叶片最大羧化速率是表征植物光合能力的关键参数, 受到光照、温度、水分、CO2浓度、叶片氮含量等多个要素的控制。准确地模拟植物叶片最大羧化速率对环境因子的响应是预测未来植被生产力和碳循环过程的前提。目前大多数陆地碳循环过程模型以Farqhuar光合作用模型为基础模拟植物的光合作用, 关于植物叶片的最大羧化速率与叶氮含量关系的模拟方法却各不相同。该文汇总了1990-2013年国内外植物叶片光合速率观测研究文献中叶片最大羧化速率与叶氮含量的关系式及相关数据, 分析了叶片最大羧化速率与叶氮含量关系随不同植被功能型和时间的变化特征, 以及环境因子变化条件下最大羧化速率与叶氮含量关系的变化特征, 探讨了二者关系变异性的可能原因以及影响因子。结果表明: 1)不同功能型植物叶片的最大羧化速率和叶氮含量的关系存在较大差异, 二者线性关系式的斜率平均值变化范围为16.29-50.25 μmol CO2·g N-1·s-1。落叶植被叶片的最大羧化速率随叶氮含量的变化率和光合氮利用效率一般都高于常绿植被, 其变异主要源于植物的比叶重和叶片内部氮素分配的差异。2)叶片最大羧化速率随叶氮含量的变化存在季节和年际变异。在没有受到水分胁迫的年份中, 叶片最大羧化速率随叶氮含量变化的速率一般在春季或夏季最高, 其季节变异与比叶重和叶氮在Rubisco的分配比例的季节变化有关。受到干旱的影响, 叶片最大羧化速率随叶氮含量的变化率会升高。3)当大气CO2浓度增加时, 由于叶片中Rubisco含量的降低, 多年生针叶叶片最大羧化速率和叶氮关系斜率值会出现降低; 当供氮水平增加时, 叶片最大羧化速率和叶片氮含量均表现出增加趋势, 二者线性关系的斜率也相应增加。在此基础上, 该文指出在模拟叶片最大羧化速率与叶氮含量的关系时, 应考虑叶片比叶重和叶氮在Rubisco中的分配比例的季节变异、水分胁迫、大气CO2浓度和供氮水平变化对二者关系的影响。囿于数据的有限性, 今后应进一步加强多因子控制实验研究, 深入探讨叶片最大羧化速率与叶氮含量关系的变异性机理, 并获得更系统的观测数据, 以助生态系统过程模型的改进, 提高模型的模拟精度。
Aims Maximum leaf carboxylation rate is one of the key parameters determining the photosynthetic capacity of plants. It is affected by irradiance, temperature, moisture, atmospheric CO2 concentration, leaf nitrogen content, and some other factors. Accurate simulation of the responses of the maximum leaf carboxylation rate to varying environmental conditions is the premise for predicting the changes in vegetation productivity and carbon cycle in future environments. Most of the process-based terrestrial carbon cycle models use the Farqhuar photosynthesis model to simulate plant photosynthesis. However, the methods in simulating the relationship between maximum leaf carboxylation rate and leaf nitrogen content differ from each other. Methods We collected data on maximum leaf carboxylation rate and leaf nitrogen content from literature published during 1990-2013, and analyzed the variations in the relationship between maximum leaf carboxylation rate at 25 °C (Vcmax,25) and area-based leaf nitrogen concentration (Na) across different plant functional types and seasons, and in responses to rising atmospheric CO2 and nitrogen supply. Moreover, we reviewed possible causes of those variations and the influencing factors. Important findings The results showed that: 1) the relationship between Vcmax,25 and Na varied with plant functional types, and the average values of the slope ranged from 16.29 to 50.25 μmol CO2·g N-1·s-1. Deciduous trees generally showed a steeper slope and greater photosynthetic nitrogen use efficiency than evergreen trees due to the differences in leaf mass per area (LMA) and nitrogen allocation to Rubisco. 2) The relationship between Vcmax,25 and Na had seasonal and annual variations. In years without water stress, the highest value of the slope mostly occurred in spring or summer. A change of the slope was related to seasonal variations in LMA and nitrogen allocation to Rubisco. The slope increased in drought seasons or years. 3) The slope of the linear relationship between Vcmax,25 and Na for perennial needle leaf was reduced due to a decrease in Rubisco content in response to elevated CO2. The maximum leaf carboxylation rate, nitrogen content, and the slope of their linear relationship increased with increment of nitrogen application rate. On the basis of these analyses, we suggest that simulating the relationship between maximum leaf carboxylation and leaf nitrogen should consider seasonal variations in LMA and nitrogen allocation to Rubisco, the influences of water stress, atmospheric CO2 concentration, and nitrogen supply level. More multi-factor experimental studies are needed to further investigate the underlying mechanisms of the variations in the relationship between maximum leaf carboxylation rate and leaf nitrogen content, to obtain more observational data with systematic approaches, and thus to further improve ecosystem process-based models.
全 文 :植物生态学报 2014, 38 (6): 640–652 doi: 10.3724/SP.J.1258.2014.00060
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2013-12-19 接受日期Accepted: 2014-03-27
* 通讯作者Author for correspondence (E-mail: li.zhang@igsnrr.ac.cn)
植物叶片最大羧化速率与叶氮含量关系的变异性
闫 霜1,2 张 黎2* 景元书1 何洪林2 于贵瑞2
1南京信息工程大学应用气象学院, 南京 210044; 2中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, CERN综合研究中心, 北
京 100101
摘 要 叶片最大羧化速率是表征植物光合能力的关键参数, 受到光照、温度、水分、CO2浓度、叶片氮含量等多个要素的
控制。准确地模拟植物叶片最大羧化速率对环境因子的响应是预测未来植被生产力和碳循环过程的前提。目前大多数陆地碳
循环过程模型以Farqhuar光合作用模型为基础模拟植物的光合作用, 关于植物叶片的最大羧化速率与叶氮含量关系的模拟方
法却各不相同。该文汇总了1990–2013年国内外植物叶片光合速率观测研究文献中叶片最大羧化速率与叶氮含量的关系式及
相关数据, 分析了叶片最大羧化速率与叶氮含量关系随不同植被功能型和时间的变化特征, 以及环境因子变化条件下最大羧
化速率与叶氮含量关系的变化特征, 探讨了二者关系变异性的可能原因以及影响因子。结果表明: 1)不同功能型植物叶片的
最大羧化速率和叶氮含量的关系存在较大差异, 二者线性关系式的斜率平均值变化范围为16.29–50.25 μmol CO2·g N–1·s–1。落
叶植被叶片的最大羧化速率随叶氮含量的变化率和光合氮利用效率一般都高于常绿植被, 其变异主要源于植物的比叶重和
叶片内部氮素分配的差异。2)叶片最大羧化速率随叶氮含量的变化存在季节和年际变异。在没有受到水分胁迫的年份中, 叶
片最大羧化速率随叶氮含量变化的速率一般在春季或夏季最高, 其季节变异与比叶重和叶氮在Rubisco的分配比例的季节变
化有关。受到干旱的影响, 叶片最大羧化速率随叶氮含量的变化率会升高。3)当大气CO2浓度增加时, 由于叶片中Rubisco含
量的降低, 多年生针叶叶片最大羧化速率和叶氮关系斜率值会出现降低; 当供氮水平增加时, 叶片最大羧化速率和叶片氮含
量均表现出增加趋势, 二者线性关系的斜率也相应增加。在此基础上, 该文指出在模拟叶片最大羧化速率与叶氮含量的关系
时, 应考虑叶片比叶重和叶氮在Rubisco中的分配比例的季节变异、水分胁迫、大气CO2浓度和供氮水平变化对二者关系的影
响。囿于数据的有限性, 今后应进一步加强多因子控制实验研究, 深入探讨叶片最大羧化速率与叶氮含量关系的变异性机理,
并获得更系统的观测数据, 以助生态系统过程模型的改进, 提高模型的模拟精度。
关键词 叶片氮含量, 叶片最大羧化速率, 植物光合作用, 陆地碳循环模型
Variations in the relationship between maximum leaf carboxylation rate and leaf nitrogen
concentration
YAN Shuang1,2, ZHANG Li2*, JING Yuan-Shu1, HE Hong-Lin2, and YU Gui-Rui2
1College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China; and 2Synthesis Research Center of
Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural
Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Abstract
Aims Maximum leaf carboxylation rate is one of the key parameters determining the photosynthetic capacity of
plants. It is affected by irradiance, temperature, moisture, atmospheric CO2 concentration, leaf nitrogen content,
and some other factors. Accurate simulation of the responses of the maximum leaf carboxylation rate to varying
environmental conditions is the premise for predicting the changes in vegetation productivity and carbon cycle in
future environments. Most of the process-based terrestrial carbon cycle models use the Farqhuar photosynthesis
model to simulate plant photosynthesis. However, the methods in simulating the relationship between maximum
leaf carboxylation rate and leaf nitrogen content differ from each other.
Methods We collected data on maximum leaf carboxylation rate and leaf nitrogen content from literature
published during 1990–2013, and analyzed the variations in the relationship between maximum leaf carboxylation
rate at 25 °C (Vcmax,25) and area-based leaf nitrogen concentration (Na) across different plant functional types and
seasons, and in responses to rising atmospheric CO2 and nitrogen supply. Moreover, we reviewed possible causes
of those variations and the influencing factors.
Important findings The results showed that: 1) the relationship between Vcmax,25 and Na varied with plant
闫霜等: 植物叶片最大羧化速率与叶氮含量关系的变异性 641
doi: 10.3724/SP.J.1258.2014.00060
functional types, and the average values of the slope ranged from 16.29 to 50.25 μmol CO2·g N–1·s–1. Deciduous
trees generally showed a steeper slope and greater photosynthetic nitrogen use efficiency than evergreen trees due
to the differences in leaf mass per area (LMA) and nitrogen allocation to Rubisco. 2) The relationship between
Vcmax,25 and Na had seasonal and annual variations. In years without water stress, the highest value of the slope
mostly occurred in spring or summer. A change of the slope was related to seasonal variations in LMA and
nitrogen allocation to Rubisco. The slope increased in drought seasons or years. 3) The slope of the linear
relationship between Vcmax,25 and Na for perennial needle leaf was reduced due to a decrease in Rubisco content in
response to elevated CO2. The maximum leaf carboxylation rate, nitrogen content, and the slope of their linear
relationship increased with increment of nitrogen application rate. On the basis of these analyses, we suggest that
simulating the relationship between maximum leaf carboxylation and leaf nitrogen should consider seasonal
variations in LMA and nitrogen allocation to Rubisco, the influences of water stress, atmospheric CO2
concentration, and nitrogen supply level. More multi-factor experimental studies are needed to further investigate
the underlying mechanisms of the variations in the relationship between maximum leaf carboxylation rate and leaf
nitrogen content, to obtain more observational data with systematic approaches, and thus to further improve
ecosystem process-based models.
