免费文献传递   相关文献

湖北旋覆花化学成分的研究(英文)



全 文 :天然产物研究与开发 Nat Prod Res Dev 2012,24: 427-431,449
文章编号: 1001-6880( 2012) 04-0427-06
Received May 31,2011; Accepted August 31,2011
Foundation Item: This research project was supported by the Scientific
Foundation of Shanghai Committee of Science and Technology Major
Project of Modernization of TCM ( 08DZ1971302) .
* Corresponding author Tel: 86-21-34205989; Email: kimhz@ sjtu. edu.
cn; wdzhangy@ hotmail. com
湖北旋覆花化学成分的研究
张 飞1,覃江江1,成向荣1,金慧子1* ,张卫东1,2*
1上海交通大学药学院,上海 200240; 2 第二军医大学药学院,上海 200433
摘 要:从湖北旋覆花( Inula hupehensis) 地上部分分离得到 19 个化合物,经波谱数据分析分别鉴定为 9-羟基-百
里香酚( 1) ,8,10-去氢-β-羟基-百里香酚( 2) ,2-羟基-4-甲基苯乙酮( 3) ,8,9-双羟基-9-百里香酚( 4) ,10-羟基-8,
9-双氧亚异丙基百里香酚( 5) ,8,10-二羟基-9-异丁酰百里香酚( 6) ,8-羟基-9-异丁酰-10-( 2-甲基丁酰) 百里香酚
( 7) ,8,9,10-三羟基百里香酚( 8) ,8-羟基-9,10-二异丁酰百里香酚( 9) ,neoechinulin A( 10) ,3-醛基吲哚( 11) ,3-
羟乙酰基吲哚( 12) ,丁香酸( 13) ,4,6-二羟基-2-甲氧基苯乙酮( 14) ,7-甲氧基-8-羟基香豆素( 15) ,6-甲氧基山奈
酚( 16) ,( + ) -正丁香酯素( 17) ,β-棕榈精( 18) 和豆甾醇( 19) 。除了化合物 8 和 9 外,其他化合物均为首次从该
植物中分离得到。
关键词:旋覆花属;湖北旋覆花;单萜;生物碱
中图分类号: R284. 1; Q946. 91 文献标识码: A
Chemical Constituents from Inula hupehensis
ZHANG Fei1,QIN Jiang-jiang1,CHENG Xiang-rong1,JIN Hui-zi1* ,ZHANG Wei-dong1,2*
1School of Pharmacy,Shanghai Jiao Tong University,Shanghai 200240,P. R. China;
2School of Pharmacy,Second Military Medical University,Shanghai 200433,P. R. China
Abstract: Nineteen compounds were isolated from the aerial parts of Inula hupehensis. On the basis of spectral data,their
structures were identified as 9-hydroxythymol ( 1 ) ,8,10-dehydro-9-hydroxythymol ( 2 ) ,2-hydroxy-4-methylacetophe-
none ( 3) ,8,9-dihydroxythymol ( 4 ) ,10-hydroxy-8,9-dioxyisopropylidenethymol ( 5 ) ,8,10-dihydroxy-9-isobutyryloxy-
thymol ( 6) ,8-hydroxy-9-[( isobutyryl) oxy]-10-( 2-methylbutanoyl) thymol ( 7 ) ,8,9,10-trihydroxythymol ( 8 ) ,8-hy-
droxy-9,10-diisobutyryloxythymol ( 9 ) ,neoechinulin A ( 10 ) ,3-formyl-indole ( 11 ) ,3-( hydroxyl-acetyl ) -1H-indole
( 12) ,syringic acid ( 13) ,4,6-dihydroxy-2-methoxyacetophenone ( 14) ,daphnetin 7-methyl ether ( 15) ,6-methoxykae-
maferol ( 16) ,( + ) -syringaresinol ( 17) ,α-monopalmitin ( 18) ,and stigmasterol ( 19) . All the compounds except com-
pounds 8 and 9 were isolated from this plant for the first time.
Key words: Inula; Inula hupehensis; monoterpenes; alkaloids
Introduction
The genus Inula,a variable perennial herb distributed
in Asia,Europe,Africa,and predominantly,in the Med-
iterranean,comprises ca. 100 species of the Asteraceae
family belonging to the tribe Inuleae [1]. The plant In-
ula hupehensis,the roots of which have been used to
treat many diseases,including bronchitis,diabetes,and
intestinal ulcers [2],is an endemic plant distributed in
Hubei and Sichuan Provinces in China. So far,only a
few compounds have been reported from this plant. In
order to do further investigations on the aerial parts of
I. hupehensis,we isolated and identified nineteen com-
pounds,including 9-hydroxythymol ( 1) ,8,10-dehydro-
9-hydroxythymol ( 2) ,2-hydroxy-4-methylacetophenone
( 3) ,8,9-dihydroxythymol ( 4) ,10-hydroxy-8,9- diox-
yisopropylidenethymol ( 5 ) ,8,10-dihydroxy-9-isobuty-
ryloxythymol ( 6) ,8-hydroxy-9-[( isobutyryl) oxy]-10-
( 2-methylbutanoyl) thymol ( 7) ,8,9,10-trihydroxythy-
mol ( 8) ,8-hydroxy-9,10- diisobutyryloxythymol ( 9 ) ,
neoechinulin A ( 10 ) ,3-formyl-indole ( 11 ) ,3-( hy-
droxyl-acetyl) - 1H-indole ( 12 ) ,syringic acid ( 13 ) ,
4,6-dihydroxy-2-methoxyacetophenone ( 14 ) ,daphne-
tin 7-methyl ether ( 15 ) ,6-methoxykaemaferol ( 16 ) ,
( + ) -syringaresinol ( 17 ) ,α-monopalmitin ( 18 ) ,and
stigmasterol ( 19 ) . All the compounds except com-
pounds 8 and 9 were obtained from this plant for the
first time.
