全 文 :ComparisonofStomatalCharacteristicsbetween
DendrobiumloddigesiandDendrobiumcandidum
SUNZhi-rong1 , WANGMei-yun2 , ZHANGHong-gui1 , JINJia-xing3 , LIBi-biao3
1.BeijingUniversityofChineseMedicine, Beijing100102;2.LangfangPeoplesHospital, Langfang065000;3.GuizhouJirentangPharma-
ceuticalCompany, Xingyi562400
Abstract [Objective] Thisstudywastorevealthephysiologicalandecologicalmechanismofgrowthanddevelopmentoftest-tubeseedlings.
[ Methods] Leafstomataoftest-tubeseedlingsofD.loddigesiandD.candidumatdiferentgrowthanddevelopmentstageswereobservedun-
derscanningelectronmicroscope, andtheirfluorescenceinductionresponsecurvewasassayedbyusingmodulatefluorometer.[ Results] At
eachgrowthanddevelopmentstage, D.loddigesitest-tubeseedlinghasahigherleafstomataldensityoverD.candidum, whilealowerstomata
openingrate.Alongwiththegrowth, thesizeofstomataofbothD.loddigesiandD.candidumdidnotchangeobviously, buttheirstomadensity
increasedby83%and17.6% respectively.Leafstomataopeningratereachedthehighestattheageof240-day-old.Undertheconditionsof
threesetledlightintensities, stomatalopeningdegreeofD.loddigesiwasincreasedbytheintensityofilumination, themaximumapertureoc-
curredatthelightintensityof54μmol/m2·s.Giventhesameculturecondition, boththemaximumelectrontransportrate(14μmol/m2·s)and
lightsaturationpoint(318μmol/m2·s)ofD.loddigesitest-tubeseedlingarelowerthanthatofD.candidum(20μmol/m2·s, 483μmol/m2·s).
Moreover, thepotentialphotosyntheticcapacityofD.loddigesiisrelativelypoor.[Conclusion] ThephotosyntheticratevariesamongdiferentspeciesofDendrobium, whichcouldbeatributedtotheirdifferentstomatalcharacteristics.Usualy, thelightintensityoftissueculturechamber
issetupas27μmol/(m2·s), wherebothD.loddigesiandD.candidumdonotacquireanoptimalstatefortheirleafstomatalopening.Consid-
eringthecharacteristicstoselectsuitableculturecondition, thestomatalapertureandphotosyntheticratecouldbeenhanced, whichcanpromote
thegrowthanddevelopmentoftest-tubeseedlings.
Keywords Dendrobiumloddigesi;Dendrobiumcandidum;Tissueculture;Stomata;Photosyntheticcharacteristics
Received:May16, 2011 Accepted:July18, 2011
SupportedbytheKeyProjectsintheNationalScience&Technology
PilarProgramduring11th5-yearPlanPeriod(2006BAI06A11-11).
*Correspondingauthor.E-mail:zrs67@126.com
Stomataarethemainchannelfortheexchangeofairand
waterbetweenleafcelandexternalenvironment, takinga
keyroleintheregulationofplantphysiologicalprocess.Sto-
matanumberandtheirapertureareofgreatsignificancetothe
photosynthesis, respirationandtranspirationofplant[ 1, 2] .Sto-
mataareoneofthekeytraitsofplant, havingstronggenetic
ability.Ithasbeendemonstratedthatstomatacorrelatewith
growthvigor, stressresistance, phylogenyandchromosomal
ploidy[3] .Sufferedfrom abioticstress, stomatawouldbein
responsetovariousstressestoaleviatethestresspressure
andthusenhancestressresistanceofplant.Areaofstomatal
channelsonleafaccountsjustfor1%-3% oftotalleafarea,
but50%-75%ofwaterlostfromleafwasdissipatedviasto-
mata[ 4].Stomataltraitstudywasmoreandmoreimportantin
plantgeneticbreedingandgeneticresourcesfield.Dendrobi-
umplantsareakindofraretraditionalChinesemedicine,
rankingfirstamongChinasNineMagicPanaceaHerbs.