Key words leaf nitrogen, maximum leaf carboxylation rate, photosynthesis, terrestrial carbon cycle model
植物光合作用是生态系统物质循环一个最为
重要的过程, 是地球系统一切生命活动的物质基础
和能量来源(于贵瑞和王秋凤, 2010)。它为人类、动
植物以及微生物的生命活动提供赖以生存的有机物
质、O2和能量, 对生物的生存和演化有着不可替代
的重要作用。植物光合作用过程不仅受到光照、温
度、水分、CO2浓度等环境因子的作用, 还与植物自
身的生理生态特性有着密切的关系。其中植物叶片
最大羧化速率(maximum carboxylation rate, Vcmax)是
较为重要的光合生理参数, 对光合速率起着决定性
的作用(张彦敏和周广胜, 2012a)。除了受到光照、
水分、CO2浓度等环境因子的影响外, 植物叶片的
Vcmax与叶片氮含量具有很好的相关性(Medlyn et al.,
1999)。叶片中有30%–40%的氮参与到羧化反应中
(Grassi et al., 2002), 叶氮分配给羧化系统的比例决
定了最终的光合效率(朱军涛等, 2010)。准确地模拟
植物叶片Vcmax对环境因子的响应在全球气候变化
和大气氮沉降增加的背景下显得尤为重要, 同时也
是准确预测未来植被生产力和碳循环过程的前提。
植物叶片Vcmax是指植物光合作用过程中由核
酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)催化的最
大羧化反应速率(Farquhar et al., 1980)。不同的物种
间叶片的Vcmax存在很大差异 , 变化范围在6–194
μmol·m–2·s–1之间(Wullschleger, 1993)。同一物种叶
片的Vcmax具有一定的季节和年际变化(Grassi et al.,
2005)。叶氮含量与光合能力往往表现为线性正相关
关系(Field & Mooney, 1986; Evans, 1989; Reich et
al., 1994)。但叶氮与植物光合作用的关系具有较大
的时空变异, 在不同的地理梯度(Field & Mooney,
1986; Ellsworth & Reich, 1993; Reich et al., 1997; Me-
ir et al., 2002)、不同季节(Misson et al., 2006)、不同
生长环境(Field & Mooney, 1983)、不同植被功能型
(Carswell et al., 2000; Ellsworth et al., 2004)的研究结
果均表现出差异性。另有研究表明, 光合速率与叶氮
含量之间的关系表现为非线性关系, 当氮含量超过
一定值后, 光合速率反而出现下降趋势(Brown et al.,
1996; Nakaji et al., 2001; Bekele et al., 2003)。
光合作用速率与氮的关系是光合预测模型的
重要组成部分。目前大多数陆地碳循环过程模型以
Farqhuar光合作用模型为基础模拟植物光合作用。
在这些模型中, 关于植物叶片Vcmax与叶氮含量关系
的模拟方法却各不相同(李雷等, 2013)。叶氮对光合
作用的影响主要表现为氮对光合速率的限制作用,
有些模型采用光合作用速率与叶片氮含量的线性关
系来表示 , 如 MAESTRO 模型 (Jarvis, 1993) 、
TRIFFID模型(Cox et al., 1999); 有些模型采用叶片
氮含量与最优氮含量的比值, 如InTEC模型(Chen et
al., 2000)、叶片碳氮比与最优碳氮比的比值来表示,
如IBIS模型(Liu et al., 2005); 有些模型采用光合速
率与叶片氮含量的非线性关系来表示, 如CEVSA
模型(Cao & Woodward, 1998)、DLEM模型(田汉勤
等, 2010)。这些差异主要源于建模者采用不同的观
测结果和由此建立的不同的理论假设。将单个生态
系统的观测结果直接应用到区域甚至全球尺度的模
642 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (6): 640–652
www.plant-ecology.com
拟会产生很大的不确定性, 因此及时汇总并分析在
全球范围内针对不同生态系统开展的叶片Vcmax与
叶氮含量的观测研究数据显得十分重要, 是改进碳
循环过程模型、降低模型不确定性的基础。
本文整合了1990–2013年来国内外有关于叶片
Vcmax与叶氮含量关系的研究成果, 整理了植物叶片
Vcmax与叶氮含量的关系式及相关数据, 分析了叶片
Vcmax与叶氮含量关系随不同植被功能型和时间的
变化特征, 以及环境因子变化条件下Vcmax与叶氮含
量关系的变化特征, 探讨其时空变异的可能原因以
及影响因子, 为改进陆地生态系统总初级生产力的
模拟方法, 从而准确地预测陆地生态系统对大气氮
沉降和气候变化的响应提供数据支持。
1 叶片最大羧化速率与叶氮含量关系随不
同植被功能型和时间的变化特征
1.1 不同植被功能型叶片25 ℃时的最大羧化速率
(Vcmax,25)与叶氮含量的关系
本文从国内外期刊报道的27篇有关叶片光合
速率和叶氮含量关系的文献中, 整理出Vcmax与叶氮
含量的线性或非线性拟合关系式(附录I), 以及最大
光合速率、单位面积叶片氮含量等观测数据(附录
II)。其中Vcmax的值均是基于Farquhar光合作用模型
从A-Ci曲线中计算并校正到25 ℃得到的, 观测时段
主要集中在7–8月份。这些数据覆盖了常绿针叶林、
落叶阔叶林、常绿阔叶林、灌木、草地、农田等植
被类型, 共包含38个物种。
文献报道的叶片Vcmax,25与叶氮含量的关系式大
多为线性关系。为避免Vcmax,25随季节变化可能造成
的影响, 参与统计计算的数据仅为在生长旺季期间
的观测值。不同植被功能型叶片Vcmax,25随着叶氮含
量增加有不同的变化, 线性关系式的斜率值差异如
图1A所示。农作物叶片Vcmax,25与叶氮关系的斜率值
最高, 平均值为50.25 μmol CO2·g N–1·s–1。其次是草
地生态系统 , 斜率平均值为36.72 μmol CO2·g
N–1·s–1。森林生态系统中, 阔叶林叶片斜率要高于针
叶林, 其中落叶阔叶林的斜率平均值为30.05 μmol
CO2·g N–1·s–1, 比常绿阔叶林高13.79 μmol CO2·g
N–1·s–1。温带常绿阔叶林叶片斜率平均值为25.94
μmol CO2·g N–1·s–1, 比热带常绿阔叶林高17.36
μmol CO2·g N–1·s–1。常绿灌木的斜率平均值为24.13
μmol CO2·g N–1·s–1, 与温带常绿阔叶林相近。物种
变异程度最高的为热带常绿阔叶林和常绿灌木, 变
异系数均为48%, 是其他功能型变异系数的1.2–2.4
倍。进一步利用文献报道的叶片最大光合速率(Amax)
与氮含量的观测数据计算出光合过程中叶氮的利用
效率(PNUE, 即Amax/Na)(图1B)。结果显示, 草地的
PNUE最高, 除了热带常绿阔叶林外, 其他落叶功
能型植被都较常绿功能型植被的PNUE高24.3%–
75.0%。对于森林生态系统而言, 热带常绿阔叶林的
图1 不同植被功能型叶片最大羧化速率与叶片氮含量回归关系的斜率(A)和叶氮光合利用率(PNUE) (B)。图中横线和空心点
分别代表中位数和平均值, 箱子的高度代表四分位数间距, 上下两端短线代表最大值和最小值, 星号为异常值。CP, 农田;
DB, 落叶灌木; DBF, 落叶阔叶林; DNF, 落叶针叶林; EB, 常绿灌木; EBF1, 温带常绿阔叶林; EBF2, 热带常绿阔叶林; ENF,
常绿针叶林; GL, 草地。
Fig. 1 The slope of the relationship between maximum leaf carboxylation rate and leaf nitrogen content (A) and photosynthetic
nitrogen use efficiency (PNUE) for different plant functional types (B). The horizontal line and open square in the box represent me-
dian and mean, the box represents the interguartile range from the 25th to 75th percentiles, the lower whisker extends to the minimum
and the upper whisker extends to the maximum, the asterisk symbol is the outlier datum point. CP, crop; DB, deciduous bush; DBF,
deciduous broadleaf forest; DNF, deciduous needle forest; EB, evergreen bush; EBF1, temperate evergreen broadleaf forest; EBF2,
tropical evergreen broadleaf forest; ENF, evergreen needle forest; GL, grassland.
闫霜等: 植物叶片最大羧化速率与叶氮含量关系的变异性 643
doi: 10.3724/SP.J.1258.2014.00060
PNUE最大, 阔叶林的PNUE均高于针叶林。
除了热带常绿阔叶林以外 , 其余功能型的
PNUE与叶片Vcmax,25与叶氮含量关系式斜率的变化
相一致。常绿植被的PNUE比落叶植被低, 主要是因
为常绿植被将更多的氮分配于非活性的Rubisco, 其
次是常绿植被的细胞间CO2扩散阻力较强(Warren &
Adams, 2004)。草本植被的PNUE较其他功能型高,
是因为其用于Rubisco的光合氮比其他功能型多
(Poorter & Evans, 1998), 高的氮素利用效率使草本
植被生长迅速, 并且在野外条件下具有较强的竞争
能力。热带常绿阔叶林叶片Vcmax,25随叶氮含量的变化
率较低, 却有着较高的PNUE, 主要是因为热带物种
为适应高温, 避免多余的呼吸消耗, 从而将更多的
氮素用于光合作用所导致的(Kattge et al., 2009)。
不同功能型植物叶片Vcmax,25和叶氮含量关系式
的不同主要源于不同功能型叶片在比叶重(LMA)以
及叶片氮素分配的差异。LMA不同的叶片往往具有
不同的生理形态结构(比如叶片厚度和密度), 这会
影响到各功能型物种的光吸收 (Terashima &
Hikosaka, 1995)、氮素分配(Field & Mooney, 1986;
Evans, 1989)和细胞内部CO2 扩散 (Lloyd et al.,
1992)。已有研究表明, LMA高的叶片有较低的氮利
用率和较小的单位氮光合作用变化率(Reich et al.,
1994, 1995; Poorter & Evans, 1998)。这是由于植物将
更多的生物量和氮分配给细胞壁用以增加叶片韧性
来适应环境变化, 而分配到光合器官中的氮相对减
少, 导致植物叶片光合作用能力下降(Hikosaka et al.,
1998; Onoda et al., 2004; Warren & Adams, 2004)。大
部分针叶林的LMA高于阔叶林 , 故针叶林叶片
Vcmax,25随叶氮含量增加的变化率和光合氮利用率都
低于阔叶林(图1)。但也有个别研究表明, Populus ×
euroamericana和花旗松 (Pseudotsuga menziesii)的
LMA相似, 且不受施氮影响(Ripullone et al., 2003)。
LMA与叶氮含量的关系受到物种和试验条件差异的
影响(Reich et al., 1994; Garnier et al., 1997; Niine-
mets, 1999), 其内在机制还有待进一步研究。
不同功能型植物叶片氮素分配的差异具体表
现为叶氮在 Rubisco、捕光组分 (light-harvesting
component)以及生物能转化组分(bioenergetics)中分
配比例的不同(Evans, 1989)。叶氮在Rubisco的分配
比例是影响叶片Vcmax的重要因子, 该比例的变化会
通过影响叶片光合色素的含量、叶绿体基粒结构来
改变叶片Vcmax。落叶林叶片氮含量在Rubisco的分配
比例通常高于常绿林(表1)。当叶氮含量相同时,
Populus × euroamericana叶氮在Rubisco的分配比例
比花旗松偏高约50% (Ripullone et al., 2003)。
Magnolia hyporeuca、Prunus ssiori、千金榆(Carpinus
cordata)、蒙栎(Quercus mongolica)这4种落叶阔叶林
叶氮在Rubisco的分配比例在整个生长季平均为
18% (Kitaoka & Koike, 2004), 柚(Citrus grandis)叶
氮在Rubisco的分配比例为26.8% (孙谷畴等, 2004),
均高于火炬松(Pinus taeda)的10.3% (Crous et al.,
2008)。草本植物红波罗花(Incarvillea delavayi)的
Rubisco分配比例为14.5% (雷鸣等, 2009)。
关于叶氮分配的影响机制, 一些研究表明, 叶
氮在Rubisco的分配比例随着LMA的降低而增高 ,
且分配给Rubisco的叶氮含量越多 , PNUE越高
(Hikosaka et al., 1998; Takashima et al., 2004)。另有
研究表明 , 外来入侵物种较本地物种分配给
Rubisco的氮含量高1.4–2.7倍, 相应的PNUE和光合
能力显著增强(Feng et al., 2007)。此外, 海拔高度
也会影响叶氮的分配情况。高海拔的物种为了适应
生存环境, 叶片会将更多的氮素用于非光合的防
御组织, 引起叶片Vcmax以及叶氮利用率发生变化
(Berry & Björkman, 1980; Takashima et al., 2004)。
冯秋红等(2013)对灌木异型柳(Salix dissa)的研究
发现叶氮利用效率随着海拔的升高而降低, 3 530
m的叶氮利用效率较2 350 m降低了36%。而叶氮含
量和叶片Vcmax随着海拔的升高而增加, 3 530 m的
叶氮含量和叶片Vcmax比2 350 m的分别高46%和
41%。Westbeek等 (1999)对草地物种早熟禾 (Poa
spp.)的研究发现高海拔早熟禾的叶片Vcmax比低海
拔的早熟禾高59%。而张石宝等(2011)的研究发现
生长在海拔2 650–3 610 m的帽斗栎(Quercus guya-
vifolia)叶片Vcmax随着海拔的升高而增加, 到达临
界海拔高度各个光合参数值呈现下降的趋势 ,
3 920 m的帽斗栎叶片Vcmax比3 610 m的叶片Vcmax
降低22%–29%。
1.2 叶片Vcmax,25与氮含量关系的季节和年际变异
植物叶片Vcmax,25和叶氮含量的关系具有明显的
季节和年际变异。相同的叶氮浓度在不同的季节里
所对应的Vcmax,25最多可相差2倍(Han et al., 2004)。在
没有水分胁迫的年份中, 不同研究中叶片Vcmax,25与
叶氮含量关系的斜率随季节变化不同(图2)。常绿
644 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (6): 640–652
www.plant-ecology.com
表1 叶氮在Rubisco中的分配比例
Table 1 Proportion of leaf nitrogen in Rubisco
植被类型
Plant functional type
优势种
Dominant species
PR (%)
文献
References
落叶阔叶林 Deciduous broadleaf forest Magnolia hyporeuca 19.37 Kitaoka & Koike, 2004
落叶阔叶林 Deciduous broadleaf forest 蒙栎 Quercus mongolica 13.53 Kitaoka & Koike, 2004
落叶阔叶林 Deciduous broadleaf forest Prunus ssiori 20.78 Kitaoka & Koike, 2004
落叶阔叶林 Deciduous broadleaf forest 千金榆 Carpinus cordata 18.47 Kitaoka & Koike, 2004
落叶阔叶林 Deciduous broadleaf forest 柚 Citrus grandis 26.8 Sun et al., 2004
落叶阔叶林 Deciduous broadleaf forest Populus × euroamericana –1.587Na + 26.42 Ripullone et al., 2003
常绿针叶林 Evergreen needle forest 花旗松 Pseudotsuga menziesii –3.725Na + 20.72 Ripullone et al., 2003
常绿针叶林 Evergreen needle forest 火炬松 Pinus taedaA 10.3 Crous et al., 2008
常绿针叶林 Evergreen needle forest 火炬松 Pinus taedaB 8.7 Crous et al., 2008
常绿灌木 Evergreen bush 大白杜鹃 Rhododendron decoruma 20 Yang et al., 2013
常绿灌木 Evergreen bush 大白杜鹃 Rhododendron decorumb 22 Yang et al., 2013
常绿灌木 Evergreen bush 红棕杜鹃 Rhododendron rubiginosuma 27 Yang et al., 2013
常绿灌木 Evergreen bush 红棕杜鹃 Rhododendron rubiginosumb 24 Yang et al., 2013
灌木 Bush 云南杜鹃 Rhododendron yunnanensea 36 Yang et al., 2013
灌木 Bush 云南杜鹃 Rhododendron yunnanenseb 31 Yang et al., 2013
草地 Grassland 苘麻 Abutilon theophrastiC 14.6 Tissue et al., 1995
草地 Grassland 苘麻 Abutilon theophrastiD 17.2 Tissue et al., 1995
草地 Grassland 红波罗花 Incarvillea delavayiI 14.5 Lei et al., 2009
草地 Grassland 红波罗花 Incarvillea delavayiII 24 Lei et al., 2009
草地 Grassland 红波罗花 Incarvillea delavayiIII 21 Lei et al., 2009
草地 Grassland 红波罗花 Incarvillea delavayiIV 21.2 Lei et al., 2009
A, 环境CO2浓度; B, 环境CO2浓度+200 μmol CO2· mol–1处理8–9年; C, 35 Pa CO2分压; D, 70 Pa CO2分压; a, 4月; b, 7月; I, 氮处理(0g N·kg–1
基质); II, 氮处理(0.1g N·kg–1基质); III, 氮处理(0.2g N·kg–1基质); IV, 氮处理(0.4g N·kg–1基质)。Na, 叶氮含量(g·m–2); PR, 叶氮在Rubisco中
的分配比例。
A, ambient CO2 concentration; B, ambient CO2 concentration + 200 μmol CO2·mol–1 for 8–9 years; C, partial pressures of CO2 at 35 Pa; D, partial
pressures of CO2 at 70 Pa; a, April. b, July. I, nitrogen treatment (0 g N·kg–1 matrix); II, nitrogen treatment (0.1 g N·kg–1 matrix); III, nitrogen treat-
ment (0.2 g N·kg–1 matrix); IV, nitrogen treatment (0.4 g N·kg–1 matrix). Na, leaf nitrogen content (g·m–2); PR, proportion of leaf nitrogen in Rubisco.