Experimental
General procedures
The normal phase silica gel ( 200 ~ 300 mesh,Yantai,
China) ,MCI gel ( CHP20P 75 ~ 150 μm,Mitsubishi
Chemical Co.,Japan ) ,and Sephadex LH-20 ( GE
Healthcare Bio-Sciences AB,Sweden ) were used for
column chromatography,and precoated silica HSGF254
plates were used for TLC ( Yantai,China) . HPLC and
preparative HPLC were performed with SHIMADZU LC
2010AHT,Agilent Technologies 1200 series and SHI-
MADZU LPD-20A. Melting points were measured with
an RY-2 micromelting point apparatus and were uncor-
rected. ESI-MS were recorded on Q-TOF micro mass
spectrometer. 1H and 13C NMR spectra were measured
on a Bruker DRX-500 spectrometer. Chemical shift
( β) were given in ppm relative to TMS as internal ref-
erence and coupling constants ( J) in Hz.
Plant material
The aerial parts of I. hupehensis were collected from
Enshi city of Hubei Province,China ,in July,2007 and
identified by Prof. Huang Bao-kang,Department of
Pharmacognosy,School of Pharmacy,Second Military
Medical University. A voucher specimen ( No.
200707XHFHB) has been deposited at School of Phar-
macy,Shanghai Jiao Tong University.
Extraction and isolation
The air-dried and powdered aerial parts of I. hupehensis
( 25. 0 kg) were extracted with 95% EtOH for three
times at room temperature. After concentration of the
combined extracts under reduced pressure,the residue
( 3. 0 kg) was suspended in H2O and then partitioned
successively with petroleum ether,EtOAc and n-buta-
nol,yielding 230. 9 g,148. 3 g and 322. 6 g,respective-
ly. The EtOAc fraction was chromatographed on a silica
gel column eluted with CH2Cl2-MeOH ( 100% to
50% ) to obtain 7 fractions ( Frs. 1-7) . Fr. 1 ( 28. 5 g)
was applied to MCI gel column chromatography
( MeOH-H2O,4 ∶ 1 ) and purified by Sephadex LH-20
( MeOH) ,yielding compounds 7 ( 77. 1 mg) ,9 ( 443. 9
mg) and 19( 1103. 0 mg) . Fr. 2 ( 19. 6 g) was subjec-
ted to MCI gel ( MeOH-H2O,4: 1 ) ,Sephadex LH-20
( MeOH) chromatography,and purified by preparative
HPLC ( RP-18,210 nm,45% MeOH ) to give com-
pounds 1( 6. 1 mg) ,2( 3. 0 mg) ,3 ( 42. 5 mg) ,5 ( 9. 0
mg) ,10( 29. 7 mg) ,11 ( 5. 1 mg) ,13 ( 58. 3 mg) ,14
( 4. 0 mg ) ,15 ( 7. 2 mg ) and 18 ( 100. 8 mg ) . Com-
pound 6( 53. 7 mg) was obtained after the purifications
of Fr. 3 ( 11. 6 g) by MCI gel ( MeOH-H2O,4∶ 1) and
Sephadex LH-20 ( MeOH) chromatography. Fr. 4 ( 9. 3
g) was chromatographed on MCI gel ( MeOH-H2O,4∶
1) and Sephadex LH-20 ( MeOH ) ,and purified by
preparative HPLC ( RP-18,210 nm,45% MeOH ) to
yield compounds 4 ( 21. 7 mg) ,8 ( 5. 1 mg) and 12
( 2. 0 mg) . Fr. 5 ( 6. 5 g) was subjected to MCI gel
( MeOH-H2O,4∶ 1 ) ,Sephadex LH-20 ( MeOH) chro-
matography,and purified by preparative HPLC ( RP-
18,210 nm,40% MeOH ) to give compounds 16
( 301. 8 mg) and 17( 12. 3 mg) .
Structure identification
9-Hydroxythymol ( 1) colorless oil,C10H14 O2 ; ESI-
MS ( pos. ) m/z 189[M + Na]+ ; ESI-MS ( neg. ) m/z
165[M– H]– ; 1H NMR ( CDCl3,400 MHz) δ: 6. 71
( 1H,brs,H-2) ,7. 00 ( 1H,d,J = 8. 2 Hz,H-5) ,6. 72
( 1H,brd,J = 8. 2 Hz,H-6 ) ,2. 28 ( 3H,s,H3-7 ) ,
3. 20 ( H,m,H-8) ,3. 92 ( 1H,dd,J = 9. 8,3. 8 Hz,H-
9a) ,3. 71 ( 1H,dd,J = 9. 8,8. 0 Hz,H-9b ) ,1. 30
( 3H,d,J = 7. 3 Hz,H3-10 ) ;
13 C NMR ( CDCl3,100
MHz) δ: 137. 9 ( C-1 ) ,117. 8 ( C-2 ) ,154. 6 ( C-3 ) ,
127. 5 ( C-4) ,127. 6 ( C-5 ) ,121. 5 ( C-6 ) ,20. 9 ( C-
7) ,36. 6 ( C-8 ) ,69. 5 ( C-9 ) ,15. 7 ( C-10 ) . The
NMR and MS data were in accordance with those re-
ported in the literature [3],and identified 1 as 9-
hydroxythymol.
