多环芳烃(PAHs)是持久性有机污染物(POP)之一, 通过大气沉降和污水灌溉能被植物吸收, 对食品生产安全和人类生命健康具有极大威胁。为探究PAHs对蔬菜作物的生长影响及毒害机理, 采用盆栽试验研究了不同浓度的荧蒽(FLU)和苯并[a]芘(B[a]P)单独胁迫下对油菜(Brassica chinensis)生长、生理和品质的影响及在油菜茎叶内的积累。结果表明: FLU和B[a]P在油菜茎叶内的积累量随着土壤中施加浓度的升高而增加, FLU胁迫下各处理间差异显著(p < 0.05), B[a]P胁迫下5.0和10.0 mg·kg-1时积累量与对照(CK)相比显著(p < 0.05)增加, 10.0 mg·kg-1时油菜茎叶内的最大B[a]P积累量没有超过我国食品安全标准; FLU和B[a]P对油菜叶长、叶宽和地上生物量的影响都是低浓度促进高浓度抑制; FLU和B[a]P胁迫下与CK相比株高和光合速率(Pn)值都显著(p < 0.05)降低; 对叶绿素含量的影响是低浓度促进高浓度抑制; 从总体来看, FLU胁迫对还原性维生素C(Vc)具有抑制作用, 5.0 mg·kg-1时Vc含量最低, 而B[a]P胁迫下变化不规律, 在0.5 mg·kg-1胁迫时与CK相比略有增加, 5.0 mg·kg-1时含量最低。
Aims Polycyclic aromatic hydrocarbons (PAHs) are a large class of ubiquitously occurring persistent organic pollutants (POP). Plants can take up PAHs through atmospheric sedimentation and sewage irrigation, resulting in serious hazards on the food safety and human’s health. Our objective was to investigate the effects of fluoranthene (FLU) and benzo-a-pyrene (B[a]P) on growth, physiological performance, and quality of rape (Brassica chinensis), and to understand their patterns of accumulations in stem and leaves. Methods Rape seedlings were transplanted to grow in soils with different rates of FLU and B[a]P addition, i.e. 0, 0.5, 1.0, 5.0, and 10.0 mg·kg-1, respectively. Growth indicators including leaf length, leaf width, plant height and aboveground biomass, and physiological properties including photosynthetic rate (Pn), chlorophyll content, and the content of vitamin C were measured to determine the effects of the two PAHs on rape. Accumulations of FLU and B[a]P were measured by the method of high performance liquid chromatography (HPLC). Pearson correlation analysis was performed to investigate the relationships between the accumulations of the PAHs and various growth indicators. Important findings We found that the accumulated concentrations of FLU and B[a]P in rapes increased with the level of FLU and B[a]P in soils. The accumulations of FLU in stems and leaves differed significantly (p < 0.05) among treatments with different rates of FLU addition. As compared with the control (CK), the accumulations of B[a]P in rapes significantly increased in treatments with 5.0 and 10.0 mg·kg-1 B[a]P addition, and the highest amount of accumulation at 10 mg·kg-1 was below the national food security standard. Low concentrations of FLU and B[a]P had positive effects on leaf length, leaf width and the aboveground biomass; whereas high concentrations had negative impacts. As compared with CK, plant height and Pn significantly decreased with of the level of FLU and B[a]P treatments. Chlorophyll content increased at lower concentrations but declined at higher concentrations. Overall, the reduced vitamin C was inhibited by FLU; it was lowest at 5.0 mg·kg-1 of FLU. The reduced vitamin C varied irregularly with B[a]P treatments; it increased slightly at 0.5 mg·kg-1 of B[a]P and was lowest at 5.0 mg·kg-1 of B[a]P, compared with CK.