林在生长季内斜率值呈现下降的趋势, 最大降幅为
47%。落叶林的斜率变化在不同研究中表现不同。
Wilson等(2000)的研究发现在生长季内斜率值呈现
下降的趋势, 而Grassi等(2005)的研究表明春季斜率
值为40.9 μmol CO2·g N–1·s–1, 夏季斜率值较春季低
44%–58%, 秋季较夏季又有14%–67%的上升, 斜率
值呈现先下降后上升的趋势。斜率值的季节变化还
与物种有关 , Wilson 等 (2000) 的研究表明 Acer
rubrum和Quercus alba的斜率秋天较夏天降低了
35%和14%, 而Quercus prinus的则升高了29%。
植物叶片Vcmax,25与叶氮含量关系的季节变异与
LMA的季节变化有关 (Wilson et al., 2000, 2001;
Grassi et al., 2005)。李玉波等(2013)的研究发现白桦
(Betula platyphylla)、长白落叶松(Larix olgensis)、蒙
栎的LMA在不同月份间均有显著差异, 波动幅度分
别为4.74–7.07、3.28–8.12、4.56–10.13 mg·cm–2。其
中白桦9月份的LMA大于其他月份, 长白落叶松10
月份的LMA大于其他月份, 蒙栎的LMA在6–10月份
间逐渐增加。不同物种植物叶片为了适应季节交替
的环境变化, 会在LMA上体现出季节性的变异(吕
建林等, 1998; 范晶等, 2003)。秋冬季植物叶片的
LMA较春夏季高 (Reich et al., 1991; 李玉波等 ,
2013), 而LMA高的叶片有较低的氮利用率和较小
的单位氮光合作用变化率(Reich et al., 1994, 1995;
Poorter & Evans, 1998), 最终使得叶片Vcmax,25随叶
氮含量的变化呈现出季节变异性。
叶氮分配给Rubisco的比例的季节变化是叶片
Vcmax,25和叶氮含量关系季节变异的另一个主要原
因。Hrstka等(2012)对Fagus sylvatica的研究表明, 参
与羧化作用的Rubisco含量在6月初到达最大值7
g·m–2, 随后逐渐降低。而欧洲云杉(Picea abies)的
Rubisco最大值出现在秋季, 数值是Fagus sylvatica
最大值的2倍。阔叶林的Rubisco含量降低是由于氮
再分配给根系统所导致的(Cotrufo et al., 1998), 而
闫霜等: 植物叶片最大羧化速率与叶氮含量关系的变异性 645
doi: 10.3724/SP.J.1258.2014.00060
图2 不同月份叶片最大羧化速率和叶氮关系斜率的变化。
A, 赤松(Han et al., 2004); B, 帽斗栎(张石宝等, 2011); C, Frax-
inus angustifolia /夏栎(2001) (Grassi et al., 2005); D, Fraxinus
angustifolia /夏栎(2002) (Grassi et al., 2005); E, Quercus pri-
nus/Quercus alba/Acer rubrum (1997)(Wilson et al., 2000)。
Fig. 2 Changes in the slope of the relationship between max-
imum leaf carboxylation rate and leaf nitrogen in different
months. A, Pinus densiflora (Han et al., 2004); B, Quercus
guyavifolia (Zhang et al., 2011); C, Fraxinus angustifo-
lia/Quercus robur (2001) (Grassi et al., 2005); D, Fraxinus
angustifolia/Quercus robur (2002) (Grassi et al., 2005); E,
Quercus prinus/Quercus alba/Acer rubrum (1997)(Wilson et
al., 2000).
针叶林Rubisco含量的降低是由于大部分Rubisco储
存在针叶中作为冬天的氮储备(Hrstka et al., 2012)。
杨婷等(2013)的研究发现, 在生长季内不同月份的
叶片氮在Rubisco中的分配系数和叶氮利用效率因
物种差异而不同, 但是差异不显著。7月份大白杜鹃
(Rhododendron decorum)叶片氮在Rubisco中的分配
系数较4月份升高10%, 而云南杜鹃(Rhododendron
yunnanense)和红棕杜鹃(Rhododendron rubiginosum)
叶片氮在Rubisco中的分配系数7月份比4月份分别
降低了14%和11% (表1), 叶氮利用效率也呈现相似
的变化趋势。叶龄的增加也会引起氮在叶片中的分
配变化。Wilson等(2000)认为叶氮在Rubisco中的分
配比例随着叶龄的增加而减小, 并伴随着淀粉的积
累, 淀粉的积累又会反过来限制Rubisco的合成(Rey
& Jarvis, 1998), 进而影响叶片Vcmax和叶氮含量的关
系。也有研究表明, 叶氮在Rubisco中的分配比例与
叶龄无关, 但是随着叶龄的增加, PNUE会显著降低
(Ethier et al., 2006)。
此外, 干旱会导致植物叶片Vcmax,25和叶氮含量
关系产生季节和年际变异。在有水分胁迫的年份,
叶片Vcmax,25在夏季就有明显的下降, 叶氮含量也较
低(Anderson et al., 1995)。二者随该年份的季节变化
表现出不同的变化趋势(Wilson et al., 2000; Grassi et
al., 2005)。Grassi等(2005)的研究表明, 有水分胁迫
的年份夏季叶片Vcmax,25和叶氮含量关系变化率较正
常年份有显著的升高, 升幅为13.3%–81.4%, 秋季
该变化率较正常年份有所降低, 但变化不显著, 降
幅为25.1%–31.7%。Wilson等(2000)在干旱年份夏季
的研究结果与Grassi等(2005)的一致, 叶片Vcmax,25和
叶氮含量关系变化率较正常年份高30.9%–47.2%。
在秋季不同物种表现出不同的变化趋势, Quercus
prinus和Acer rubrum叶片上述关系变化率较夏季分
别降低了13.9%和25.8%, Quercus alba该关系变化
率较夏季则升高了28.7%。不同物种对干旱的生理
适应力决定了各自的光合能力, Quercus prinus比其
他树种更能适应干旱条件(Abrams, 1990; Epron &
Dreyer, 1993), 低氮物种比高氮物种更易受到干旱
的影响(Wilson et al., 2000)。干旱会导致卡尔文循环
中的酶失活(Lawlor, 1995; Tezara et al., 1999; Parry
et al., 2002; Bihmidine et al., 2010), 植物将更多的
叶氮分配给非溶性纤维蛋白、叶肉细胞以及可溶性
化合物来调节气孔导度和激素水平以达到保水的目
的 (Turner, 1994; Comstock & Mencuccini, 1998;
Loewenstein & Pallardy, 1998)。这样, 分配给光合器
官的叶氮含量降低, 影响了叶片的光合能力, 但是
提高了氮的利用效率。
2 环境因子变化条件下Vcmax与叶氮含量关
系的变化特征
本研究统计了环境因子变化条件下的叶片
Vcmax和叶氮含量关系式, 改变环境因子的试验类型
主要包括大气CO2浓度倍增试验和增氮试验。大气
CO2浓度倍增试验目前主要利用分支袋(Kellomäki
& Wang, 1997; Roberntz & Stockfors, 1998)、开顶式
气室(Jach & Ceulemans, 1999; 许育彬等, 2013)、开
放式空气CO2浓度增高(Ellsworth et al., 2012)以及
微生态系统(Badeck et al., 1997)等方法来实现, 其
中一些研究还同时考虑营养、水分、温度等因素协
同作用下对叶片Vcmax和叶氮含量关系式的影响。
2.1 大气CO2浓度增加
关于CO2浓度升高对植物Vcmax,25与叶氮关系的
影响, 国内外文献主要集中在常绿针叶林和落叶阔
叶林(表2)。Medlyn等(1999)通过对不同地区数据的
646 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (6): 640–652
www.plant-ecology.com
整合分析得出, 在600–700 μmol·mol–1 CO2浓度条
件下, 常绿针叶林Vcmax,25与N含量关系的斜率值较
环境CO2浓度条件增加17%–41%, 落叶阔叶林的斜
率平均值增加了38%。同一物种在不同地区所测得
的结果有差异, 如在同样的CO2浓度处理条件下,
柏林地区Fagus sylvatica叶片Vcmax,25与叶氮关系的
斜率值增加了15%, 而在奥赛地区则降低了14%
(Medlyn et al., 1999)。由于该研究中所收集的数据
在实验方式、观测条件等方面存在很大差异, 其结
果具有较大的不确定性。而根据Duke森林11年
FACE实验的研究结果来看: 当大气CO2浓度升高至
500–600 μmol·mol–1时, 当年生火炬松叶片Vcmax,25和
叶氮关系的斜率不受CO2升高的影响, 而1年生叶片
该关系斜率值较环境CO2浓度条件降低了46%
(Ellsworth et al., 2012), 在处理中期(5–7年)和处理
后期 (8–9年 )分别降低23%和64% (Crous et al.,
2008)。Liquidambar styraciflua叶片Vcmax,25和叶氮的
关系则不受CO2升高的影响(Ellsworth et al., 2012)。
大气CO2 浓度升高后 , LMA没有显著变化
(Tissue et al., 1999; Ellsworth et al., 2012), 叶片
Vcmax,25和叶氮关系斜率值的变化主要与Rubisco的
含量以及叶氮在Rubisco的分配比例变化有关。植物
通过改变叶氮的分配来更好地利用氮元素, 以平衡
光合作用过程中由于CO2浓度升高而导致的限制与
非限制过程(Tissue et al., 1999)。Tissue等(1999)对西
黄松(Pinus ponderosa)进行了6年的升高CO2浓度的
处理, 结果表明, CO2分压为70 Pa时的叶片Vcmax,25
较35 Pa降低了36%, Rubisco的含量降低了38%。
Gutiérrez等(2013)的研究表明, CO2浓度升高后, 春
小麦(Triticum aestivum)的叶氮含量和Rubisco的含
量分别降低了14%和21%。Crous等(2008)的研究发
现, 8–9年CO2浓度升高处理条件下, 一年生火炬松
叶氮分配给Rubisco的比例降低了15%。CO2浓度升
高处理时间的长短以及氮素限制存在与否会导致不
同的结果。Tissue等(1995)研究了植物对CO2浓度升
高的响应, C3植物茼麻(Abutilon theophrasti)在70 Pa
浓度条件下的Rubisco含量较35 Pa的升高了22%,
同时分配给Rubisco的氮含量增加了18% (表1), C4
植物反枝苋(Amaranthus retroflexus)不受CO2浓度升
高影响。植物的这些生理指标对CO2浓度升高的响
应决定了植物的光合能力, 进而影响了叶片Vcmax和
叶氮含量的关系(Nakano et al., 1997; Harmens et al.,
2000; Makino et al., 2000)。
2.2 增施氮肥
在自然生态系统中, 氮素营养经常成为系统生
产力的限制因素。氮素的输入对光合作用有很重要
的影响。通过增施氮肥可以模拟大气氮沉降, 进而
可以了解氮沉降对不同功能型物种的影响及其机
制。从整理所得的研究结果可以看出, 不同功能型
植物的生长对氮素的需求量及对氮肥施用量的反应
不同。对于常绿针叶林, 施氮使得叶片Vcmax,25与叶
氮含量关系式的斜率值提高了4.9% (Crous et al.,
2008)。不同功能型物种的叶片氮含量、光合速率大
部分都与施氮量呈正线性相关。Clearwater和
Meinzer (2001)对大桉(Eucalyptus grandis)的研究发
现, 随着施氮量从0升至336 kg·hm–2, 叶氮含量升高
了20%, 叶片Vcmax也相应地升高了6%。栗娜娜等
(2007)等通过对Brassica olerecea var. italica叶片进
行施氮试验发现 , 施氮量从5 mmol·L–1升至20
mmol·L–1, 光合速率升高了10%–13%。Nicodemus
等(2008)通过对Juglans nigra研究发现, 一个季度每
株植物施氮量从0升至1 600 mg, 叶氮含量升高了
90%, 净光合速率升高了52%–97%。供氮水平的高
低可直接影响植物生长。适当的氮添加处理, 能提
高植物叶片的光合能力, 过高的氮添加处理, 会使
叶片光合能力下降(Brown et al., 1996; Nakaji et al.,
2001; Bekele et al., 2003)。因此随着氮处理水平的增
加, 光合速率表现出先增加后降低的趋势。
施氮主要通过改变叶氮含量来影响叶氮在
Rubisco、生物力学组分、捕光组分的分配系数, 进
而影响植物的光合能力(王琪和徐程扬, 2005)。雷鸣
等(2009)的研究发现红波罗花的叶氮在各组分的分
配系数随着叶氮含量增至 2 . 0 6 g · m – 2而增加
47%–65%。当叶氮含量达到2.82 g·m–2时, 叶氮在
Rubisco的分配系数降低了12.5% (表1), 在生物力
学组分和捕光组分的分配系数上升了33.5%和29%。
当叶氮含量达到3.01 g·m–2时, 叶氮在Rubisco和生
物力学组分的分配系数上升了0.9%和1.6%, 在捕光
组分的分配系数下降了11.5%。Grassi等(2002)通过
试验发现, 随着叶氮含量的增加, 叶氮在生物力学
组分的分配比例下降显著 , 下降率为3 .14%。
Ripullone等(2003)通过研究发现不同功能型在施
氮后的表现不同。花旗松随着叶氮的增加, 上述三
个分配比例的下降率分别为3.725%、0.972%和
闫霜等: 植物叶片最大羧化速率与叶氮含量关系的变异性 647
doi: 10.3724/SP.J.1258.2014.00060
表2 常绿针叶林和落叶阔叶林在环境CO2浓度条件下和升高CO2浓度条件下的斜率值
Table 2 The slope in ambient and elevated CO2 of evergreen needle forest and deciduous broadleaf forest
A, 升高CO2浓度处理5–7年; B, 升高CO2浓度处理8–9年。
A, Elevated CO2 treatment for 5–7years; B, Elevated CO2 treatment for 8–9 years.