8,10-Dehydro-9-hydroxythymol ( 2 ) colorless oil,
C10H12O2 ; ESI-MS ( pos. ) m/z 187[M + Na]
+ ; ESI-
MS ( neg. ) m/z 163[M – H]– ; 1H NMR ( CDCl3,
400 MHz) δ: 6. 74 ( 1H,brs,H-2 ) ,7. 02 ( 1H,d,J =
7. 8 Hz,H-5) ,6. 69 ( 1H,brd,J = 7. 8 Hz,H-6) ,2. 30
( 3H,s,H3-7) ,4. 40 ( 2H,brs,H2-9) ,5. 47 ( 1H,brs,
824 Nat Prod Res Dev Vol. 24
H-10a) ,5. 36 ( 1H,brs,H-10b ) ; 13 C NMR ( CDCl3,
100 MHz) δ: 139. 9 ( C-1) ,117. 2 ( C-2) ,153. 5 ( C-
3) ,123. 8 ( C-4 ) ,129. 4 ( C-5 ) ,121. 0 ( C-6 ) ,21. 1
( C-7 ) ,145. 5 ( C-8 ) ,67. 1 ( C-9 ) ,119. 1 ( C-10 )
. The MS and NMR data were in agreement with those
reported in the literature [4],and identified 2 as 8,10-
dehydro-9-hydroxythymol.
2-Hydroxy-4-methylacetophenone ( 3 ) colorless
oil,C9H10 O2 ; ESI-MS ( pos. ) m/z 173[M + Na]
+ ;
ESI-MS ( neg. ) m/z 149[M – H]– ; 1H NMR
( CD3OD,400 MHz ) δ: 6. 73 ( 1H,brs,H-2 ) ,7. 72
( 1H,d,J = 8. 1 Hz,H-5) ,6. 75 ( 1H,brd,J = 8. 1 Hz,
H-6) ,2. 31 ( 3H,s,H3-7 ) ,2. 57 ( 3H,s,H3-9 ) ;
13 C
NMR ( CD3OD,100 MHz ) δ: 149. 6 ( C-1 ) ,119. 2
( C-2) ,163. 7 ( C-3 ) ,119. 1 ( C-4 ) ,132. 5 ( C-5 ) ,
121. 7 ( C-6) ,22. 2 ( C-7) ,206. 1 ( C-8) ,26. 9 ( C-9)
. The MS and NMR data were consistent with those of
reported [5],and identified 3 as 2-hydroxy-4-methylac-
etophenone.
8,9-Dihydroxythymol ( 4) colorless oil,C10 H14 O3 ;
ESI-MS ( pos. ) m/z 205[M + Na]+ ; ESI-MS ( neg. )
m/z 181[M– H]– ; 1H NMR ( CDCl3,400 MHz) δ:
6. 57 ( 1H,brs,H-2) ,7. 05 ( 1H,d,J = 8. 0 Hz,H-5) ,
6. 61 ( 1H,brd,J = 8. 0 Hz,H-6 ) ,2. 21 ( 3H,s,H3-
7) ,3. 71 ( 1H,d,J = 11. 2 Hz,H-9a) ,3. 59 ( 1H,d,J
= 11. 2 Hz,H-9b ) ,2. 00 ( 3H,s,H3-10 ) ;
13 C NMR
( CDCl3,100 MHz) δ: 139. 8 ( C-1 ) ,118. 4 ( C-2 ) ,
157. 1 ( C-3) ,127. 7 ( C-4) ,128. 1 ( C-5) ,121. 4 ( C-
6) ,21. 3 ( C-7) ,78. 1 ( C-8 ) ,70. 5 ( C-9 ) ,25. 0 ( C-
10) . The MS and NMR data were consistent with those
of reported [6],and identified 4 as 8,9-dihydroxythy-
mol.