Forthelackofwildresources, ithasbeenclassifiedasChina
NationalClassIIRareandEndangeredProtectedPlantSpe-
cies.D.loddigesiandD.candidumpossessalowerprolifer-
ationrateundernaturalconditions, andthewildplantsgrow
slowandneedalongperiodtorenovateandrestore.Howev-
er, thecultivationtechniqueofDendrobiumstilremainstobe
improvedsofar, andthesourceandsupplyofhighquality
seedlingshasbecomethebottleneckrestrictingthedevelop-
mentofDendrobiumindustry.Uptothepresent, thereisa
fewofstudiesinvolvingthephysiological-ecologicalmecha-
nismoftestseedlingsofmedicinalDendrobiumplants, andno
reportfocusingitsstomatalcharacteristic.Inthisstudy, we
observedthestomatalcharacteristicoftesttubeseedlingsof
D.loddigesiandD.candidumatdiferentgrowthstagesand
diferentiluminationintensities, determinedtheirfluorescence
inductionresponsecurve.Comparedthestomatalandphoto-
syntheticcharacteristics oftesttube seedlings between
D.loddigesiandD.candidum, aimingtolaytheoreticalbasis
forrevealingphysiological-ecologicalmechanisminthegrowth
anddevelopmentoftestseedlingsofmedicinalDendrobium
plantsandprovidingmorphologicdataforthestudyofmedici-
nalDendrobiumplants.
MaterialsandMethods
Materials
TheseedsofD.loddigesiandD.candidum, providedby
GuizhouJirentangPharmacyCo., Ltd., weresurface-disin-
fectedandplatedonseedgerminationmedium(MS+NAA
0.2 mg/L+2% sugar+15% potatoextracts+agar)under
sterilecondition.Onehundredandtwentydayslater, young
seedlingswithsimilargrowthvigorandsizeweretransfered
torootingandhardeningmedium(MS+NAA0.5 mg/L3%
sugar+20% potatoextracts+activecarbon1‰ +agar), 10
seedlingsperbotle.Thecultureconditionswereasfolows:ilu-
minationintensityof27 μmol/(m2·s), photoperiodof2 h/12h
(day/night), temperatureof(25±2)℃.Testtubeseedlingsof
D.loddigesiandD.candidumattheageof180, 240 and300d
weretakenasexperimentalmaterials.Onehundredandtwenty
days, theseedlingsofD.loddigesiwithheightof0.5 cm, 1-2
euphylaand1 root-2 shortrootsweretransferredtorooting
andhardeningmediumasdescribedabovewiththedensityof10
seedlingsperbotle.Theseedlingswereculturedunderilumina-
tionintensitiesof18, 36 and54 μmol/(m2·s), withthephoto-
periodof12 h/12h(day/night)andtemperatureof(25 ±2)
AgriculturalScience&Technology, 2011, 12(8):1161-1165
Copyright 2011, InformationInstituteofHAAS.Alrightsreserved. AgriculturalBasicScienceandTechnology
℃.Eachtreatmentcontained30 bottles.Finaly60- and
120-doldtubeseedlingsweretakenasexperimentalmateri-
als.
Methods
Electron-microscopicobservationofstomatalmorpholo-
gy About0.2 cm2 piecesnearthemidribofthethirdleaf
downwardsthestemtipsoftesttubeseedlingsofD.loddigesi
andD.candidumweretakenasexperimentalsamples.The
sampleswereimmobilizedin3% ofglutaraldehydefor24 h,
rinsedwithdistiledwater, againimmobilized1% ofosmic
acid, dehydratedwithaconcentrationgradientofethanolfor
dryingandgoldsputeringatCO2 criticalpoint.Thebacksur-
faceofpreparedsampleswasobservedunderelectron-micro-
scopeHitachiS-570, withthemagnificationof150 -2 000
multiples.
Determinationofstomatasizeanddensity Foreach
shareofmaterials, 30 randomlyselectedstomatawereob-
servedunderthemagnificationof300 and500 multiplesfor
measuringthelongaxesofstomata, longaxesandshortaxes
ofstomatalapparatus.Underthemagnificationof150, 300
and500 multiples, threeunitareasforeachshareofexperi-
mentalmaterialwereselectedtorecordthestomatalnumber
forgetingthemeanshownwithstomatanumber/mm2.