4.725%, 且下降显著。Populus × euroamericana的
则分别下降了1.587%、1.922%和0.224%, 仅有捕光
组分的分配系数下降显著。施肥对于植物光合特性
的影响, 不仅体现在施氮量上, 还体现在供应速率
上。Murray等(2000)在低氮和高氮条件下提高营养
供应率 , 使得Picea sitchensis的叶片Vcmax升高了
45%。
很多试验在升高CO2浓度的同时增施氮肥
(Crous et al., 2008; Gutiérrez et al., 2013), 氮肥抑制
了由于CO2浓度升高引起的光合作用向下调节, 增
加了氮在光合器官中的分配比例。当植物经过多年
升高CO2浓度处理时生长会受到氮素抑制(Finzi et
al., 2006), 施用氮肥会解除抑制效应, 并改善因升
高CO2浓度处理下叶片Vcmax与叶氮关系斜率值下降
的现象(Westbeek et al., 1999)。增氮处理会在一定程
度上减小因CO2浓度升高而造成的氮素限制和羧化
速率降低(Murray et al., 2000)。
3 对模型研究的启示
本文通过对国内外文献中关于植物叶片Vcmax,25
和叶氮含量关系的整理和分析发现:
(1)不同功能型植物叶片Vcmax,25和叶氮含量的
关系存在差异。叶片Vcmax,25和叶氮含量线性关系式
的斜率平均值变化范围为16.29–50.25 μmol CO2·g
N–1·s–1, 大部分功能型物种叶片Vcmax,25随叶氮含量
的变化趋势与光合氮利用效率的变化相一致。总体
来看, 落叶植被叶片的Vcmax,25随叶氮含量的变化和
光合氮利用效率都高于常绿植被。不同功能型植物
氮利用效率不同可能主要与植物的比叶重和叶片内
部的氮素分配有关。
(2)叶片Vcmax,25随着叶氮含量的变化存在着季
节和年际变异。随着季节的推移, 叶片Vcmax,25呈现
先升后降的趋势, 叶片Vcmax,25随叶氮含量变化的速
率一般在春季或夏季最高, 其变化主要与比叶重、
叶氮在Rubisco的分配比例以及水分胁迫状况有关。
干旱除了影响气孔导度外, 还可能导致卡尔文循环
中的酶失活, 以及叶片内部的氮分配, 从而影响叶
片Vcmax,25随叶氮含量关系的季节和年际变化。
(3)当大气CO2浓度升高时, LMA没有显著变化,
叶片Vcmax,25和叶氮关系斜率值的变化主要与叶片中
Rubisco含量以及叶氮在Rubisco分配量的变化有
关。针叶林多年生叶片Vcmax,25和叶氮关系斜率值可
能会随着叶片中Rubisco含量的降低而呈现下降趋
势, 阔叶林叶片二者关系不受CO2浓度升高的影响。
当供氮水平增加时, 叶片Vcmax,25和叶片氮含量均表
现出增加趋势, 二者线性关系的斜率也相应增加。
氮供应水平的提高会增加植物光合作用过程中的氮
素利用率, 但是过高的氮添加处理会降低植物叶片
的光合能力, 关于羧化速率达到饱和时的叶氮含量
临界值仍需进一步研究确定。
可以看出, 植物叶片Vcmax,25和叶氮含量关系随
着不同植被功能型、季节和年份以及环境因子改变
所呈现出的差异, 都与LMA和叶氮在Rubisco的分
配比例有关。从叶片Vcmax,25和叶氮含量关系的模拟
来看, Niinemets和Tenhunen (1997)建立的Vcmax,25与
氮含量的关系式(公式1)中较好地考虑了上述2个因
植被类型
Plant functional type
优势种
Dominant species
环境CO2条件下
的斜率
Slope under
ambient CO2
R2 升高CO2条件下
的斜率
Slope under ele-
vated CO2
R2 文献
References
常绿针叶林 Evergreen needle forest 欧洲云杉 Picea abies 20 0.40 27.4 0.59 Medlyn et al., 1999
常绿针叶林 Evergreen needle forest 欧洲赤松 Pinus sylvestris 11.4 0.81 16.1 0.94 Medlyn et al., 1999
常绿针叶林 Evergreen needle forest 欧洲赤松 P. sylvestris 13.5 0.19 15.8 0.27 Medlyn et al., 1999
常绿针叶林 Evergreen needle forest 火炬松 P. taeda 13.6 0.23 7.3 0.10 Ellsworth et al., 2012
常绿针叶林 Evergreen needle forest 火炬松 P. taeda A 15.99 0.31 12.25 0.44 Crous et al., 2008
常绿针叶林 Evergreen needle forest 火炬松 P. taeda B 27.06 0.52 9.81 0.22 Crous et al., 2008
落叶阔叶林 Deciduous broadleaf forest Fagus sylvatica 32.6 0.66 37.4 0.71 Medlyn et al., 1999
落叶阔叶林 Deciduous broadleaf forest Fagus sylvatica 17.6 0.16 15.1 0.15 Medlyn et al., 1999
落叶阔叶林 Deciduous broadleaf forest Quercus petraea 12.7 0.08 34.3 0.60 Medlyn et al., 1999
648 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (6): 640–652
www.plant-ecology.com
子的作用。
25
max, 25c i NR R i R,i mV F a LMA P N= ⋅ ⋅ ⋅ ⋅ (公式1)
式中 , i为某一类植被功能类型 , FNR为单位质量
Rubisco中的含氮量, αR25为Rubisco活性, Nm为单位
质量的叶片含氮量。LMA和PR分别为比叶重和叶氮
在 Rubisco 中的分配比例。该关系式已经被
Biome-BGC (Thornton et al., 2002)和CLM (Thornton
& Zimmermann, 2007)模型所采用。但当这些模型被
应用于区域或全球尺度的碳循环模拟时, 仅考虑了
LMA和PR在不同植被功能型之间的差异, 尚未考虑
这2个因子的季节变化, 以及对干旱、大气CO2浓度
升高和氮沉降增加的响应。根据本研究的结果, 建
议今后在模拟叶片光合作用对氮的响应关系时考虑
以下几个方面的改进: (1)叶片Vcmax,25与叶氮含量关
系的季节变异, 尤其应考虑春季二者之间线性关系
的斜率值呈现明显的增加趋势。如果全年用同一关
系式来模拟 , Vcmax,25的模拟值在春季会被低估
50%–100% (Wilson et al., 2001)。(2)考虑干旱对
Vcmax,25与氮含量关系季节和年际变化的影响。如果
不考虑干旱的影响, 利用Vcmax,25与叶氮含量关系式
所模拟出来的Vcmax,25值会在春季和夏季初期被低
估, 在夏季末期和秋季被高估(Grassi et al., 2005)。
因此, 在构建叶片Vcmax,25和叶氮含量的关系式时,
必须增加水分胁迫的校正因子。(3)在对未来植物光
合作用及植被生产力进行预测时, 还应考虑大气
CO2浓度和氮沉降的可能变化对叶片Vcmax,25与叶氮
含量关系的影响, 具体体现在大气CO2浓度和氮沉
降变化对叶片内部氮分配比例的影响。
基于以上分析, 并借鉴公式(1)和多因子协同作
用下的叶片Vcmax连乘模型(Rodrigo et al., 1997; 张
彦敏和周广胜, 2012b), 我们认为叶片Vcmax,25与叶氮
含量的关系式可以表示为:
25
max, 25 ,( ) ( ) ( ) ( ) ( )c i NR R i R i mV F a LMA t P t N f W f C f N= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
(公式2)
式中, 不同植被功能型LMA和PR均是随时间变化的
量, 可以用LMA和PR在不同物候期的分段函数来表
示; f(W)、f(C)和f(N)分别是水分胁迫、大气CO2浓度
和氮输入变化对Vcmax,25与N含量关系的影响因子,
考虑到目前在这些方面的机理认知还不够深入, 可
以采用简单的经验方程来表达。这些函数的数学表
达式需要通过开展观测指标更为全面的野外控制实
验来加以确定。
从本研究收集的数据来看, 针对落叶针叶林和
落叶灌木的研究数量较少, 并且大多森林实验数据
主要源自对树木幼苗的观测。囿于研究数据的有限,
尚不能完整地反映所有植被功能型叶片Vcmax与叶
氮含量的关系特征。未来应开展更为多样的实验来
构建上述关系。尽管一些模型如BEPS (Chen et al.,
2012)、CLM (Oleson et al., 2010, 2013)等模型中已经
针对不同功能型叶片分别设定Vcmax与叶氮含量的
关系, 但由于物种之间存在一定的变异性, 参数值
的确定还需要更多数据的支持。此外, 在本研究构
建的模型中, 尚未考虑Rubisco活性随环境条件的
变化, 并且没有考虑各个影响因子的协同作用, 今
后需要在这些方面开展更深入的机理研究, 从而有
助于生态系统过程模型结构的改进, 进一步提高模
型的模拟精度。
基金项目 国家自然科学基金(31000235)、国家重
点基础研究发展计划(2010CB833503)和国家自然科
学基金重大项目(31290221)。
参考文献
Abrams MD (1990). Adaptations and responses to drought in
Quercus species of North America. Tree Physiology, 7,
227–238.
Anderson JE, Nowak RS, Rasmuson KE, Toft NL (1995). Gas
exchange and resource-use efficiency of Leymus cinereus
(Poaceae): diurnal and seasonal responses to naturally de-
clining soil moisture. American Journal of Botany, 82,
699–708.
Badeck FW, Dufrênce E, Epron D, Dantec VL, Liozon R,
Mousseau M, Pontailler JY, Saugier B (1997). Sweet
chestnut and beech saplings under elevated CO2. In: Moh-
ren GMJ ed. Impacts of Global Change on Tree Physiolo-
gy and Forest Ecosystems. Kluwer Academic Publishers,
Dordrecht. 15–25.
Bekele A, Hudnall WH, Tiarks AE (2003). Response of densely
stocked loblolly pine (Pinus taeda L.) to applied nitrogen
and phosphorus. Southern Journal of Applied Forestry, 27,
181–190.
Berry JA, Björkman O (1980). Photosynthetic response and
adaptation to temperature in higher plants. Annual Review
of Plant Physiology, 31, 491–543.
Bihmidine S, Bryan NM, Payne KR, Parde MR, Okalebo JA,
Cooperstein SE, Awada T (2010). Photosynthetic perfor-
mance of invasive Pinus ponderosa and Juniperus virgin-
iana seedlings under gradual soil water depletion. Plant
Biology, 12, 668–675.
Brown KR, Thompson WA, Weetman GF (1996). Effects of N
闫霜等: 植物叶片最大羧化速率与叶氮含量关系的变异性 649
doi: 10.3724/SP.J.1258.2014.00060
addition rates on the productivity of Picea sitchensis,
Thuja plicata, and Tsuga heterophylla seedlings. Trees,
10, 189–197.
Cao MK, Woodward FI (1998). Dynamic responses of terres-
trial ecosystem carbon cycling to global climate change.
Nature, 393, 249–252.
Carswell FE, Meir P, Wandelli EV, Bonates LCM, Kruijt B,
Barbosa EM, Nobre AD, Grace J, Jarvis PG (2000). Pho-
tosynthetic capacity in a central Amazonian rain forest.
Tree Physiology, 20, 179–186.
Chen JM, Mo G, Pisek J, Liu J, Deng F, Ishizawa M, Chan D
(2012). Effects of foliage clumping on the estimation of
global terrestrial gross primary productivity. Global Bio-
geochemical Cycles, 26, GB1019, doi: 10.1029/2010-
GB003996.
Chen WJ, Chen J, Cihlar J (2000). An integrated terrestrial
ecosystem carbon-budget model based on changes in dis-
turbance, climate, and atmospheric chemistry. Ecological
Modelling, 135, 55–79.
Clearwater MJ, Meinzer FC (2001). Relationships between
hydraulic architecture and leaf photosynthetic capacity in
nitrogen-fertilized Eucalyptus grandis trees. Tree Physi-
ology, 21, 683–690.
Comstock J, Mencuccini M (1998). Control of stomatal con-
ductance by leaf water potential in Hymenoclea salsola (T.
& G.), a desert subshrub. Plant, Cell & Environment, 21,
1029–1038.
Cotrufo MF, Ineson P, Scott A (1998). Elevated CO2 reduces
the nitrogen concentration of plant tissues. Global Change
Biology, 4, 43–54.
Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR,
Smith J (1999). The impact of new land surface physics on
the GCM simulation of climate and climate sensitivity.
Climate Dynamics, 15, 183–203.
Crous KY, Walters MB, Ellsworth DS (2008). Elevated CO2
concentration affects leaf photosynthesis-nitrogen rela-
tionships in Pinus taeda over nine years in FACE. Tree
Physiology, 28, 607–614.
Ellsworth DS, Reich PB (1993). Canopy structure and vertical
patterns of photosynthesis and related leaf traits in a de-
ciduous forest. Oecologia, 96, 169–178.
Ellsworth DS, Reich PB, Naumburg ES, Koch GW, Kubiske
ME, Smith SD (2004). Photosynthesis, carboxylation and
leaf nitrogen responses of 16 species to elevated pCO2
across four free-air CO2 enrichment experiments in forest,
grassland and desert. Global Change Biology, 10,
2121–2138.
Ellsworth DS, Thomas R, Crous KY, Palmroth S, Ward E,
Maier C, Delucia E, Oren R (2012). Elevated CO2 affects
photosynthetic responses in canopy pine and subcanopy
deciduous trees over 10 years: a synthesis from Duke
FACE. Global Change Biology, 18, 223–242.