10-Hydroxy-8,9-dioxyisopropylidenethymol ( 5 )
colorless oil,C13H18O4 ; ESI-MS ( pos. ) m/z 261[M +
Na]+ ; ESI-MS ( neg. ) m/z 237[M– H]– ; 1H NMR
( CD3OD,400 MHz ) δ: 6. 58 ( 1H,brs,H-2 ) ,7. 31
( 1H,d,J = 7. 8 Hz,H-5) ,6. 63 ( 1H,brd,J = 7. 8 Hz,
H-6) ,2. 23 ( 3H,s,H3-7) ,4. 40 ( 1H,d,J = 9. 0 Hz,
H-9a) ,4. 16 ( 1H,d,J = 9. 0 Hz,H-9b) ,3. 73 ( 1H,
d,J = 11. 5 Hz,H-10a) ,3. 61 ( 1H,d,J = 11. 5 Hz,H-
10b) ,1. 27 ( 3H,s,H3-2) ,1. 52 ( 3H,s,H3-3) ;
13 C
NMR ( CD3OD,100 MHz ) δ: 139. 8 ( C-1 ) ,117. 4
( C-2) ,154. 9 ( C-3 ) ,127. 6 ( C-4 ) ,128. 8 ( C-5 ) ,
121. 2 ( C-6 ) ,21. 4 ( C-7 ) ,86. 8 ( C-8 ) ,72. 6 ( C-
9) ,67. 6 ( C-10 ) ,110. 9 ( C-1) ,27. 5 ( C-2) ,26. 2
( C-3) . The above data were in agreement with those
of reported [3],and identified 5 as 10-hydroxy-8,9-
dioxyisopropylidenethymol.
8,10-Dihydroxy-9-isobutyryloxythymol ( 6 ) color-
less oil,C14 H20 O5 ; ESI-MS ( pos. ) m/z 291[M +
Na]+ ; ESI-MS ( neg. ) m/z 267[M– H]– ; 1H NMR
( CD3OD,500 MHz) δ: 6. 60 ( 1H,d,J = 1. 0 Hz,H-
2) ,7. 16 ( 1H,d,J = 8. 0 Hz,H-5 ) ,6. 64 ( 1H,dd,J
= 8. 0,1. 0 Hz,H-6 ) ,4. 56 ( 1H,d,J = 11. 5 Hz,H-
9a) ,4. 40 ( 1H,d,J = 11. 5 Hz,H-9b) ,3. 91 ( 1H,d,
J = 11. 5 Hz,H-10a) ,3. 84 ( 1H,d,J = 11. 5 Hz,H-
10b) ,2. 49 ( 1H,m,H-2) ,2. 23 ( 3H,s,H3-7) ,1. 06
( 3H,d,J = 7. 0 Hz,H3-3) ,1. 03 ( 3H,d,J = 7. 0 Hz,
H3-4) ;
13C NMR ( CD3OD,125 MHz) δ: 139. 9 ( C-
1) ,118. 0 ( C-2) ,156. 6 ( C-3) ,123. 9 ( C-4) ,128. 6
( C-5) ,121. 1 ( C-6) ,21. 0 ( C-7) ,78. 7 ( C-8) ,68. 2
( C-9) ,66. 6 ( C-10 ) ,178. 8 ( C-1) ,35. 1 ( C-2) ,
19. 2 ( C-3) ,19. 1 ( C-4) . The above data were con-
sistent with those of reported [3],and identified 6 as 8,
10-dihydroxy-9-isobutyryloxythymol.
8-Hydroxy-9-[( isobutyryl ) oxy]-10-( 2-methylbu-
tanoyl) thymol ( 7) colorless oil,C19H28O6 ; ESI-MS
( pos. ) m/z 375[M + Na]+ ; ESI-MS ( neg. ) m/z 351
[M – H]– ; 1H NMR ( CDCl3,500 MHz ) δ: 6. 70
( 1H,d,J = 1. 0 Hz,H-2 ) ,6. 89 ( 1H,d,J = 8. 0 Hz,
H-5) ,6. 64 ( 1H,dd,J = 8. 0,1. 0 Hz,H-6 ) ,2. 27
( 3H,s,H3-7 ) ,4. 45 ( 4H,m,H2-9,H2-10 ) ,2. 56
( 1H,m,H-2) ,1. 13 ( each 3H,d,J = 7. 0 Hz,H3-3,
4) ,2. 40 ( 1H,m,H-2) ,1. 62 ( 1H,m,H-3 a ) ,
1. 44 ( 1H,m,H-3b) ,1. 10 ( 3H,d,J = 7. 0 Hz,H3-
5) ,0. 83 ( 3H,m,H3-4) ;
13 C NMR ( CDCl3,125
MHz) δ: 140. 1 ( C-1 ) ,118. 7 ( C-2 ) ,156. 7 ( C-3 ) ,
118. 7 ( C-4) ,126. 5 ( C-5 ) ,120. 5 ( C-6 ) ,21. 0 ( C-
7) ,78. 9 ( C-8 ) ,67. 3 ( C-9 ) ,67. 4 ( C-10 ) ,177. 5
( C-1) ,33. 9 ( C-2) ,18. 8 ( C-3,4) ,177. 2 ( C-
1) ,41. 0 ( C-2) ,16. 5 ( C-3) ,26. 6 ( C-4) ,
11. 43 ( C-5) . The above data were consistent with
those of reported [7],and identified 7 as 8-hydroxy-9-
[( isobutyryl) oxy]-10-( 2-methylbutanoyl) thymol.