Determinationofstomataapertureandstomatalindex
Underthemagnificationof150, 300 and500 multiples, three
unitareasforeachshareofexperimentalmaterialwereselect-
edtoobserveandrecordstomataopeningrate.Stomatalin-
dexwascalculatedusingtheformulaSI=[ S/(E+S)] ×
100
[ 5].
Where, Srepresentsperunitleafareaofstomatanum-
ber, Erepresentsepidermalcelnumber.
Determination of ETR-PAR fluorescence induction
responecurve Leavesof6-, 8-and10-montholdtesttube
seedlingsofD.loddigesiandD.candidum wererandomly
sampledformeasuringtheirlightresponsecurvesatroom
temperatureunderPortableChlorophylFluorometerPAM-
2100(HeinzWalzGmbH, Germany)andthedatawasana-
lyzedusingPAMwinsoftware.Eachtreatmentwasreplicated
forthreetimes.
ResultsandAnalysis
Changesinstomatalcharacteristicsofleavesoftesttube
seedlingsduringgrowthprocess
Thestomatasizeandstomatalindexcanreflectthephys-
iological-ecologicalcharacteristicsofplant.AsshowninTable
andFig.1, thestomataontheleavesofD.loddigesiand
D.candidum testtubeseedlingswerebothoval, andthey
distributedamongepidermiswithspacing.D.candidumdid
notdiferremarkablyfromD.loddigesiinlongaxesofstoma-
taandshortaxesofstomatalaxes, buthadlargerlongaxes.
Theratiooflongaxestoshortaxeswas1.18 inD.loddigesi
and1.53 inD.candidum.Duringvariousgrowthperiods, the
stomataldensityofD.loddigesiwashigherthanthatofD.can-
didum, whileitsstomataopeningratewaslower.D.loddigesi
andD.candidumweresimilarinstomatalindex.Asshownin
Table1, alongwiththegrowth, thestomatalapparatusof
D.loddigesileafbecamelongergradualy, withthelongaxes
ofstomatalapparatusincreasedby16%, stomataldensityin-
creasedby83%, thestomataopeningratechangedinaris-
ing-reductiontrendandstomatalindexinareduction-rising
trend;D.candidumdidnotchangeremarkablyinlongaxesof
stomata, longaxesandshortaxesofstomatalapparatus,
anditsstomataldensityincreasedby17.6%.At240-dage,
tubeseedlingsofbothD.loddigesiandD.candidumhadthe
higheststomataandtheloweststomatalindex.
Fig.1 Fluorescenceinductionresponsecurveoftesttubeseedlingsof
D.loddigesiandD.candidumTable1 Stomatalcharacteristicsoftest-tubeseedlingsofD.loddigesiandD.candidumatdiferentgrowthanddevelopmentstages
Species Age∥d
Stomatalsize∥μm
Longaxesofstomata Longaxesofstomatalapparatus Shortaxesofstomatalapparatus
Stomatalopeningrate∥%
StomatalDensityind./mm2
Stomatalindex
D.loddigesi 180 13.16(1.21) 27.72(1.85) 24.63(1.88) 76(2.74) 49.77(0.07) 0.075(0.03)
240 12.54(1.59) 28.69(2.55) 24.54(0.33) 85(2.36) 80.64(0.08) 0.056(0.03)
300 11.81(2.50) 32.21(2.33) 25.76(1.38) 70(3.51) 91.40(0.08) 0.078(0.02)D.candidum 180 12.91(2.56) 39.13(2.01) 26.58(0.97) 80(1.79) 44.27(0.14) 0.079(0.01)
240 13.59(1.94) 38.38(0.95) 24.77(1.37) 98(2.73) 46.30(0.04) 0.060(0.02)
300 12.33(1.80) 40.29(1.17) 25.60(1.66) 86(1.85) 52.06(0.13) 0.084(0.00)
Impactofiluminationintensityonstomatalcharacteris-
ticsoftubeseedlingsofD.loddigesii
Besides the crassulacean acid metabolism (CAM)