Epron D, Dreyer E (1993). Long-term effects of drought on
photosynthesis of adult oak trees [Quercus petraea (Matt.)
Liebl. and Quercus robur L.] in a natural stand. New Phy-
tologist, 125, 381–389.
Ethier GJ, Livingston NJ, Harrison DL, Black TA, Moran JA
(2006). Low stomatal and internal conductance to CO2
versus Rubisco deactivation as determinants of the photo-
synthetic decline of ageing evergreen leaves. Plant, Cell &
Environment, 29, 2168–2184.
Evans JR (1989). Photosynthesis and nitrogen relationships in
leaves of C3 plants. Oecologia, 78, 9–19.
Fan J, Zhao HX, Li M (2003). The specific leaf weight and its
relationship with photosynthetic capacity. Journal of
Northeast Forestry University, 31, 37–39. (in Chinese with
English abstract) [范晶, 赵惠勋, 李敏 (2003). 比叶重及
其与光合能力的关系. 东北林业大学学报, 31, 37–39.]
Farquhar GD, von Caemmerer S, Berry JA (1980). A biochem-
ical model of photosynthetic CO2 assimilation in leaves of
C3 species. Planta, 149, 78–90.
Feng QH, Cheng RM, Shi ZM, Liu SR, Wang WX, Liu XL, He
F (2013). Response of leaf functional traits and the rela-
tionships among them to altitude of Salix dissa in Balang
Mountain. Acta Ecologica Sinica, 33, 2712–2718. (in
Chinese with English abstract) [冯秋红, 程瑞梅, 史作民,
刘世荣, 王卫霞, 刘兴良, 何飞 (2013). 巴郎山异型柳
叶片功能性状及性状间关系对海拔的响应. 生态学报,
33, 2712–2718.]
Feng YL, Auge H, Ebeling SK (2007). Invasive Buddleja da-
vidii allocates more nitrogen to its photosynthesis machin-
ery than five native woody species. Oecologia, 153,
501–510.
Field C, Mooney HA (1983). Leaf age and seasonal effects on
light, water, and nitrogen use efficiency in a California
shrub. Oecologia, 56, 348–355.
Field C, Mooney HA (1986). On the Economy of Plant Form
and Function. Cambridge University Press, Cambridge,
UK. 25–55.
Finzi AC, Moore DJP, Delucia EH, Lichter J, Hofmockel KS,
Jackson RB, Kim HS, Matamala R, McCarthy HR, Oren
R, Pippen JS, Schlesinger WH (2006). Progressive nitro-
gen limitation of ecosystem processes under elevated CO2
in a warm-temperate forest. Ecology, 87, 15–25.
Garnier E, Cordonnier P, Guillerm JL, Sonié L (1997). Specific
leaf area and leaf nitrogen concentrations in annual and
perennial grass species growing in Mediterranean
old-fields. Oecologia, 111, 490–498.
Grassi G, Meir P, Cromer R, Tompkins D, Jarvis PG (2002).
Photosynthetic parameters in seedlings of Eucalyptus
grandis as affected by rate of nitrogen supply. Plant, Cell
& Environment, 25, 1677–1688.
Grassi G, Vicinelli E, Ponti F, Cantoni L, Magnani F (2005).
Seasonal and interannual variability of photosynthetic ca-
pacity in relation to leaf nitrogen in a deciduous forest
plantation in northern Italy. Tree Physiology, 25, 349–360.
Gutiérrez D, Morcuende R, Pozo AD, Carrasco RM, Pérez P
650 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (6): 640–652
www.plant-ecology.com
(2013). Involvement of nitrogen and cytokinins in photo-
synthetic acclimation to elevated CO2 of spring wheat.
Journal of Plant Physiology, 170, 1337–1343.
Han Q, Kawasaki T, Nakano T, Chiba Y (2004). Spatial and
seasonal variability of temperature responses of biochem-
ical photosynthesis parameters and leaf nitrogen content
within a Pinus densiflora crown. Tree Physiology, 24,
737–744.
Harmens H, Stirling CM, Marshall C, Farrar JF (2000). Does
down-regulation of photosynthetic capacity by elevated
CO2 depend on N supply in Dacylis glomerata? Physiolo-
gia Plantarum, 108, 43–50.
Hikosaka K, Hanba YT, Hirose T, Terashima I (1998). Photo-
synthetic nitrogen-use efficiency in leaves of woody and
herbaceous species. Functional Ecology, 12, 896–905.
Hrstka M, Urban O, Babák L (2012). Seasonal changes of Ru-
bisco content and activity in Fagus sylvatica and Picea
abies affected by elevated CO2 concentration. Chemical
Papers, 66, 836–841.
Jach ME, Ceulemans R (1999). Effects of elevated atmospheric
CO2 on phenology, growth and crown structure of Scots
pine (Pinus sylvestris) seedlings after two years of expo-
sure in the field. Tree Physiology, 19, 289–300.
Jarvis PG (1993). MAESTRO: a model of CO2 and water va-
pour exchange by forests in a globally changing world. In:
Schulze ED, Mooney HA eds. Design and Execution of
Experiments on CO2 Enrichment, Ecosystem Research
Report 6. Commission of the European Communities,
Brussels. 107–116.
Kattge J, Knorr W, Raddatz T, Wirth C (2009). Quantifying
photosynthetic capacity and its relationship to leaf nitrogen
content for global-scale terrestrial biosphere models.
Global Change Biology, 15, 976–991.
Kellomäki S, Wang KY (1997). Photosynthetic responses of
Scots pine to elevated CO2 and nitrogen supply: results of
a branch-in-bag experiment. Tree Physiology, 17,
231–240.
Kenzo T, Ichie T, Yoneda R, Kitahashi Y, Watanabe Y, Nino-
miya I, Koike T (2004). Interspecific variation of photo-
synthesis and leaf characteristics in canopy trees of five
species of Dipterocarpaceae in a tropical rain forest. Tree
Physiology, 24, 1187–1192.
Kitaoka S, Koike T (2004). Invasion of broad-leaf tree species
into a larch plantation: seasonal light environment, photo-
synthesis and nitrogen allocation. Physiologia Plantarum,
121, 604–611.
Lawlor DW (1995). The effects of water deficit on photosyn-
thesis. In: Smirnoff N ed. Environment and Plant Metabo-
lism: Flexibility and Acclimation. Bios Scientific Publish-
ers, Oxford. 129–160.
Lei M, Li SY, Zhang SB, Hu H (2009). Effects of nitrogen on
photosynthesis and growth in Incarvillea delavayi (Bigno-
niaceae). Acta Botanica Yunnanica, 31, 82–88. (in Chinese
with English abstract) [雷鸣, 李树云, 张石宝 , 胡虹
(2009). 氮素对红波罗花光合作用和生长的影响. 云南
植物研究, 31, 82–88.]
Li L, Hang M, Gu FX, Zhang L (2013). The modeling algo-
rithms for the effects of nitrogen on terrestrial vegetation
carbon cycle process. Journal of Natural Resources, 28,
2012–2022. (in Chinese with English abstract) [李雷, 黄
玫, 顾峰雪, 张黎 (2013). 氮素影响陆地生态系统碳循
环 过 程 的 模 型 表 达 方 法 . 自 然 资 源 学 报 , 28,
2012–2022.]
Li NN, Guo SR, Li J, Li J (2007). Effects of nitrogen nutrition
on the photosynthetic characteristics of leaves in broccoli
(Brassica olerecea var. italica). Journal of Inner Mongolia
Agricultural University, 28, 140–144. (in Chinese with
English abstract) [栗娜娜, 郭世荣, 李娟, 李军 (2007).
氮素营养对青花菜叶片光合特性的影响. 内蒙古农业
大学学报, 28, 140–144.]
Li YB, Wang HF, Sun CY (2013). Leaf characters of four tree
species at Maoershan Homogeneous Park. Forestry Sci-
ence and Technology, 38(3), 12–15. (in Chinese with Eng-
lish abstract) [李玉波, 王海芳, 孙承烨 (2013). 帽儿山
同质园4个树种叶片结构性状研究. 林业科技, 38(3),
12–15.]
Liu J, Price DT, Chen JM (2005). Nitrogen controls on ecosys-
tem carbon sequestration: a model implementation and ap-
plication to Saskatchewan, Canada. Ecological Modelling,
186, 178–195.
Lloyd J, Syvertsen JP, Kriedemann PE, Farquhar GD (1992).
Low conductances for CO2 diffusion from stomata to the
sites of carboxylation in leaves of woody species. Plant,
Cell & Environment, 15, 873–899.
Loewenstein NJ, Pallardy SG (1998). Drought tolerance, xylem
sap abscisic acid and stomatal conductance during soil
drying: a comparison of canopy trees of three temperate
deciduous angiosperms. Tree Physiology, 18, 431–439.
Lü JL, Chen RK, Zhang MQ, Li CM, Liao JF (1998). Seasonal
change of the net photosynthesis rate, chlorophyll content
and specific weight of leaf of sugarcane and their rela-
tionships. Journal of Fujian Agricultural University, 27,
285–290. (in Chinese with English abstract) [吕建林, 陈
如凯, 张木清, 李才明, 廖建峰 (1998). 甘蔗净光合速
率、叶绿素和比叶重的季节变化及其关系. 福建农业大
学学报, 27, 285–290.]
Makino A, Nakano H, Mae T, Shimada T, Yamamoto N
(2000). Photosynthesis, plant growth and N allocation in
transgenic rice plants with decreased Rubisco under CO2
enrichment. Journal of Experimental Botany, 51, 383–389.
Medlyn BE, Bdeck FW, de Pury DGG, Barton CVM, Broad-
meadow M, Ceulemans R, Angelis PD, Forstreuter M,
Jach ME, Kellomäki S, Laitat E, Marek M, Philippot S,
Rey A, Strassemeyer J, Laitinen K, Liozon R, Portier B,
Roberntz P, Wang K, Jarvis PG (1999). Effects of elevated
[CO2] on photosynthesis in European forest species: a me-
闫霜等: 植物叶片最大羧化速率与叶氮含量关系的变异性 651
doi: 10.3724/SP.J.1258.2014.00060
ta-analysis of model parameters. Plant, Cell & Environ-
ment, 22, 1475–1495.
Meir P, Kruijt B, Broadmeadow M, Barbosa E, Kull O, Car-
swell F, Nobre A, Jarvis PG (2002). Acclimation of pho-
tosynthetic capacity to irradiance in tree canopies in rela-
tion to leaf nitrogen concentration and leaf mass per unit
area. Plant, Cell & Environment, 25, 343–357.
Misson L, Tu KP, Boniello RA, Goldstein AH (2006). Season-
ality of photosynthetic parameters in a multi-specific and
vertically complex forest ecosystem in the Sierra Nevada
of California. Tree Physiology, 26, 729–741.
Murray MB, Smith RI, Friend A, Jarvis PG (2000). Effect of
elevated [CO2] and varying nutrient application rates on
physiology and biomass accumulation of Sitka spruce
(Picea sitchensis). Tree Physiology, 20, 421–434.
Nakaji T, Fukami M, Dokiya Y, Izuta T (2001). Effects of high
nitrogen load on growth, photosynthesis and nutrient status
of Cryptomeria japonica and Pinus densiflora seedlings.
Trees, 15, 453–461.
Nakano H, Makino A, Mae T (1997). The effect of elevated
partial pressures of CO2 on the relationship between pho-
tosynthetic capacity and N content in rice leaves. Plant
Physiology, 115, 191–198.
Nicodemus MA, Salifu FK, Jacobs DF (2008). Growth, nutri-
tion, and photosynthetic response of black walnut to vary-
ing nitrogen sources and rates. Journal of Plant Nutrition,
31, 1917–1936.
Niinemets Ü (1999). Research review. Components of leaf dry
mass per area-thickness and density-alter leaf photosyn-
thetic capacity in reverse directions in woody plants. New
Phytologist, 144, 35–47.
Niinemets Ü, Tenhunen JD (1997). A model separating leaf
structural and physiological effects on carbon gain along
light gradients for the shade-tolerant species Acer sac-
charum. Plant, Cell & Environment, 20, 845–866.
Oleson KW, Lawrence DW, Bonan GB, Flanner MG, Kluzek
E, Lawrence PJ, Levis S, Swenson SC, Thornton PE
(2010). Technical description of version 4.0 of the Com-
munity Land Model (CLM). http://www.esd.ornl.gov.
Cited: Dec. 2013.
Oleson KW, Monaghan A, Wilhelmi O, Barlage M, Brunsell N,
Feddema J, Hu L, Steinhoff DF (2013). Interactions be-
tween urbanization, heat stress, and climate change. Cli-
matic Change, doi: 10.1007/s10584-013-0936-8.
Onoda Y, Hikosaka K, Hirose T (2004). Allocation of nitrogen
to cell walls decreases photosynthetic nitrogen-use effi-
ciency. Functional Ecology, 18, 419–425.
Parry MAJ, Andralojc PJ, Khan S, Lea PJ, Keys AJ (2002).
Rubisco activity: effects of drought stress. Annals of
Botany, 89, 833–839.
Poorter H, Evans JR (1998). Photosynthetic nitrogen-use effi-
ciency of species that differ inherently in specific leaf area.
Oecologia, 116, 26–37.
Reich PB, Walters MB, Ellsworth DS (1991). Leaf age and
season influence the relationships between leaf nitrogen,
leaf mass per area and photosynthesis in maple and oak
trees. Plant, Cell & Environment, 14, 251–259.
Reich PB, Walters MB, Ellsworth DS, Uhl C (1994). Photo-
synthesis-nitrogen relations in Amazonian tree species.
Oecologia, 97, 62–72.
Reich PB, Kloeppel BD, Ellsworth DS, Walters MB (1995).
Different photosynthesis-nitrogen relations in deciduous
hardwood and evergreen coniferous trees species. Oecolo-
gia, 104, 24–30.
Reich PB, Walters MB, Ellsworth DS (1997). From tropics to
tundra: global convergence in plant functioning. Proceed-
ings of the National Academy of Science of the United
States of America, 94, 13730–13734.