8,9,10-Trihydroxythymol ( 8) colorless oil,C10H14
O4 ; ESI-MS ( pos. ) m/z 221[M + Na]
+ ; ESI-MS
924Vol. 24 ZHANG Fei,et al: Chemical Constituents from Inula hupehensis
( neg. ) m/z 197[M – H]– ; 1H NMR ( CD3OD,500
MHz) δ: 6. 58 ( 1H,d,J = 0. 8 Hz,H-2 ) ,7. 16 ( 1H,
d,J = 8. 0 Hz,H-5) ,6. 62 ( 1H,dd,J = 8. 0,0. 8 Hz,
H-6) ,2. 22 ( 3H,s,H3-7 ) ,3. 85 ( 4H,m,H2-9,H2-
10) ; 13C NMR ( CD3OD,125 MHz) δ: 134. 0 ( C-1 ) ,
118. 2 ( C-2) ,157. 4 ( C-3) ,124. 8 ( C-4) ,128. 9 ( C-
5) ,121. 5 ( C-6 ) ,21. 3 ( C-7 ) ,80. 2 ( C-8 ) ,66. 9
( C-9,C-10 ) . The MS and NMR data were consistent
with those of reported [8],and identified 8 as 8,9,10-
trihydroxythymol.
8-Hydroxy-9,10-diisobutyryloxythymol ( 9) color-
less oil,C18 H26 O6 ; ESI-MS ( pos. ) m/z 361[M +
Na]+ ; ESI-MS ( neg. ) m/z 337[M– H]– ; 1H NMR
( CDCl3,500 MHz ) δ: 6. 69 ( 1H,d,J = 1. 0 Hz,H-
2) ,6. 91 ( 1H,d,J = 8. 0 Hz,H-5 ) ,6. 65 ( 1H,dd,J
= 8. 0,1. 0 Hz,H-6 ) ,2. 27 ( 3H,s,H3-7 ) ,4. 46
( 4H,dd,J = 19. 0,11. 9 Hz,H2-9,H2-10 ) ,2. 56
( 2H,m,H-2,H-2) ,1. 12 ( each 3H,d,J = 7. 0 Hz,
H3-3,3,4,4) ;
13 C NMR ( CDCl3,125 MHz) δ:
140. 0 ( C-1) ,118. 5 ( C-2) ,156. 4 ( C-3 ) ,119. 0 ( C-
4) ,126. 5 ( C-5 ) ,120. 5 ( C-6 ) ,20. 9 ( C-7 ) ,78. 5
( C-8) ,67. 2 ( C-9,10) ,177. 5 ( C-1,1) ,33. 9 ( C-
2,2) ,18. 8 ( C-3,3,4,4) . The MS and NMR
data were consistent with those of reported [3],and i-
dentified 9 as 8-hydroxy-9,10-diisobutyryloxythymol.
Neoechinulin A ( 10 ) colorless oil,C19 H21 N3O2 ;
ESI-MS ( pos. ) m/z 324[M + H]+ ; ESI-MS ( neg. )
m/ z 322[M– H]– ; 1H NMR ( CD3OD,400 MHz) δ:
7. 42 ( 1H,d,J = 8. 0 Hz,H-4 ) ,7. 06 ( 1H,m,H-5 ) ,
7. 12 ( 1H,m,H-6) ,7. 23 ( 1H,d,J = 8. 0 Hz,H-7 ) ,
7. 20 ( 1H,s,H-8) ,4. 21 ( 1H,q,J = 7. 0 Hz,H-12) ,
1. 52 ( 3H,d,J = 7. 0 Hz,H3-15 ) ,6. 10 ( 1H,dd,J =
17. 5,10. 5 Hz,H-17) ,5. 10 ( 1H,d,J = 10. 5 Hz,H-
18a) ,5. 08 ( 1H,d,J = 17. 5 Hz,H-18b) ,1. 54 ( 3H,
s,H3-19 ) ,1. 53 ( 3H,s,H3-20 ) ;
13 C NMR ( CD3OD,
100 MHz) δ: 146. 3 ( C-1) ,125. 0 ( C-2) ,137. 1 ( C-
3) ,113. 0 ( C-4) ,121. 5 ( C-5) ,122. 9 ( C-6) ,120. 1
( C-7) ,127. 6 ( C-7a) ,114. 6 ( C-8 ) ,104. 6 ( C-9 ) ,
162. 5 ( C-10 ) ,52. 9 ( C-12 ) ,169. 0 ( C-13 ) ,21. 0
( C-15 ) ,40. 8 ( C-16 ) ,146. 5 ( C-17 ) ,112. 9 ( C-
18) ,28. 4 ( C-19) ,28. 5 ( C-20) . The above data were
in agreement with those of reported [9],and identified
10 as neoechinulin A.
3-Formyl-indole ( 11 ) colorless oil,C9H7NO; ESI-
MS ( pos. ) m/z 146[M + H]+ ; ESI-MS ( neg. ) m/z
144[M – H]– ; 1H NMR ( CD3OD,400 MHz ) δ:
8. 08 ( 1H,s,H-2 ) ,8. 15 ( 1H,d,J = 8. 0 Hz,H-4 ) ,
7. 21 ( 1H,m,H-5) ,7. 28 ( 1H,m,H-6) ,7. 46 ( 1H,
d,J = 8. 0 Hz,H-7 ) ,9. 88 ( 1H,s,H-8 ) ; 13 C NMR
( CD3OD,100 MHz) δ: 140. 0 ( C-1 ) ,120. 4 ( C-2 ) ,
126. 0 ( C-3) ,123. 9 ( C-4) ,122. 7 ( C-5) ,125. 3 ( C-
6) ,113. 4 ( C-7 ) ,139. 2 ( C-7a) ,187. 7 ( C-8 ) . The
above data were in agreement with those of reported
[10],and identified 11 as 3-formyl-indole.