plants, mostplantssstomataopenatdaytimeandcloseat
nighttimeunderaninherentday/nightcadence.Theefectof
stomataopeningiscausedbylightdirectly, insteadofthere-
ducedintercelularCO2 concentrationviaphotosynthesis.ByusingHilreactioninhibitor, stomatalaperturestilexpands
withtheincreaseoflightintensity.Dendrobiumplantsarefac-
ultativeCAM, buttheirCAM mechanismonlyoccursunder
thelightiluminationinthenoonofsunnydays, andnotinthe
cloudydays.Thelightintensityinthetissuecultureroomis
alwayspoor, thusC3 metabolism takesamainroleintube
seedlingsofbothD.loddigesiandD.candidum.Asshownin
Table2, altheindicesoftest-tubeseedlingsofbothvarieties
underlighttreatmentattheageof60 and120 drosewiththe
increaseoflightintensity.Bothvarietiesshowedasimilar
variationlawinstomataonleafattwotreatmentdurations
withthechangeoflightintensity.Underthelightintensityof
18 μmol/(m2·s), leafstomatashrank, sank, anddidnot
open, andstomatalsize, stomataldensityandstomatalin-
dexalstayedtheminimum;whenthelightintensitywas54
μmol/(m2·s), altheindicesshowedthemaximumvalue.
1162 AgriculturalScience&TechnologyVol.12, No.8, 2011
Table2 LeafstomalcharacteristicsofD.loddigesitest-tubeseedingunderdiferentlightintensities(x±s)
Treatmentduration∥d Lightintensityμmol/(m2·s)
Stomatalsize∥μm
Longaxesofstomata Longaxesofstomatalapparatus Shortaxesofstomatalapparatus
Stomatalopeningrate∥%
StomatalDensity
ind./mm2
Stomatalindex
60 18 0.00(0.00) 26.31(2.80) 24.70(2.81) 0(1.06) 19.10(0.00) 0.031(0.01)
36 12.57(1.33) 29.92(1.90) 28.15(1.28) 84(1.43) 38.09(0.00) 0.079(0.02)
54 14.92(0.72) 31.11(0.88) 28.95(0.97) 98(1.74) 44.96(0.17) 0.093(0.01)
120 18 0.00(0.00) 23.15(2.77) 17.96(2.14) 0(2.06) 28.13(0.01) 0.056(0.02)
36 11.44(0.96) 25.73(2.33) 20.86(2.16) 80(1.65) 68.90(0.05) 0.058(0.02)
54 14.01(0.68) 28.06(2.29) 23.04(0.48) 100(2.02) 73.33(0.05) 0.068(0.03)
1-3:testtubeseedlingsofD.loddigesiwithagesof6, 8and10months(×2 000);4:testtubeseedlingsofD.loddigesiwithageof8
months(×150);5-7:testtubeseedlingsofD.candidumwithagesof6, 8and10months(×2 000);4:testtubeseedlingsofD.candi-
dumwithageof8months(×150);9-11:testtubeseedlingsofD.loddigesitreatedwithintensityof18, 36and54μmol/m2·sfor60d(×
2 000);12:testtubeseedlingsofD.loddigesitreatedwithintensityof54μmol/m2·sfor60d(×150);13-15:testtubeseedlingsofD.
loddigesitreatedwithintensityof18, 36and54μmol/m2·sfor120d(×2 000);16:testtubeseedlingsofD.loddigesitreatedwithintensi-
tyof54 μmol/m2·sfor120d(×150).Fig.2 StomatalapparatusoftesttubeseedlingsofD.loddigesiandD.candidum
1163SUNZhi-rongetal.ComparisonofStomatalCharacteristicsbetweenDendrobiumloddigesiandDendrobiumcandidum
ETRresponsecurve
Duringthegrowthprocess, ETRmaxofD.loddigesi s
variationshowedadescendingtrend(Fig.1).UndertheETR-
maxofapproximately14 μmol/(m2· s), itslightsaturated
pointattheageof10 monthswas149 μmol/(m2·s), andthat
atothergrowthperiodswasapproximately318 μmol/(m2·s).
