免费文献传递   相关文献

SOIL CARBON AND NITROGEN CONTENTS ALONG ELEVATION GRADIENTS IN THE SOURCE REGION OF YANGTZE, YELLOW AND LANTSANG RIVERS

三江源地区主要草地类型土壤碳氮沿海拔变化特征及其影响因素


以三江源地区主要草地类型为研究对象,分析了不同草地类型土壤有机碳和全氮的变化特征及其与环境因子、土壤特征等的相互关系。结果表明:沿着海拔的逐渐升高,土壤有机碳和全氮含量均呈现出 “V"字形变化规律,即土壤有机碳氮含量在海拔最高处(5 120 m )和最低处(4 176 m)比较高,而在中间海拔梯度较低,土壤有机碳与全氮含量极显著相 关(r= 0.905)且高寒草甸土壤碳、氮含量高于高山草原土壤碳、氮含量;土壤中有机碳含量和全氮含量均随着土壤含水量的增加而增加,偏相关分析结果表明:对0~30 cm土层中土壤有机碳和土壤全氮影响最大的是土壤含水量,偏相关系数为0.946 5、0.905 9(p<0.01);土壤有机碳含量和全氮含量与植被盖度和草地生产力存在正相关趋势;土壤有机碳含量和全氮含量与土壤pH值和全盐量存在负相关趋势。

Soil is an important component of the terrestrial ecosystem and plays a critical role in global carbon cycle. Better understanding the distribution pattern of soil carbon storage along environmental gradients will facilitate the projection of global change on terrestrial C cycling. This study was conducted to examine soil organic carbon and nitrogen contents in major grassland types along elevation gradients in the source region of Yangtze, Yellow and Lantsang Rivers. Soil organic carbon and nitrogen contents were greater at the highest (5 120 m a.s.l.) and lowest (4 176 m a.s.l.) sites and lower at middle site. Soil organic carbon and nitrogen contents increased with soil moisture along the altitudinal gradient. Partial correlation analysis showed that spatial variability of soil organic carbon and nitrogen contents at 0-30 cm soil layers could be primarily explain by soil moisture with partial correlation coefficients of 0.946 5、0.905 9 (p<0.01), respectively. In addition, soil organic carbon and nitrogen contents showed positive linear correlations with plant cover and productivity and negative correlation trend with soil pH and total salt content.