3-( Hydroxy-acetyl) -1H-indole ( 12 ) colorless oil,
C10H9NO2 ; ESI-MS ( pos. ) m/z 176[M + H]
+ ; ESI-
MS ( neg. ) m/z 174[M – H]– ; 1H NMR ( CD3OD,
400 MHz) δ: 8. 19 ( 1H,s,H-2 ) ,8. 23 ( 1H,d,J =
8. 0 Hz,H-4 ) ,7. 20 ( 1H,m,H-5 ) ,7. 24 ( 1H,m,H-
6) ,7. 44 ( 1H,d,J = 8. 0 Hz,H-7 ) ,4. 72 ( 1H,s,H-
8) ; 13 C NMR ( CD3OD,100 MHz) δ: 134. 3 ( C-1 ) ,
115. 2 ( C-2) ,127. 2 ( C-3) ,113. 2 ( C-4) ,124. 7 ( C-
5 ) ,123. 3 ( C-6 ) ,123. 0 ( C-7 ) ,138. 5 ( C-7a ) ,
196. 2 ( C-8) ,66. 6 ( C-9) . The above data were in a-
greement with those of reported [11],and identified 12
as 3-( hydroxy-acetyl) -1H-indole.
Syringic acid ( 13) yellow amorphous powder,C9H10
O5 ; ESI-MS ( pos. ) m/z 221[M + Na]
+ ; ESI-MS
( neg. ) m/z 197[M – H]– ; 1H NMR ( DMSO-d6,
500 MHz) δ: 7. 21 ( 2H,s,H-2,6) ,9. 18 ( 1H,brs,4-
OH) ,3. 80 ( 6H,s,5-OCH3 ) ,12. 58 ( 1H,brs,7-
COOH) ; 13 C NMR ( DMSO-d6,125 MHz ) δ: 120. 4
( C-1) ,106. 9 ( C-2,6 ) ,147. 4 ( C-3,5 ) ,140. 2 ( C-
4) ,167. 2 ( C-7) ,56. 0 ( 3,5-OCH3 ) . The above data
were consistent with those of reported [12],and identi-
fied 13 as syringic acid.
4,6-Dihydroxy-2-methoxyacetophenone ( 14 ) col-
orless oil,C9H10 O4 ; ESI-MS ( pos. ) m/z 205[M +
Na]+ ; ESI-MS ( neg. ) m/z 181[M– H]– ; 1H NMR
( CD3OD,400 MHz) δ: 5. 95 ( 1H,d,J = 2. 2 Hz,H-
3) ,5. 87 ( 1H,d,J = 2. 2 Hz,H-5) ,2. 55 ( 3H,s,H3-
8) ,3. 86 ( 3H,s,2-OCH3 ) ;
13 C NMR ( CD3OD,100
MHz) δ: 106. 5 ( C-1 ) ,168. 5 ( C-2 ) ,97. 1 ( C-3 ) ,
167. 0 ( C-4) ,92. 3 ( C-5 ) ,165. 5 ( C-6 ) ,204. 5 ( C-
7) ,33. 3 ( C-8) ,56. 4 ( 2-CH3 ) . The above data were
034 Nat Prod Res Dev Vol. 24
consistent with those of reported [13],and identified 14
as 4,6-dihydroxy-2-methoxyacetophenone.
Daphnetin 7-methyl ether ( 15 ) white amorphous
powder,C10 H8O4 ; ESI-MS ( pos. ) m/z 215[M +
Na]+ ; ESI-MS ( neg. ) m/z 191[M– H]– ; 1H NMR
( DMSO-d6,400 MHz) δ: 6. 26 ( 1H,d,J = 9. 5 Hz,H-
3) ,7. 95 ( 1H,d,J = 9. 5 Hz,H-4) ,7. 16 ( 1H,d,J =
8. 5 Hz,H-5 ) ,7. 03 ( 1H,d,J = 8. 5 Hz,H-6 ) ,3. 90
( 3H,s,7-OCH3 ) ,9. 50 ( 1H,brs,8-OH) . The above
data were consistent with those of reported [14],and i-
dentified 15 as daphnetin 7-methyl ether.
6-Methoxykaempferol ( 16 ) colorless oil,C16 H12
O7 ; ESI-MS ( pos. ) m/z 339[M + Na]
+ ; ESI-MS
( neg. ) m/z 315[M – H]– ; 1H NMR ( DMSO-d6,
400 MHz) δ: 6. 56 ( 1H,s,H-8 ) ,8. 05 ( 2H,d,J =
8. 5 Hz,H-2,6) ,6. 94 ( 2H,d,J = 8. 5 Hz,H-3,
5) ,3. 77 ( 3H,s,6-OCH3 ) ;
13C NMR ( DMSO-d6,100
MHz) δ: 135. 3 ( C-2 ) ,146. 9 ( C-3 ) ,176. 0 ( C-4 ) ,
151. 6 ( C-5) ,130. 7 ( C-6 ) ,157. 1 ( C-7 ) ,93. 7 ( C-
8) ,151. 3 ( C-9 ) ,103. 4 ( C-10 ) ,121. 6 ( C-1) ,
115. 3 ( C-2,6) ,129. 4 ( C-3,5) ,159. 1 ( C-4) ,
59. 9 ( 2-CH3 ) . The above data were consistent with
those reported [15],and identified 16 as 6-methoxy-
kaempferol.