D.candidumhadanETRmax20 μmol/(m2·s), remarkably
higherthanD.loddigesi, andthelightsaturatedpointwas
around483 μmol/(m2·s).ThissuggeststhatD.candidum
hasastronglatentphotosyntheticabilityandarelativelystable
lightsaturatedpointandETRmaxduringgrowthprocess,
whilethelatentphotosyntheticabilityofD.loddigesiissharply
lowerthanD.candidum.
Discussion
LeafstomataofD.loddigesiandD.candidumareboth
ovalanddistributeamongepidermiswithspacing.Thelong
axesofstomatalapparatusofD.candidum wasfoundre-
markablylargerthanthatofD.loddigesi.Duringalgrowth
periods, D.loddigesihasanobviouslyhigherstomataldensi-
tyandalowerstomataopeningratethanD.candidum.The
resultsindicatethatunderlowstomataopeningrate, D.loddi-
gesienhancesitsphysiologicalactivitiesbyproducingmore
stomata.Ourresultshavealsoindicatedthatthechangeof
leafstomataindexofD.loddigesiisconsistentwithitsphoto-
syntheticrate, whileD.candidum sopeningrateaccordswith
itsphotosyntheticrate.Thisdiferencemaybecausedbythe
variedgrowthspeedofdiferentvarietiesandfurthermore
afectedtheirphotosyntheticrate.Duringgrowthprocess,
bothD.loddigesiandD.candidumdidnotchangehugelyin
leafstomatasize, buttheirstomatanumberincreasedgradu-
aly, andstomatadensitiesintwovarietiesincreasedby
83.0% and17.6% respectively.Alongwiththegrowth, sto-
mataopeningratesofbothvarietiesassumedanascending-
reductiontrend, theirmaximum stomataopeningratesoc-
curredinAugust, whenthestomataindexwastheminimum.
Inthisstudy, lightintensitywasfoundtoafectthedensity,
sizeandphysiologicalactivitiesofleafstomata.Thisisconsist-
entwiththeconclusionofMENGLeietal[ 6] .Stomataaperture
isdirectlycorrelatedwiththeconcentrationofCO2(substrateof
photosynthesis), thuslightintensitycanafectphotosynthetic
ratedirectly.Underthreetestedlightintensities, Thestomata
apertureofD.loddigesirosewiththeincreaseoflightintensity.
Underthelightintensityof18 μmol/(m2·s), leafstomata
shrank, sank, anddidnotopen, andstomatalsize, stomatal
densityandstomatalindexalstayedtheminimum;whenthe
lightintensitywas54 μmol/(m2·s), stomataapertureshowed
themaximumvalue, havingtheminimumresistanceforCO2transporttomesophylcels.Ourresultsindicatethatlightin-
tensityof18 μmol/(m2·s)istoolowtomeetthegrowthand
development srequirementoftesttubeseedlingsofD.loddig-
esiwiththeagehigherthan6months.
CO2 , thecrudematerialforcarboncycleinphotosynthe-
sis, getstomesophylcelsmainlythroughstomata, hence
stomatalcharacteristicscorrelate withphotosyntheticrate
closely.Stomatalapertureexpandedwiththeincreaseoflight
intensity, indicatingthathigherlightintensityisfavorablefor
enhancingphotosyntheticrate.Toeconomizetheproduction
cost, 27μmol/(m2·s)lightintensityiscommonlyusedintis-
suecultureroom, underwhichthestomatalapertureofboth
varietiescouldnotreachtheiroptimalstate.Accordingly, fol-
lowingtherequirementofDendrobiumplantsonilumination
conditionsinproductionandselectingsuitableculturecondi-
tionstoexpandstomatalapertureandenhancephotosynthetic
rate, wouldbeinfavorofthegrowthanddevelopmentoftest
tubeseedlings.