Rey A, Jarvis PG (1998). Long-term photosynthetic acclimation
to increased atmospheric CO2 concentration in young birch
(Betula pendula) trees. Tree Physiology, 18, 441–450.
Ripullone F, Grassi G, Lauteri M, Borghetti M (2003). Photo-
synthesis-nitrogen relationships: interpretation of different
patterns between Pseudotsuga menziesii and Populus ×
euroamericana in a mini-stand experiment. Tree Physiol-
ogy, 23, 137–144.
Roberntz P, Stockfors J (1998). Effects of elevated CO2 con-
centration and nutrition on net photosynthesis, stomatal
conductance and needle respiration of field-grow Norway
spruce trees. Tree Physiology, 18, 233–241.
Rodrigo G, Santamaria A, Bilenky M (1997). Do the quark
masses run? Extracting mb(mZ) from LEP data. arXiv pre-
print hep.ph/9703358.
Sun GC, Zhao P, Zeng XP, Peng SL (2004). Variations of pho-
tosynthetic parameters in CO2 acclimation of Citrus gran-
dis leaves. Chinese Journal of Applied Ecology, 15, 9–14
(in Chinese with English abstract) [孙谷畴, 赵平, 曾小
平, 彭少麟 (2004). 柚树叶片CO2驯化的光合参数变化.
应用生态学报, 15, 9–14.]
Takashima T, Hikosaka K, Hirose T (2004). Photosynthesis or
persistence: nitrogen allocation in leaves of evergreen and
deciduous Quercus species. Plant, Cell and Environment,
27, 1047–1054.
Terashima I, Hikosaka K (1995). Comparative ecophysiology
of leaf and canopy photosynthesis. Plant, Cell & Envi-
ronment, 18, 1111–1128.
Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999). Water
stress inhibits plant photosynthesis by decreasing coupling
factor and ATP. Nature, 401, 914–917.
Thornton PE, Law BE, Gholz HL, Clark KL, Falge E, Ells-
worth DS, Goldstein AH, Monson RK, Hollinger D, Falk
M, Chen J, Sparks JP (2002). Modeling and measuring the
effects of disturbance history and climate on carbon and
water budgets in evergreen needleleaf forests. Agricultural
and Forest Meteorology, 113, 185–222.
Thornton PE, Zimmermann NE (2007). An improved canopy
integration scheme for a land surface model with prognos-
652 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (6): 640–652
www.plant-ecology.com
tic canopy structure. Journal of Climate, 20, 3902–3923.
Tian HQ, Liu ML, Zhang C, Ren W, Xu XF, Chen GS, Lü CQ,
Tao B (2010). The dynamic land ecosystem model
(DLEM) for simulating terrestrial processes and interac-
tions in the context of multifactor global change. Acta
Geographica Sinica, 65, 1027–1047. (in Chinese with
English abstract) [田汉勤, 刘明亮, 张弛, 任巍, 徐小锋,
陈广生, 吕超群, 陶波 (2010). 全球变化与陆地系统综
合集成模拟 —— 新一代陆地生态系统动态模型
(DLEM). 地理学报, 65, 1027–1047.] .
Tissue DT, Griffin KL, Thomas RB, Strain BR (1995). Effects
of low and elevated CO2 on C3 and C4 annuals. Oecologia,
101, 21–28.
Tissue DT, Griffin KL, Ball JT (1999). Photosynthetic adjust-
ment in field-grown ponderosa pine trees after six years of
exposure to elevated CO2. Tree Physiology, 19, 221–228.
Turner IM (1994). Essay review. Sclerophylly: primarily pro-
tective? Functional Ecology, 8, 669–675.
Wang Q, Xu CY (2005). Affects of nitrogen and phosphorus on
plant leaf photosynthesis and carbon partitioning. Shan-
dong Forestry Science and Technology, (5), 59–62. (in
Chinese with English abstract) [王琪, 徐程扬 (2005). 氮
磷对植物光合作用及碳分配的影响. 山东林业科技, (5),
59–62.]
Warren CR, Adams MA (2004). Evergreen trees do not max-
imize instantaneous photosynthesis. Trends in Plant Sci-
ence, 9, 270–274.
Westbeek MHM, Pons TL, Cambridge ML, Atkin OK (1999).
Analysis of differences in photosynthetic nitrogen use ef-
ficiency of alpine and lowland Poa species. Oecologia,
120, 19–26.
Wilson KB, Baldocchi DD, Hanson PJ (2000). Spatial and sea-
sonal variability of photosynthetic parameters and their
relationship to leaf nitrogen in a deciduous forest. Tree
Physiology, 20, 565–578.
Wilson KB, Baldocchi DD, Hanson PJ (2001). Leaf age affects
the seasonal pattern of photosynthetic capacity and net
ecosystem exchange of carbon in a deciduous forest.
Plant, Cell & Environment, 24, 571–583.
Wullschleger SD (1993). Biochemical limitations to carbon
assimilation in C3 plants—a retrospective analysis of the
A/Ci curves from 109 species. Journal of Experimental
Botany, 44, 907–920.
Xu YB, Shen YF, Li SQ (2013). Effects of elevated CO2 and
nitrogen application on photosynthetic area and gain-leaf
ratio of winter wheat. Chinese Journal of Eco-Agriculture,
21, 1049–1056. (in Chinese with English abstract) [许育
彬, 沈玉芳, 李世清 (2013). CO2浓度升高和施氮对冬
小麦光合面积及粒叶比的影响. 中国生态农业学报, 21,
1049–1056.]
Yang T, Xu K, Yan N, Li SY, Hu H (2013). Photosynthetic
ecophysiology of three species of genus Rhododendron.
Plant Diversity and Resources, 35, 17–25. (in Chinese
with English abstract) [杨婷, 许琨, 严宁, 李树云, 胡虹
(2013). 三种高山杜鹃的光合生理生态研究. 植物分类
与资源学报, 35, 17–25.]
Yu GR, Wang QF (2010). Ecophysiology of Plant Photosynthe-
sis, Transpiration, and Water Use. Science Press, Beijing.
149. (in Chinese) [于贵瑞, 王秋凤 (2010). 植物光合、蒸
腾与水分利用的生理生态学. 科学出版社, 北京. 149.]
Zhang SB, Zhou ZK, Xu K (2011). Effects of altitude on pho-
tosynthetic gas exchange and the associated leaf trait in an
Alpine oak, Quercus guyavifolia (Fagaceae). Plant Diver-
sity and Resources, 33, 214–224. [张石宝, 周浙昆, 许琨
(2011). 海拔对高山栎光合气体交换和叶性状的影响.
植物分类与资源学报, 33, 214–224.]
Zhang YM, Zhou GS (2012a). Advances in leaf maximum car-
boxylation rate and its response to environmental factors.
Acta Ecologica Sinica, 32, 5907–5917. (in Chinese with
English abstract) [张彦敏, 周广胜 (2012a). 植物叶片最
大羧化速率及其对环境因子响应的研究进展. 生态学
报, 32, 5907–5917.]
Zhang YM, Zhou GS (2012b). Primary simulation on the re-
sponse of leaf maximum carboxylation rate to multiple en-
vironmental factors. Chinese Science Bulletin, 57,
1112–1118. (in Chinese with English abstract) [张彦敏,
周广胜 (2012b). 植物叶片最大羧化速率对多因子响应
的模拟. 科学通报, 57, 1112–1118.]
Zhu JT, Li XY, Zhang XM, Lin LS, Yang SG (2010). Nitrogen
allocation and partitioning within a leguminous and two
non-leguminous plant species growing at the southern
fringe of China’s Taklamakan Desert. Chinese Journal of
Plant Ecology, 34, 1025–1032. (in Chinese with English
abstract) [朱军涛, 李向义, 张希明, 林丽莎, 杨尚功
(2010). 塔克拉玛干沙漠南缘豆科与非豆科植物的氮分
配. 植物生态学报, 34, 1025–1032.]
责任编委: 李春阳 责任编辑: 李 敏
附录I 最大羧化速率与叶氮含量的拟合关系式
Appendix I The relationship of leaf maximum carboxylation rate and leaf nitrogen
http://www.plant-ecology.com/appendix/CJPE2014-0336-A1.doc
附录II 单位面积植物叶片同化速率和叶氮含量
Appendix II Assimilation rate and leaf nitrogen content per unit area
http://www.plant-ecology.com/appendix/CJPE2014-0336-A2.doc
闫霜, 张黎, 景元书, 何洪林, 于贵瑞. 植物叶片最大羧化速率与叶氮含量关系的变异性. 植物生态学报, 2014, 38(6):
640–652.
YAN Shuang, ZHANG Li, JING Yuan-Shu, HE Hong-Lin, and YU Gui-Rui. Variations in the relationship between maximum leaf
carboxylation rate and leaf nitrogen concentration. Chinese Journal of Plant Ecology, 2014, 38(6): 640–652.
http://www.plant-ecology.com/CN/10.3724/SP.J.1258.2014.00060
http://www.plant-ecology.com/CN/Y2014/V38/I6/640
附录I 最大羧化速率与叶氮含量的拟合关系式
Appendix I The relationship of leaf maximum carboxylation rate and leaf nitrogen
植被类型
Plant functional type
优势种
Dominant species
关系式
Relationship
观测时间
Date
文献
References
常绿针叶林
Evergreen needle forest
赤松 Pinus densiflora Vcmax,25 = –1.97Na + 9.54 2001年1月
January 2001
Han et al., 2004
常绿针叶林
Evergreen needle forest
赤松 Pinus densiflora Vcmax,25 = 29.45Na – 45.4 2001年3月
March 2001
Han et al., 2004
常绿针叶林
Evergreen needle forest
赤松 Pinus densiflora Vcmax,25 = 15.94Na + 6.75 2001年5月
May 2001
Han et al., 2004
常绿针叶林
Evergreen needle forest
赤松 Pinus densiflora Vcmax,25 = 15.02Na + 5.17 2001年7月
July 2001
Han et al., 2004
常绿针叶林
Evergreen needle forest
赤松 Pinus densiflora Vcmax,25 = 15.71Na – 3.04 2001年9月
September 2001
Han et al., 2004
常绿针叶林
Evergreen needle forest
赤松 Pinus densiflora Vcmax,25 = 15.59Na – 18.31 2001年11月
November 2001
Han et al., 2004
常绿针叶林
Evergreen needle forest
赤松 Pinus densiflora Vcmax,25 = 19.79Na – 9.82* 2001年生长季
2001 growing season
Han et al., 2004
常绿针叶林
Evergreen needle forest
Picea sitchensis Vcmax,25 = 14.54Na + 5.51*
1997年8月
August 1997
Meir et al., 2002
常绿针叶林
Evergreen needle forest
欧洲云杉 Picea abies Vcmax,25 = 20Na + 24.2* 1992年春季
1992 Spring
Medlyn et al., 1999
常绿针叶林
Evergreen needle forest
欧洲赤松 Pinus syl-
vestris
Vcmax,25 = 11.4Na – 0.64* – Medlyn et al., 1999
常绿针叶林
Evergreen needle forest
欧洲赤松 Pinus syl-
vestris
Vcmax,25 = 13.5Na + 106* – Medlyn et al., 1999
常绿针叶林
Evergreen needle forest
火炬松 Pinus taeda Vcmax,25 = 13.6Na + 35.1* – Ellsworth et al., 2012
常绿针叶林
Evergreen needle forest
火炬松 Pinus taeda Vcmax,25 = 15.99Na + 12.76* 夏初、夏末
Early summer, late
summer
Crous et al., 2008
常绿针叶林
Evergreen needle forest
火炬松 Pinus taeda Vcmax,25 = 27.06Na + 5.61* 夏末
Late summer
Crous et al., 2008
常绿针叶林
Evergreen needle forest
Pinus radiate Vcmax,25 = 15.143Na + 11.26* – Walcroft et al., 1997
常绿针叶林
Evergreen needle forest
– Vcmax,25 = 9.71Na + 34.05* 模型反演
Model inversion
Kattge et al., 2009
常绿针叶林
Evergreen needle forest
– Vcmax,25 = 18.15Na + 6.32* 模型反演
Model inversion
Kattge et al., 2009
常绿针叶林
Evergreen needle forest
火炬松 Pinus taeda Vcmax,25 = 25.3Na + 28.6 – Luo et al., 2001
落叶阔叶林
Deciduous broadleaf forest
Fagus sylvatica Vcmax,25 = 31.02Na + 13.13* 1998年8月
August 1998
Meir et al., 2002
落叶阔叶林