( + ) -Syringaresinol ( 17 ) white amorphous pow-
der,C22H26 O8 ; ESI-MS ( pos. ) m/z 419[M + H]
+ ;
ESI-MS ( neg. ) m/z 417[M – H]– ; 1H NMR
( CDCl3,400 MHz) δ: 6. 59 ( 4H,s,H-2,2,6,6) ,
4. 85 ( 2H,d,J = 4. 0 Hz,H-7,7) ,3. 10 ( 2H,m,H-
8,8) ,4. 29 ( 2H,dd,J = 9. 0,6. 7 Hz,H-9a,9 a ) ,
3. 90 ( 2H,m,H-9b,9b) 3. 90 ( 12H,s,3,3,5,5-
OCH3 ) ;
13C NMR ( CDCl3,100 MHz) δ: 132. 0 ( C-1,
1) ,102. 6 ( C-2,2,6,6) ,147. 1 ( C-3,3,5,5) ,
134. 2 ( C-4,4) ,86. 1 ( C-7,7) ,54. 3 ( C-8,8) ,
71. 8 ( C-9,9) ,56. 4 ( 3,3,5,5-OCH3 ) . The above
data were consistent with those of reported [16],and i-
dentified 17 as ( + ) -syringaresinol.
α-Monopalmitin ( 18) white amorphous powder,C19
H38O4 ; ESI-MS ( pos. ) m/z 331[M + H]
+,353[M +
Na]+,683[2M + Na]+ ; 1H NMR ( CDCl3,500 MHz)
δ: 4. 21 ( 1H,dd,J = 12. 0,5. 0 Hz,H-1 ) ,4. 15 ( 1H,
dd,J = 12. 0,6. 0 Hz,H-1) ,3. 94 ( 1H,m,H-2) ,3. 70
( 1H,dd,J = 11. 0,4. 0 Hz,H-3 ) ,3. 61 ( 1H,dd,J =
11. 0,5. 5 Hz,H-3) ,2. 36 ( 2H,t,J = 7. 5 Hz,H2-5) ,
1. 62 ( 2H,m,H2-6 ) ,1. 29 ( 24H,m,H2-7-18 ) ,0. 88
( 3H,t,J = 7. 0 Hz,19-CH3 ) ;
13 C NMR ( CDCl3,125
MHz) δ: 65. 1 ( C-1 ) ,70. 2 ( C-2 ) ,63. 3 ( C-3 ) ,
173. 1 ( C-4 ) ,34. 1 ( C-5 ) ,24. 9 ( C-6 ) ,29. 3 ( C-7-
16) ,31. 9 ( C-17 ) ,22. 7 ( C-18 ) ,14. 1 ( C-19 ) . The
above data were consistent with those of reported [17],
and identified 18 as α-monopalmitin.
Stigmasterol ( 19) white amorphous powder,C29H48
O; ESI-MS ( pos. ) m/z 435[M + H]+ ; ESI-MS
( neg. ) m/z 411[M – H]– ; 13 C NMR ( CDCl3,125
MHz) δ: 71. 8 ( C-3 ) ,140. 8 ( C-5 ) ,121. 7 ( C-6 ) ,
50. 2 ( C-9) ,56. 8 ( C-14 ) ,56. 0 ( C-17 ) ,138. 3 ( C-
22) ,129. 3 ( C-23 ) . The above data were consistent
with those of reported [18],and identified 19 as stigmas-
terol.
References
1 Zhao YM,Zhang ML,Shi QW,et al. Chemical constituents of
plants from the genus Inula. Chem Biodivers,2006,3: 371-
384.
2 Zhao J,Li Y,Liu Q,et al. Antimicrobial activities of some
thymol derivatives from the roots of Inula hupehensis. Food
Chem,2010,120: 512-516.
3 Liang HX,Bao FK,Dong XP,et al. Antibacterial thymol de-
rivatives isolated from Centipeda minima. Molecules,2007,
12: 1606-1613.
4 Tori M,Ohara Y,Nakashima K,et al. Thymol derivatives
from Eupatorium fortunei. J Nat Prod,2001,64: 1048-1051.
5 Shin Y,Lee O,Park C,et al. Two new components from the
roots of Angelicae koreana Kitagawa. Chem Nat Compd,
2007,43: 652-654.
6 Jiang HX,Li Y,Pan J,et al. Terpenoids from Eupatorium for-
tunei TURCZ. Helv Chim Acta,2006,89: 558-566.
7 Su BN,Takaishi Y,Yabuuchi T,et al. Sesquiterpenes and
monoterpenes from the bark of Inula macrophylla. J Nat
Prod,2001,64: 466-471.
8 Monache GD,Monache FD,Becerra J,et al. Thymol deriva-
tives from Eupatorium glechonophyllum. Phytochemistry,
1984,23: 1947-1950.
9 Yagi R,Doi M. Isolation of an antioxidative substance pro-
duced by Aspergillus repens. Biosci Biotechnol Biochem,1999,
63: 932-933.