Electrontransportratecanreflectthephotosyntheticrate
ofplant.Underthepoorilumination, non-cyclicETRisposi-
tivecorrelatedwithlightintensity.Whenthelightintensityex-
ceedstheelectrotransportability, i.e., lightintensityisno
longerthelimitingfactor, ETRdoesnotrisewiththeincrease
oflightintensity.Whilethecarboncycle, photo-respiration,
nitrogenassimilationandMehlerreactionalarealunderthe
maximalvalues, thespeedofelectroncurentalsothehigh-
est, whenETRreachesthemaximum.Thus, fromanother
aspect, responsecurveofETRtolighthastheequivalence
withleafgasexchangetolightresponse.
Undersamecultureconditions, boththeETRmax[ 4
μmol/(m2·s)] andlightsaturatedpoint[ 149 μmol/(m2·s)]
ofD.loddigesiwerelowerthanthatofD.candidum.This
suggeststhatD.candidumhasastronglatentphotosynthetic
ability.ETRmaxinD.loddigesishowedareductiontrend,
demonstratingthatitsphotosyntheticabilityisreducinggradu-
alyunderspecificcultureconditions.Whilethephotosynthetic
rateinD.candidumisrelativelystable.Thevariedstomatal
characteristicsofdifferentspeciesofDendrobiumplantsledto
thediferenceinphotosyntheticrateamongdiferentvarieties,
whichmaybeoneofthemaincausesofthedifferenceinthe
growthvigoroftesttubeseedlingsbetweenD.loddigesiand
D.candidum.ETRlightresponsecurveshowsthatlightsatu-
ratedpointsofDendrobiumplantsatvariousgrowthstages
werealhigherthan150 μmol/(m2·s), whilethehighestlight
intensitywetestedinthisstudywasjust54 μmol/(m2·s).
Thisstilremainstobefurtherstudiedinfuture.
References
[ 1] XUDQ(许大全).Stomatalmovementandphotosynthesis(气孔运
动与光合作用)[J].PlantPhysiologyCommunications(植物生理学
通讯), 1984(6):6-12.
[ 2] ZHENGCX(郑彩霞), QIUJ(邱箭), JIANGCN(姜春宁), etal.
ComparisonofcharacteristicsofstomasandphotosynthesisofPopuluseuphraticaPolymorphicleaves(胡杨多形叶气孔特征及光
合特性的比较)[ J].ScientiaSilvaeSinicae(林业科学), 2006, 42
(8):19-24.
[ 3] LIRT(李润唐), ZHANGYN(张映南), TIANDL(田大伦).Studies
onthestomataofcitrusplantleaves(柑橘类植物叶片的气孔研究)
[ J].JournalofFruitScience(果树学报), 2004, 21(5):419-424.
[ 4] WANGGY(王光耀), LIUJM(刘俊梅), ZHANGY(张仪), etal.
Studiesonstomatalpropertiesoffourcommonbeancultivarswith
knowndiferentThermoresistance(菜豆四个不同抗热性品种的气孔
特性)[ J].JournalofAgriculturalBiotechnology(农业生物技术学报), 1999, 7(3):267-270.
[ 5] LIHB(李寒冰), BAIKZ(白克智), HUYX(胡玉熹), etal.Stoma-
talfrequencyonsomenon-leaforgansoffourcropspeciesand
theirsignificanceinphotosynthesis(4种作物部分非叶器官气孔频度
及其在光合作用中的意义)[J].ActaPhytoecologicaSinica(植物生
态学报), 2002, 26(3):351-354.
[ 6] MENGL(盂雷), CHENWF(陈温福), LILX(李磊鑫), etal.Influ-
enceoflowlightonstomatalcharactersinriceleaves(减弱光照强
度对水稻气孔性状的影响)[J].JournalofShenyangAgricultural
University(沈阳农业大学学报), 2002, 33(2):87-89.