Deciduous broadleaf forest
垂枝桦 Betula pendula Vcmax,25 = 43.33Na – 20.53* 1997年8月
August 1997
Meir et al., 2002
落叶阔叶林
Deciduous broadleaf forest
Quercus petraea Vcmax,25 = 18.87Na – 0.13* 1996年8月
August 1996
Meir et al., 2002
落叶阔叶林
Deciduous broadleaf forest
Fagus sylvatica Vcmax,25 = 32.6Na – 0.46* – Medlyn et al., 1999
落叶阔叶林
Deciduous broadleaf forest
Fagus sylvatica Vcmax,25 = 17.6Na + 17.8* – Medlyn et al., 1999
落叶阔叶林
Deciduous broadleaf forest
Quercus petraea Vcmax,25 = 12.7Na + 50* – Medlyn et al., 1999
落叶阔叶林
Deciduous broadleaf forest
Fraxinus angustifolia,
夏栎 Quercus robur
Vcmax,25 = 40.9Na – 10* 2001–2003年春季
2001–2003 spring
Grassi et al., 2005
落叶阔叶林
Deciduous broadleaf forest
Fraxinus angustifolia,
夏栎 Quercus robur
Vcmax,25 = 22.7Na + 25.9* 2001年夏季
2001 summer
Grassi et al., 2005
落叶阔叶林
Deciduous broadleaf forest
Fraxinus angustifolia,
夏栎 Quercus robur
Vcmax,25 = 17Na + 60.8* 2002年夏季
2002 summer
Grassi et al., 2005
附录I (续) Appendix I (continued)
植被类型
Plant functional type
优势种
Dominant species
关系式
Relationship
观测时间
Date
文献
References
落叶阔叶林
Deciduous broadleaf forest
Fraxinus angustifolia,
夏栎 Quercus robur
Vcmax,25 = 59.2Na – 55.3 2003年夏季
2003 summer
Grassi et al., 2005
落叶阔叶林
Deciduous broadleaf forest
Fraxinus angustifolia,
夏栎 Quercus robur
Vcmax,25 = 25.9Na + 8.28* 2001年秋季
2001 autumn
Grassi et al., 2005
落叶阔叶林
Deciduous broadleaf forest
Fraxinus angustifolia,
夏栎 Quercus robur
Vcmax,25 = 28.4Na + 14* 2002年秋季
2002 autumn
Grassi et al., 2005
落叶阔叶林
Deciduous broadleaf forest
Fraxinus angustifolia,
夏栎 Quercus robur
Vcmax,25 = 19.4Na + 3.7 2003年秋季
2003 autumn
Grassi et al., 2005
落叶阔叶林
Deciduous broadleaf forest
Fraxinus angustifolia Vcmax,25 = 29.1Na + 4.7 2001年生长季
2001 growing season
Grassi et al., 2005
落叶阔叶林
Deciduous broadleaf forest
夏栎 Quercus robur Vcmax,25 = 28.7Na + 10.4 2001年生长季
2001 growing season
Grassi et al., 2005
落叶阔叶林
Deciduous broadleaf forest
Fraxinus angustifolia Vcmax,25 = 31.4Na + 14.25 2002年生长季
2002 growing season
Grassi et al., 2005
落叶阔叶林
Deciduous broadleaf forest
夏栎 Quercus robur Vcmax,25 = 38.4Na – 5.9 2002年生长季
2002 growing season
Grassi et al., 2005
落叶阔叶林
Deciduous broadleaf forest
Fraxinus angustifolia Vcmax,25 = 52.8Na – 44.1 2003年生长季
2003 growing season
Grassi et al., 2005
落叶阔叶林
Deciduous broadleaf forest
夏栎 Quercus robur Vcmax,25 = 43.5Na – 21.8 2003年生长季
2003 growing season
Grassi et al., 2005
落叶阔叶林
Deciduous broadleaf forest
Prunus persica Vcmax,25 = 25Na + 12.1* 1999年4–5月
April–May 1999
Walcroft et al., 2002
落叶阔叶林
Deciduous broadleaf forest
Quercus alba, Acer
rubrum, Quercus prinus
Vcmax,25 = 31.9Na – 1.9* 1997年生长季
1997 growing season
Wilson et al., 2000
落叶阔叶林
Deciduous broadleaf forest
Quercus alba, Acer
rubrum, Quercus prinus
Vcmax,25 = 33.1Na – 9.3 1998年生长季
1998 growing season
Wilson et al., 2000
热带常绿阔叶林
Tropical evergreen broadleaf
forest
– Vcmax,25 = 11.41Na + 0.98* 1996年11月
November 1996
Carswell et al., 2000
热带常绿阔叶林
Tropical evergreen broadleaf
forest
Dryobalanops aromatica,
Dipterocarpus glabosus,
Shorea acuta, Shorea
beccariana, Shorea mac-
roptera
Vcmax,25 = 28.01Na + 3.41* 2002年9月
September 2002
Kumagai et al., 2006
热带常绿阔叶林
Tropical evergreen broadleaf
forest
– Vcmax,25 = 10.71Na + 1.99* 模型反演
Model inversion
Kattge et al., 2009
热带常绿阔叶林
Tropical evergreen broadleaf
forest
– Vcmax,25 = 25.88Na + 6.35* 模型反演
Model inversion
Kattge et al., 2009
热带常绿阔叶林
Tropical evergreen broadleaf
forest
– Vcmax,25 = 9.3Na + 8.9* 模型反演
Model inversion
Kattge et al., 2009
热带常绿阔叶林
Tropical evergreen broadleaf
forest
– Vcmax,25 = 26.19Na + 4.19* 模型反演
Model inversion
Kattge et al., 2009
温带常绿阔叶林
Temperate evergreen broad-
leaf forest
– Vcmax,25 = 30.38Na + 5.4* 模型反演
Model inversion
Kattge et al., 2009
温带常绿阔叶林
Temperate evergreen broad-
leaf forest
– Vcmax,25 = 29.81Na + 5.73* 模型反演
Model inversion
Kattge et al., 2009
温带常绿阔叶林
Temperate evergreen broad-
leaf forest
大桉 Eucalyptus grandis Vcmax,25 = –25.2Na 2 + 101.6Na –
16.5
7月
July
Grassi et al., 2002
灌木 Bush – Vcmax,25 = 30.2Na + 4.61* 模型反演
Model inversion
Kattge et al., 2009
灌木 Bush – Vcmax,25 = 23.15Na + 14.71* 模型反演
Model inversion
Kattge et al., 2009
灌木 Bush Leptospermum scopari-
um, Kunzea ericoides
Vcmax,25 = 34.786Na – 20.29* – Whitehead et al.,
2004
附录I (续) Appendix I (continued)
植被类型
Plant functional type
优势种
Dominant species
关系式
Relationship
观测时间
Date
文献
References
C3草本 C3 herbaceous – Vcmax,25 = 28.17Na + 23.74* 模型反演
Model inversion
Kattge et al., 2009
C3草本 C3 herbaceous – Vcmax,25 = 40.96Na + 6.42* 模型反演
Model inversion
Kattge et al., 2009
草本 Herbaceous 蓍 Achillea millefolium,
Agropyron repens,
Anemone cylindrical, 无
芒雀麦 Bromus inermis,
Lupinus perennis, 草地
早熟禾 Poa pratensis,
Solidago rigida
Vcmax,25 = 41.04Na + 27.59*
1996年8月
August 1996
Ellsworth et al., 2004
C3作物 C3 crop – Vcmax,25 = 41.27Na + 22.22* 模型反演
Model inversion
Kattge et al., 2009
C3作物 C3 crop – Vcmax,25 = 59.23Na + 4.71* 模型反演
Model inversion
Kattge et al., 2009
*表示该关系式参与统计计算。
* Indicates the equations used in calculation.
参考文献
Carswell FE, Meir P, Wandelli EV, Bonates LCM, Kruijt B, Barbosa EM, Nobre AD, Grace J, Jarvis PG (2000). Photosynthetic ca-
pacity in a central Amazonian rain forest. Tree Physiology, 20, 179–186.
Crous KY, Walters MB, Ellsworth DS (2008). Elevated CO2 concentration affects leaf photosynthesis-nitrogen relationships in Pinus
taeda over nine years in FACE. Tree Physiology, 28, 607–614.
Ellsworth DS, Reich PB, Naumburg ES, Koch GW, Kubiske ME, Smith SD (2004). Photosynthesis, carboxylation and leaf nitrogen
responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Global
Change Biology, 10, 2121–2138.
Ellsworth DS, Thomas R, Crous KY, Palmroth S, Ward E, Maier C, Delucia E, Oren R (2012). Elevated CO2 affects photosynthetic
responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke FACE. Global Change Biology,
18, 223–242.
Grassi G, Meir P, Cromer R, Tompkins D, Jarvis PG (2002). Photosynthetic parameters in seedlings of Eucalyptus grandis as affected
by rate of nitrogen supply. Plant, Cell & Environment, 25, 1677–1688.
Grassi G, Vicinelli E, Ponti F, Cantoni L, Magnani F (2005). Seasonal and interannual variability of photosynthetic capacity in relation
to leaf nitrogen in a deciduous forest plantation in northern Italy. Tree Physiology, 25, 349–360.
Han Q, Kawasaki T, Nakano T, Chiba Y (2004). Spatial and seasonal variability of temperature responses of biochemical photosyn-
thesis parameters and leaf nitrogen content within a Pinus densiflora crown. Tree Physiology, 24, 737–744.
Kattge J, Knorr W, Raddatz T, Wirth C (2009). Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for
global-scale terrestrial biosphere models. Global Change Biology, 15, 976–991.
Kumagai T, Ichie T, Yoshimura M, Yamashita M, Kenzo T, Saitoh TM, Ohashi M, Suzuki M, Koike T, Komatsu H (2006). Modeling
CO2 exchange over a Bornean tropical rain forest using measured vertical and horizontal variations in leaf-level physiological
parameters and leaf area densities. Journal of Geophysical Research, 111, D10107, doi: 10.1029/2005JD006676.
Luo Y, Medlyn B, Hui D, Ellsworth D, Reynolds J, Katul G (2001). Gross primary productivity in Duke Forest: modeling synthesis of
CO2 experiment and eddy-flux data. Ecological Applications, 11, 239–252.
Medlyn BE, Bdeck FW, de Pury DGG, Barton CVM, Broadmeadow M, Ceulemans R, Angelis PD, Forstreuter M, Jach ME, Kel-
lomäki S, Laitat E, Marek M, Philippot S, Rey A, Strassemeyer J, Laitinen K, Liozon R, Portier B, Roberntz P, Wang K, Jarvis
PG (1999). Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant,
Cell & Environment, 22, 1475–1495.
Meir P, Kruijt B, Broadmeadow M, Barbosa E, Kull O, Carswell F, Nobre A, Jarvis PG (2002). Acclimation of photosynthetic capac-
ity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant, Cell & Environment,
25, 343–357.
Walcroft A, Le Roux X, Diaz-Espejo A, Dones N, Sinoquet H (2002). Effects of crown development on leaf irradiance, leaf mor-
phology and photosynthetic capacity in a peach tree. Tree Physiology, 22, 929–938.
Walcroft AS, Whitehead D, Silvester WB, Kelliher FM (1997). The response of photosynthetic model parameters to temperature and
nitrogen concentration in Pinus radiata D. Don. Plant, Cell & Environment, 20, 1338–1348.
Whitehead D, Walcroft AS, Scott NA, Townsend JA, Trotter CM, Rogers GND (2004). Characteristics of photosynthesis and sto-
matal conductance in the shrubland species mānuka (Leptospermum scoparium) and kānuka (Kunzea ericoides) for the estima-
tion of annual canopy carbon uptake. Tree Physiology, 24, 795–804.
Wilson KB, Baldocchi DD, Hanson PJ (2000). Spatial and seasonal variability of photosynthetic parameters and their relationship to
leaf nitrogen in a deciduous forest. Tree Physiology, 20, 565–578.
(责任编委: 李春阳 责任编辑: 李 敏)
1
闫霜, 张黎, 景元书, 何洪林, 于贵瑞. 植物叶片最大羧化速率与叶氮含量关系的变异性. 植物生态学报, 2014, 38(6): 640–652.
YAN Shuang, ZHANG Li, JING Yuan-Shu, HE Hong-Lin, and YU Gui-Rui. Variations in the relationship between maximum leaf carboxylation rate and leaf nitrogen concentration. Chinese
Journal of Plant Ecology, 2014, 38(6): 640–652.