( 下转第 449 页)
134Vol. 24 ZHANG Fei,et al: Chemical Constituents from Inula hupehensis
3 Luo LP( 罗丽萍) ,Xu YJ( 徐元君) ,Chen B( 陈滨) ,et al.
Chemical compositions and antioxidant activities of ethanol
extract of Chinese propolis. International Conference of Natu-
ral Products and Traditional Medicine( ICNPTM 09) ,Spring-
er-Verlag,2009.
4 Xu YJ ( 徐元君) ,Luo LP ( 罗丽萍) ,Fu YX ( 付宇新) ,et
al. Recent development of chemical components in propolis.
Front Biol China,2009,4: 385-391.
5 Luo LP ( 罗丽萍) ,Fu YX ( 付宇新) ,Xu YJ ( 徐元君) ,et
al. Volatile components of propolis collected from different
areas of China. International Conference of Natural Products
and Traditional Medicine ( ICNPTM 09 ) ,Springer-Verlag,
2009.
6 Miyataka H,Nishiki M,Matsumoto H,et al. Evaluation of
propolis I. Evaluation of Brazilian and Chinese propolis by
enzymatic and physicochemical methods. Biol Pharm Bull,
1997,20: 496-501.
7 Bankova V,Christov R,Popov S,et al. Seasonal variations of
the chemical composition of Brazilian propolis. Apidologie,
1998,29: 361-367.
8 Sforcin JM,Orsi RO,Bankova V. Effect of propolis,some iso-
lated compounds and its source plant on antibody produc-
tion. J Ethnopharmacol,2005,98,301-305.
9 Sforcin JM,Fernandes A,Bankova V,et al. Seasonal effect on
Brazilian propolis antibacterial activity. J Ethnopharmacol,
2000,73,243-249.
10 Suzuki I,Hayashi I,Takaki T,et al. Antitumor and anticyto-
penic effects of aqueous extracts of propolis in combination
with chemotherapeutic agents. Cancer Biother Radiopharm,
2002,17: 553-562.
11 Cao YP( 曹艳萍) ,Dai HZ( 代宏哲) ,Cao W( 曹炜) ,et al.
Determination of total phenols in Zizyphus jujuba Mill. by
Folin-Ciocaileu colorimetry. J Anhui Agric Sci ( 安徽农业科
学) ,2008,36: 1299-1302.
12 Chen B( 陈滨) ,Luo LP( 罗丽萍) ,Li Y( 丽艳) ,et al. Ana-
lyses of phenolic compounds of water extract from propolis by
reversed phase high performance liquid chromatography. Chin
J Anal Chem( 分析化学) ,2009,37: 1786-1790.
13 Chen YW,Wu SW,Ho KK,et al. Characterisation of Taiwan-
ese propolis collected from different locations and seasons. J
Sci Food Agric,2008,88: 412-419.
14 Wang H( 王浩) ,Liu DX( 刘德秀) ,Yang W( 杨巍) . Der-
ermination of total flavonoid in a health food: propolis by
spectrophotometry. J Public Health Prev Med( 公共卫生与预
防医学) ,2006,17: 67.
15 Ivan K,Stjepan J,Marina B,et al. Flavonoid analysis and an-
timicrobial activity of commercially available propolis prod-
ucts. Acta Pharm,2005,55: 423-430.
16 Dina A,Nassima C,Meriem B,et al. Antioxidant capacity and
phenol content of selected Algerian medicinal plants. Food
Chem,2009,112: 303-309.
17 Rodrigo S,Helena TG. Antioxidant activity index ( AAI) by
the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem,
2009,112:
櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵
654-658.
( 上接第 431 页)
10 Luo XM,Qi SH,Tian XP,et al. Studies on chemical constitu-
ents of Salinispora pacifica fermentation. Chin Tradit Herb
Drugs,2009,40: 1710-1712.
11 Xu XL,Fan X,Song FX,et al. Chemical constituents of
brown alga Leathesia nana. Oceanol Limnol Sin,2005,36: 18-
23.
12 Dong L,Li L,Liao ZH,et al. Chemical constituents in root of
Rhodiola bupleuroides. Acta Bot Boreal-OccidentSin,2007,
27: 2564-2567.
13 Duan ZH,Shi BJ,Wu LH,et al. Chemical Constituents of
Gentiana waltonii. Chin J Nat Med,2007,5: 417-420.
14 Jia L,Min ZD. Studies on chemical constituents of Daphne
odora. Chin Tradit Herb Drugs,2005,36: 1311-1312.
15 Fuchino H,Satoh T,Tanaka N. Chemical evaluation of Betula
species in Japan.Ⅲ. Constituents of Betula maximowicziana.
Chem Pharm Bull,1996,44: 1748-1753.
16 Chen H,HajiA A,Li YC. Isolation and structural identifica-
tion of chemical constituents from Anabasis brevifolia. Nat
Prod Res Dev,2006,18: 958-961.
17 Shi Y,Li S,Li HY,et al. Studies on chemical constituents
from roots of Pterospermum heterophyllum. China J Chin Mat
Med,2008,33: 1994-1996.
18 Yang H,Wang D,Tong L,et al. Studies on chemical constitu-
ents of Oxytropis falcate( Ⅰ) . Chin Pharm J,2008,43: 338-
340.
944Vol. 24 张 茜等:不同来源中国蜂胶水提物的化学组成及抗氧化性