Responsibleeditor:DUANYong-bo Responsibleproofreader:WUXiao-yan
1164 AgriculturalScience&TechnologyVol.12, No.8, 2011
环草石斛和铁皮石斛试管苗叶片气孔特征比较(摘要)
孙志蓉 1* ,王美云 2 ,张宏桂 1 ,金家兴 3 ,李碧彪 3 (1.北京中医药大学中药学院, 北京 100102;2.河北省廊坊市人民医院 , 河北
廊坊 065000;3.贵州吉仁堂药业公司 ,贵州兴义 562400)
[目的 ]比较环草石斛和铁皮石斛试管苗叶片的气孔特征和光合特性。
[方法 ]对环草石斛和铁皮石斛不同生长发育时期试管苗叶片的气孔进行扫描电镜观察 ,并用调制式荧光仪测定荧光诱导光响应曲线。
[结果]在各个生长发育时期 ,环草石斛试管苗叶片的气孔密度均明显高于铁皮石斛 ,而气孔开放率则较低。随着生长时间的延长 ,环草石斛
和铁皮石斛试管苗叶片气孔的大小变化不大 ,而气孔的数量则逐渐增加 ,气孔密度分别增加了 83%和 17.6%,两者均以播种生长 240d时叶
片的气孔开放率最高。在设定的 3种光照强度下 ,环草石斛试管苗叶片气孔开放程度随光强的增加而增大 ,光强为 54μmol/(m2·s)时气孔
的开放度最大。在相同的培养条件下 ,环草石斛试管苗的最大电子传递速率 14μmol/(m2·s)和光饱和点 318μmol/(m2·s)均低于铁皮石
斛 20μmol/(m2· s), 483μmol/(m2· s),其潜在的光合作用能力较差。
[结论 ]不同种类石斛试管苗的气孔特性不同 ,因而光合速率也不同。通常组培室内的光强为 27μmol/(m2· s),这样的条件下 ,两种石斛试
管苗叶片气孔的开度都未达到最佳状态。若能遵循试管苗对光照强度的需求规律 ,选择合适的培养条件 ,增大气孔开度 ,提高光合速率 , 将
更有利于试管苗的生长发育。
关键词 环草石斛;铁皮石斛;组织培养;气孔;光合特性
基金项目 “十一五 ”国家科技支撑计划项目(2006BAI06A11-11)。
作者简介 孙志蓉(1967-)女,山东诸诚人 ,博士,副教授,从事药用植物资源研究。 *通讯作者。
收稿日期 2011-05-16 修回日期 2011-07-18
(Frompage1160)
[ 10] AROSIOP, INGRASSIAR, CAVADINIP.Feritins:Afamilyofmol-eculesforironstorage, antioxidationandmore[J].BBABioenerget-
ics, 2009, 1790:589-599.[ 11] CAODJ, LUOXR.Dynamicsofmicroelementsinoilseedrape[J] .ChineseJournalofOilCropScience, 1995, 17(1):36-38.[ 12] KIMSA, GUERINOTML.Miningiron:Ironuptakeandtransportin
plants[J].FEBSLeters, 2007, 581:2273-2280.[ 13] AROCAR, TOGNONIF, IRIGOYENJJ, etal.Diferentrootlowtemperatureresponseoftwomaizegenotypesdiferinginchilingsensitivity[ J].PlantPhysiologyandBiochemistry, 2001, 39:1067-
1073.
[ 14] AROCAR, VERNIERIP, IRIGOYENJJ, etal.Involvementofab-scisicacidinleafandrootofmaize(ZeamaysL.)inavoidingchil-ing-inducedwaterstress[J] .PlantScience, 2003, 165:671-679.[ 15] JANOWIAKF, MASSB, DRFFLINGK.Importanceofabscisicacid
forchilingtoleranceofmaizeseedlings[J].JournalofPlantPhysi-ology, 2002, 159:635-643.[ 16] ZOUJ, LUJW, WUJS, etal.Dynamicsofcalcium, magnesiumandsulfuruptakein4double-lowrapeseed(BrassicanapusL.)varieties[J].JournalofHuazhongAgriculturalUniversity, 2009, 28
(3):295-299.[ 17] NAYYARH, BAINSTS, KUMARS.Chilingstressedchickpeaseedlings:efectofcoldacclimation, calciumandabscisicacidoncryoprotectivesolutesandoxidativedamage[J].EnvironmentalandExperimentalBotany, 2005, 54:275-285.