http://www.plant-ecology.com/CN/10.3724/SP.J.1258.2014.00060
http://www.plant-ecology.com/CN/Y2014/V38/I6/640
附录II 单位面积植物叶片同化速率和叶氮含量
Appendix II Assimilation rate and leaf nitrogen content per unit area
植被类型
Plant functional type
优势种
Dominact species
文献
References
Amax
(μmol·m–2·s–1)
Na
(g m–2)
PNUE
(μmol g–1s–1)
样本量
Sample size
观测时间
Date
落叶针叶林
Deciduous needle forest
– Reich et al., 1998 6.7 1.58 4.24 9 1987–1988年1–2月
January–February, 1987–1998
常绿针叶林
Evergreen needle forest
西黄松 Pinus ponderosa Tissue et al., 1999 13.88 1.03 13.48 6 1996年9月
September 1996
常绿针叶林
Evergreen needle forest
Juniperus virginia Reich et al., 1995 6.5 6.10 1.07 40 1986–1990年7–8月
July–August 1986–1990
常绿针叶林
Evergreen needle forest
欧洲云杉 Picea abies Reich et al., 1995 10.0 3.70 2.70 40 1986–1990年7–8月
July–August 1986–1990
常绿针叶林
Evergreen needle forest
Picea glauca Reich et al., 1995 7.3 4.20 1.74 40 1986–1990年7–8月
July–August 1986–1990
常绿针叶林
Evergreen needle forest
北美短叶松 Pinus banksiana Reich et al., 1995 9.5 4.10 2.32 40 1986–1990年7–8月
July–August 1986–1990
常绿针叶林
Evergreen needle forest
Pinus resinosa Reich et al., 1995 6.3 3.55 1.77 40 1986–1990年7–8月
July–August 1986–1990
常绿针叶林
Evergreen needle forest
北美乔松 Pinus strobus Reich et al., 1995 8.3 2.80 2.96 40 1986–1990年7–8月
July–August 1986–1990
常绿针叶林
Evergreen needle forest
欧洲赤松 Pinus sylvestris Reich et al., 1995 12.5 5.40 2.31 40 1986–1990年7–8月
July–August 1986–1990
常绿针叶林
Evergreen needle forest
北美香柏 Thuja occidentalis Reich et al., 1995 7.2 1.90 3.79 40 1986–1990年7–8月
July–August 1986–1990
常绿针叶林
Evergreen needle forest
– Reich et al., 1998 7.0 3.59 1.95 40 1987–1988年1–2月
January–February 1987–1998
落叶阔叶林
Deciduous broadleaf forest
枫香 Liquidambar formosana Bai et al., 2013 10.9 1.72 6.33 4 2010–2011年7–8月
July–August 2010–2011
落叶阔叶林
Deciduous broadleaf forest
赤杨叶 Alniphyllum fortunei Bai et al., 2013 16.9 2.29 7.39 4 2010–2011年7–8月
July–August 2010–2011
落叶阔叶林
Deciduous broadleaf forest
君迁子 Diospyros lotus Bai et al., 2013 15.7 3.06 5.13 4 2010–2011年7–8月
July–August 2010–2011
落叶阔叶林
Deciduous broadleaf forest
亮叶桦 Betula luminifera Bai et al., 2013 14.5 2.22 6.55 4 2010–2011年7–8月
July–August 2010–2011
落叶阔叶林
Deciduous broadleaf forest
亮叶水青冈 Fagus lucida Bai et al., 2013 12.1 1.34 9.05 4 2010–2011年7–8月
July–August 2010–2011
落叶阔叶林
Deciduous broadleaf forest
青榨枫 Acer davidii Bai et al., 2013 8.2 1.68 4.87 4 2010–2011年7–8月
July–August 2010–2011
落叶阔叶林
Deciduous broadleaf forest
缺萼枫香树 Liquidambar acalyc-
ina
Bai et al., 2013 10.5 1.45 7.23 4 2010–2011年7–8月
July–August 2010–2011
落叶阔叶林
Deciduous broadleaf forest
Bretschneidara sinensis Bai et al., 2013 16.1 2.01 8.01 4 2010–2011年7–8月
July–August 2010–2011
2
附录II (续) Appendix II (continued)
植被类型
Plant functional type
优势种
Dominact species
文献
References
Amax
(μmol·m–2·s–1)
Na
(g m–2)
PNUE
(μmol g–1s–1)
样本量
Sample size
观测时间
Date
落叶阔叶林
Deciduous broadleaf forest
白蜡树 Fraxinus chinensis Bai et al., 2013 14.2 3.48 4.09 4 2010–2011年7–8月
July–August 2010–2011
落叶阔叶林
Deciduous broadleaf forest
中华枫 Acer sinense Bai et al., 2013 12.2 2.56 4.77 4 2010–2011年7–8月
July–August 2010–2011
落叶阔叶林
Deciduous broadleaf forest
红叶木姜子 Litsea rubescens Bai et al., 2013 12.8 2.68 4.78 4 2010–2011年7–8月
July–August 2010–2011
落叶阔叶林
Deciduous broadleaf forest
Acer saccharum Talhelm et al., 2011 6.15 1.05 5.86 8 2006年7–10月 July–October 2006
2007年5–8月 May–August 2007
落叶阔叶林
Deciduous broadleaf forest
Acer rubrum Reich et al., 1995 6.0 1.17 5.12 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Acer saccharum Reich et al., 1995 7.6 1.46 5.21 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Betula nigra Reich et al., 1995 10.0 1.92 5.21 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Betula pumila Reich et al., 1995 6.9 1.48 4.66 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Carya ovata Reich et al., 1995 8.4 1.99 4.22 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
黃金树 Catalpa speciosa Reich et al., 1995 10.0 1.56 6.41 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Celtis occidentalis Reich et al., 1995 9.7 1.98 4.90 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Comus florida Reich et al., 1995 7.3 1.12 6.52 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
美国白蜡树 Fraxinus americana Reich et al., 1995 10.8 1.60 6.75 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
美国白蜡树 Fraxinus americana Reich et al., 1995 8.6 1.43 6.01 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Ilex verticillata Reich et al., 1995 5.4 1.27 4.25 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Juglans nigra Reich et al., 1995 5.8 1.01 5.74 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Lonicera×bella Reich et al., 1995 9.1 1.55 5.87 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Morus rubra Reich et al., 1995 7.3 1.56 4.68 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Populus deltoides Reich et al., 1995 14.8 2.22 6.67 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Populus tremuloides Reich et al., 1995 11.9 1.88 6.33 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Prunus serotina Reich et al., 1995 11.7 1.93 6.06 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Prunus serotina Reich et al., 1995 7.0 1.04 6.73 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Quercus ellipsoidalis Reich et al., 1995 13.0 2.30 5.65 5 1986–1990年7–8月
July–August 1986–1990
3
附录II (续) Appendix II (continued)
植被类型
Plant functional type
优势种
Dominact species
文献
References
Amax
(μmol·m–2·s–1)
Na
(g m–2)
PNUE
(μmol g–1s–1)
样本量
Sample size
观测时间
Date
落叶阔叶林
Deciduous broadleaf forest
Quercus ellipsoidalis Reich et al., 1995 7.4 1.23 6.02 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Quercus macrocarpa Reich et al., 1995 13.6 2.46 5.53 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Quercus rubra Reich et al., 1995 11.05 1.94 5.70 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
药鼠李 Rhamnus cathartica Reich et al., 1995 9.8 1.97 4.97 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Rubus alleghaniensis Reich et al., 1995 7.6 1.12 6.79 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
Ulmus americana Reich et al., 1995 13.8 2.34 5.90 5 1986–1990年7–8月
July–August 1986–1990
落叶阔叶林
Deciduous broadleaf forest
– Reich et al., 1998 12.5 1.76 7.10 91 1987–1988年1–2月
January–February 1987–1998
热带常绿阔叶林
Tropical evergreen broadleaf
forest
Dipterocarpus globosus Kenzo et al., 2004
9.5
1.38
6.88
4
–
热带常绿阔叶林
Tropical evergreen broadleaf
forest
Dryobalanops aromatica Kenzo et al., 2004
10.23
1.24
8.25
4
–
热带常绿阔叶林
Tropical evergreen broadleaf
forest
Shorea acuta Kenzo et al., 2004
10.66
1.48
7.20
4
–
热带常绿阔叶林
Tropical evergreen broadleaf
forest
Shorea beccariana Kenzo et al., 2004
17.89
1.58
11.32
3
–
热带常绿阔叶林
Tropical evergreen broadleaf
forest
Shorea macroptera Kenzo et al., 2004
6.91
0.88
7.85
3
–
温带常绿阔叶林
Temperate evergreen broadleaf
forest
大桉 Eucalyptus grandis Grassi et al., 2002 18.58 1.20 15.51 104 7月29日–11月7日
July 29–November 7
温带常绿阔叶林
Temperate evergreen broadleaf
forest
罗浮栲 Castanopsis fabri Bai et al., 2013 10.1 3.20 3.16 4 2010–2011年7–8月
July–August 2010–2011
温带常绿阔叶林
Temperate evergreen broadleaf
forest
Castanopsis carlessi Bai et al., 2013 9.0 2.63 3.42 4 2010–2011年7–8月
July–August 2010–2011
温带常绿阔叶林
Temperate evergreen broadleaf
forest
木荷 Schima superba Bai et al., 2013 12.7 2.21 5.76 4 2010–2011年7–8月
July–August 2010–2011
温带常绿阔叶林
Temperate evergreen broadleaf
forest
薄叶润楠 Machilus leptophylla Bai et al., 2013 11.6 2.79 4.16 4 2010–2011年7–8月
July–August 2010–2011
温带常绿阔叶林
Temperate evergreen broadleaf
forest
红勾栲 Castanopsis lamontii Bai et al., 2013 11.9 3.10 3.83 4 2010–2011年7–8月
July–August 2010–2011
4
附录II (续) Appendix II (continued)
植被类型
Plant functional type
优势种
Dominact species
文献
References
Amax
(μmol·m–2·s–1)
Na
(g m–2)
PNUE
(μmol g–1s–1)
样本量
Sample size
观测时间
Date
温带常绿阔叶林
Temperate evergreen broadleaf
forest
曼青冈 Cyclobalanopsis oxyodon Bai et al., 2013 12.7 2.19 5.81 4 2010–2011年7–8月
July–August 2010–2011
温带常绿阔叶林
Temperate evergreen broadleaf
forest
Manglietia chingii Bai et al., 2013 12.1 2.45 4.94 4 2010–2011年7–8月
July–August 2010–2011
温带常绿阔叶林
Temperate evergreen broadleaf
forest
银木荷 Schima argentea Bai et al., 2013 10.0 2.28 4.39 4 2010–2011年7–8月
July–August 2010–2011
温带常绿阔叶林
Temperate evergreen broadleaf
forest
铁杉 Tsuga chinensis Bai et al., 2013 6.6 3.86 1.71 4 2010–2011年7–8月
July–August 2010–2011
温带常绿阔叶林
Temperate evergreen broadleaf
forest
褐叶青冈 Cyclobalanopsis stew-
ardiana
Bai et al., 2013 10.5 3.61 2.91 4 2010–2011年7–8月
July–August 2010–2011
温带常绿阔叶林
Temperate evergreen broadleaf
forest
厚叶杜鹃 Rhododendron pachy-
phyllum
Bai et al., 2013 8.7 4.28 2.03 4 2010–2011年7–8月
July–August 2010–2011
温带常绿阔叶林
Temperate evergreen broadleaf
forest
包槲柯 Lithocarpus cleistocarpus Bai et al., 2013 10.1 3.66 2.76 4 2010–2011年7–8月
July–August 2010–2011
落叶灌木
Deciduous bush
– Reich et al., 1998 11.9 1.77 6.72 39 1987–1988年1–2月
January–February 1987–1998
常绿灌木
Evergreen bush
– Reich et al., 1998 7.8 2.04 3.82 24 1987–1988年1–2月
January–February 1987–1998
草地Grassland 二穗短柄草 Brachypodium dis-
tachyon
Garnier et al., 1999 14.5 1.56 9.29 10 –
草地Grassland Brachypodium phoenicoides Garnier et al., 1999 15.8 1.83 8.64 10 –
草地Grassland 毛雀麦 Bromus hordeaceus Garnier et al., 1999 17.4 1.82 9.57 10 –
草地Grassland 直立雀麦 Bromus erectus Garnier et al., 1999 15.2 2.01 7.57 10 –
草地Grassland 马德雀麦 Bromus madritensis Garnier et al., 1999 19.6 1.52 12.93 10 –
草地Grassland 类雀麦 Bromus ramosus Garnier et al., 1999 15.6 1.78 8.79 10 –
草地Grassland Hordeum murinum Garnier et al., 1999 14.4 1.43 10.07 10 –
草地Grassland Hordeum secalinum Garnier et al., 1999 16.0 1.65 9.71 10 –
草地Grassland 硬直黑麦草 Lolium rigidum Garnier et al., 1999 15.6 1.43 10.93 10 –
草地Grassland 黑麦草 Lolium perenne Garnier et al., 1999 17.2 1.63 10.57 10 –
草地Grassland 早熟禾 Poa annua Garnier et al., 1999 14.2 1.28 11.07 10 –
草地Grassland 草地早熟禾 Poa pratensis Garnier et al., 1999 15.1 1.39 10.86 10 –
草地Grassland 裂稃燕麦 Avena barbata Garnier et al., 1999 19.4 2.03 9.57 10 –
草地Grassland 鸭茅 Dactylis glomerata Garnier et al., 1999 15.8 1.52 10.43 10 –
Amax, 最大光合速率; Na, 叶氮含量; PNUE, 叶氮光合利用率。
Amax, maximum net assimilation; Na, area-based leaf nitrogen content; PNUE, photosynthetic nitrogen use efficiency.
5
参考文献
Bai KD, Jiang DB, Wan XC (2013). Photosynthesis–nitrogen relationship in evergreen and deciduous tree species at different altitudes on Mao’er Mountain, Guangxi. Acta Ecologica Sinica, 33,
4930–4938. (in Chinese with English abstract) [白坤栋, 蒋得斌, 万贤崇 (2013). 广西猫儿山不同海拔常绿树种和落叶树种光合速率与氮的关系. 生态学报, 33, 4930–4938.]
Garnier E, Salager JL, Laurent G, Sonié L (1999). Relationships between photosynthesis, nitrogen and leaf structure in 14 grass species and their dependence on the basis of expression. New Phy-
tologist, 143, 119–129.
Grassi G, Meir P, Cromer R, Tompkins D, Jarvis PG (2002). Photosynthetic parameters in seedlings of Eucalyptus grandis as affected by rate of nitrogen supply. Plant, Cell & Environment, 25,
1677–1688.
Kenzo T, Ichie T, Yoneda R, Kitahashi Y, Watanabe Y, Ninomiya I, Koike T (2004). Interspecific variation of photosynthesis and leaf characteristics in canopy trees of five species of Diptero-
carpaceae in a tropical rain forest. Tree Physiology, 24, 1187–1192.
Kumagai T, Ichie T, Yoshimura M, Yamashita M, Kenzo T, Saitoh TM, Ohashi M, Suzuki M, Koike T, Komatsu H (2006). Modeling CO2 exchange over a Bornean tropical rain forest using
measured vertical and horizontal variations in leaf-level physiological parameters and leaf area densities. Journal of Geophysical Research, 111, D10107, doi: 10.1029/2005JD006676.
Luo Y, Medlyn B, Hui D, Ellsworth D, Reynolds J, Katul G (2001). Gross primary productivity in Duke Forest: modeling synthesis of CO2 experiment and eddy-flux data. Ecological Applica-
tions, 11, 239–252.
Reich PB, Ellsworth DS, Walters MB (1998). Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups.
Functional Ecology, 12, 948–958.
Reich PB, Kloeppel BD, Ellsworth DS, Walters MB (1995). Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous trees species. Oecologia, 104, 24–30.
Talhelm AF, Pregitzer KS, Burton AJ (2011). No evidence that chronic nitrogen additions increase photosynthesis in mature sugar maple forests. Ecological Applications, 21, 2413–2424.
Tissue DT, Griffin KL, Ball JT (1999). Photosynthetic adjustment in field-grown ponderosa pine trees after six years of exposure to elevated CO2. Tree Physiology, 19, 221–228.
Walcroft A, Le Roux X, Diaz-Espejo A, Dones N, Sinoquet H (2002). Effects of crown development on leaf irradiance, leaf morphology and photosynthetic capacity in a peach tree. Tree Physi-
ology, 22, 929–938.
Walcroft AS, Whitehead D, Silvester WB, Kelliher FM (1997). The response of photosynthetic model parameters to temperature and nitrogen concentration in Pinus radiata D. Don. Plant, Cell
& Environment, 20, 1338–1348.
Whitehead D, Walcroft AS, Scott NA, Townsend JA, Trotter CM, Rogers GND (2004). Characteristics of photosynthesis and stomatal conductance in the shrubland species mānuka (Leptosper-
mum scoparium) and kānuka (Kunzea ericoides) for the estimation of annual canopy carbon uptake. Tree Physiology, 24, 795–804.
(责任编委: 李春阳 责任编辑: 李 敏)