z L, Li P, Zhou M Q, Zhang Z H, Wang L X, Zhu L H,
Zhu Y G. Mapping of quantitative trait loci (QTLs) for rice
protein and fat content using doubled haploid lines. Euphytica,
2004, 135: 47−54
[13] Shi C-H (石春海), Zhu J (朱军). Genetic analysis of milling
quality characters in indica hybrid rice. Chin J Biomath (生物
数学学报), 1992, 7(4): 37−45 (in Chinese with English ab-
stract)
[14] Shi C-H (石春海), Zhu J (朱军). Analysis of seed and mater-
nal genetic effects for characters of cooking quality in indica
rice. Chin J Rice Sci (中国水稻科学), 1994, 8(3): 129−134
(in Chinese with English abstract)
[15] Shi C H, Xue J M, Yu Y G, Yang X E, Zhu J. Analysis of ge-
netic effects for nutrient quality traits in indica rice. Theor
Appl Genet, 1996, 92: 1099−1102
[16] Zuo Q-F (左清凡), Liu Y-B (刘宜柏), Pan X-Y (潘晓云),
Zhang J-Z (张建中). Genetic analysis of quality characters of
rice (Oryza sativa L.) in multiple environments. Acta Agric
Univ Jiangxiensis (江西农业大学学报), 2001, 23(1): 8−15
(in Chinese with English abstract)
[17] Wu J G, Shi C H, Zhang X M. Estimating the amino acid
composition in the milled rice powder by near-infrared re-
flectance spectroscopy. Field Crops Res, 2002, 75: 1−7
[18] Guo L-B (郭龙彪), Luo J-J (罗利军), Xing Y-Z (邢永忠), Xu
C-G (徐才国), Mei H-W (梅捍卫), Wang Y-P (王一平), Yu
X-Q (余新桥), Ying C-S (应存山), Shi C-H (石春海). Ge-
netic analysis and utilization of the important agronomic traits
on Zhenshan 97× Minghui 63 recombinant inbred lines (RIL)
in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2002,
28(5): 644−649 (in Chinese with English abstract)
[19] Gao Y-M (高用明), Zhu J (朱军), Song Y-S (宋佑胜), He
C-X (何慈信), Shi C-H (石春海), Xing Y-Z (邢永忠). Use of
permanent F2 population to analyze epistasis and their inter-
action effects with environments for QTLs controlling head-
ing date in rice. Acta Agron Sin (作物学报), 2004, 30(9):
849−854 (in Chinese with English abstract)
[20] Zheng X, Wu J G, Lou X Y, Xu H M, Shi C H. The QTL
analysis on maternal and endosperm genome and their envi-
ronmental interactions for cooking quality characters in rice
(Oryza sativa L.). Theor Appl Genet, 2007, 116: 335−342
[21] Yang J, Zhu J, Williams R W. Mapping the genetic architec-
ture of complex traits in experimental populations. Bioinfor-
matics, 2007, 23: 1527−1536
[22] McCouch S R, Cho Y G, ano M Y, Paul E, Blinstrub M, Mor-
ishima H, Kinosita T. Report on QTL nomenclature. Rice
Genet Newsl, 1997, 14: 11−13
[23] Yoshida S, Ikegami M, Kuze J, Sawada K, Hashimoto Z, Ishii
T. Nakamura C, Kamijima O. QTL analysis for plant and
grain characters of sake-brewing rice using a doubled haploid
population. Breed Sci, 2002, 52: 309−317