[ 18] PLAZEKA, ZURI.Cold-inducedplantresistancetonecrotrophicpathogensandantioxidantenzymeactivitiesandcelmembraneper-
meability[J] .PlantScience, 2003, 164:1019-1028.[ 19] FRYSC.Primarycelwalmetabolism:trackingthecareersofwalpolymersinlivingplantcels[J].NewPhytologist, 2004, 161:641-
675.
[ 20] TEWARIRK, KUMARP, SHARMAPN.Magnesiumdeficiencyin-ducedoxidativestressandantioxidantresponsesinmulberyplants[J].ScientiaHorticulturae, 2006, 108:7-14.[ 21] LOPEZMILLANAF, ELLISDR, GRUSAKMA.Efectofzincand
manganesesupplyontheactivitiesofsuperoxidedismutaseandcarbonicanhydraseinMedicagotruncatulawildtypeandrazmutantplants[J].PlantScience, 2005, 168:1015-1022.[ 22] MISHRAPK, BISHTSC, RUWARIP, etal.BioassociativeefectofcoldtolerantPseudomonasspp.andRhizobiumleguminosarum–
PR1onironacquisition, nutrientuptakeandgrowthoflentil(LensculinarisL.)[J].EuropeanJournalofSoilBiology, 2011, 47:35-
43.[ 23] WANGTP, WANGJ, SUNXY.Efectsofmanganesestresson
PODactivitiesandisozymesofsoybean[J].AgriculturalScience&Technology, 2011, 12(1):33-36.[ 24] ZHANGSJ, LIL, LIGM, etal.Influencesof5-ALAapplicationonwinteroilseedrape(BrassicanapusL.)growthbeforewinter[J] .AgriculturalScience&Technology, 2011, 12(3):324-329.
[ 25] ZHANGSJ, LIL, ZHANGCL, etal.ALAalteredABAcontentofwinteroilseedrape(BrassicanapusL.)seedling[ J] .AgriculturalScience&Technology, 2011, 12(4):484-488.[ 26] XUMZ, LIUX, YULQ, etal.Physiologicalanalysisonmechanismsofcold-toleranceofDongxiangwildrice(I)[J] .AgriculturalSci-
ence&Technology, 2010, 11(2):39-43.
Responsibleeditor:YINJian-li Responsibleproofreader:WUXiao-yan
冬油菜体内金属元素含量在低温驯化过程中的变化(摘要)
张树杰* ,王琼 ,李光明 ,张春雷 (中国农业科学院油料作物研究所 ,农业部油料作物生物学重点开放实验室 ,农业部作物生理生态与
栽培重点开放实验室 ,湖北武汉 430062)
[目的 ]研究冬油菜体内必需金属元素在低温驯化过程中的变化特征 ,旨在揭示必需元素在油菜抗寒性中的作用及机理。
[方法 ]通过田间试验比较了不同抗寒性冬油菜 (BrasicanapusL.)品种中双 11号、甘油杂 1号和金裕油 1号体内必需金属元素(钙、镁 、铁、
锰 、锌和铜)浓度在低温驯化过程中的变化。
[结果]油菜体内金属元素浓度在低温驯化过程中变化明显 ,且品种间差异显著。在根系中 ,钙、镁、铁、锰 、锌和铜浓度均呈显著升高的趋势 ,
可能与低温引起蒸腾作用降低从而导致向上运输受阻所致;在地上部 ,钙 、镁、锌浓度显著降低 ,而铁、锰和铜为升高趋势 , 各元素浓度变化幅
度均以中双 11号最大。
[结论 ] 维持地上部钙 、镁、锌浓度稳定 ,提高地上部铁 、锰 、铜浓度 ,可能有利于冬油菜抗寒性的提高。
关键词 低温驯化;抗寒性;必需元素;冬油菜
基金项目 公益性行业专项项目(200903003),农业部公益性科研院所专项资金(1610172011016)。
作者简介 张树杰 (1972-),男 ,陕西延安人 ,助理研究员,主要从事油菜生理生态与栽培技术研究。 *通讯作者 , E-mail:sjzhang1972@126.com。
收稿日期 2011-05-08 修回日期 2011-06-28
1165SUNZhi-rongetal.ComparisonofStomatalCharacteristicsbetweenDendrobiumloddigesiandDendrobiumcandidum