全 文 :植物生态学报 2013, 37 (12): 1123–1131 doi: 10.3724/SP.J.1258.2013.00115
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2013-10-15 接受日期Accepted: 2013-10-19
* 通讯作者Author for correspondence (E-mail: chwf@sdau.edu.cn)
多环芳烃(PAHs)对油菜生长的影响及其积累效应
王海翠1 胡林林2 李 敏2 陈为峰1* 王 莹1 周佳佳1
1山东农业大学资源与环境学院, 山东泰安 271018; 2中国环境科学研究院, 北京 100012
摘 要 多环芳烃(PAHs)是持久性有机污染物(POP)之一, 通过大气沉降和污水灌溉能被植物吸收, 对食品生产安全和人类
生命健康具有极大威胁。为探究PAHs对蔬菜作物的生长影响及毒害机理, 采用盆栽试验研究了不同浓度的荧蒽(FLU)和苯并
[a]芘(B[a]P)单独胁迫下对油菜(Brassica chinensis)生长、生理和品质的影响及在油菜茎叶内的积累。结果表明: FLU和B[a]P
在油菜茎叶内的积累量随着土壤中施加浓度的升高而增加, FLU胁迫下各处理间差异显著(p < 0.05), B[a]P胁迫下5.0和10.0
mg·kg–1时积累量与对照(CK)相比显著(p < 0.05)增加, 10.0 mg·kg–1时油菜茎叶内的最大B[a]P积累量没有超过我国食品安全标
准; FLU和B[a]P对油菜叶长、叶宽和地上生物量的影响都是低浓度促进高浓度抑制; FLU和B[a]P胁迫下与CK相比株高和光合
速率(Pn)值都显著(p < 0.05)降低; 对叶绿素含量的影响是低浓度促进高浓度抑制; 从总体来看, FLU胁迫对还原性维生素C
(Vc)具有抑制作用, 5.0 mg·kg–1时Vc含量最低, 而B[a]P胁迫下变化不规律, 在0.5 mg·kg–1胁迫时与CK相比略有增加, 5.0
mg·kg–1时含量最低。
关键词 积累特征, 苯并[a]芘(B[a]P), 油菜, 荧蒽(FLU), 生理响应, 还原性维生素C
Growth effects and accumulations of polycyclic aromatic hydrocarbons (PAHs) in rape
WANG Hai-Cui1, HU Lin-Lin2, LI Min2, CHEN Wei-Feng1*, WANG Ying1, and ZHOU Jia-Jia1
1College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China; and 2Chinese Research Academy of Environ-
mental Science, Beijing 100012, China
Abstract
Aims Polycyclic aromatic hydrocarbons (PAHs) are a large class of ubiquitously occurring persistent organic
pollutants (POP). Plants can take up PAHs through atmospheric sedimentation and sewage irrigation, resulting in
serious hazards on the food safety and human’s health. Our objective was to investigate the effects of fluoranthene
(FLU) and benzo-a-pyrene (B[a]P) on growth, physiological performance, and quality of rape (Brassica chinen-
sis), and to understand their patterns of accumulations in stem and leaves.
Methods Rape seedlings were transplanted to grow in soils with different rates of FLU and B[a]P addition, i.e.
0, 0.5, 1.0, 5.0, and 10.0 mg·kg–1, respectively. Growth indicators including leaf length, leaf width, plant height
and aboveground biomass, and physiological properties including photosynthetic rate (Pn), chlorophyll content,
and the content of vitamin C were measured to determine the effects of the two PAHs on rape. Accumulations of
FLU and B[a]P were measured by the method of high performance liquid chromatography (HPLC). Pearson cor-
relation analysis was performed to investigate the relationships between the accumulations of the PAHs and vari-
ous growth indicators.
Important findings We found that the accumulated concentrations of FLU and B[a]P in rapes increased with the
level of FLU and B[a]P in soils. The accumulations of FLU in stems and leaves differed significantly (p < 0.05)
among treatments with different rates of FLU addition. As compared with the control (CK), the accumulations of
B[a]P in rapes significantly increased in treatments with 5.0 and 10.0 mg·kg–1 B[a]P addition, and the highest
amount of accumulation at 10 mg·kg–1 was below the national food security standard. Low concentrations of FLU
and B[a]P had positive effects on leaf length, leaf width and the aboveground biomass; whereas high concentra-
tions had negative impacts. As compared with CK, plant height and Pn significantly decreased with of the level of
FLU and B[a]P treatments. Chlorophyll content increased at lower concentrations but declined at higher concen-
trations. Overall, the reduced vitamin C was inhibited by FLU; it was lowest at 5.0 mg·kg–1 of FLU. The reduced
vitamin C varied irregularly with B[a]P treatments; it increased slightly at 0.5 mg·kg–1 of B[a]P and was lowest at
5.0 mg·kg–1 of B[a]P, compared with CK.
1124 植物生态学报 Chinese Journal of Plant Ecology 2013, 37 (12): 1123–1131
www.plant-ecology.com
Kew words accumulation characteristics, benzo-a-pyrene (B[a]P), Brassica chinensis, fluoranthene (FLU),
physiological response, reduced vitamin C
多环芳烃(PAHs)是一类由2个或2个以上苯环
组成的不规则的中性或非极性的有机化合物
(Bamforth & Singleton, 2005), 同时也是一大类在环
境中无处不在的持久性有机污染物(POP) (Jung et
al., 2010; Patrolecco et al., 2010)。其中有一些具有
“致癌, 致畸, 致突变”的危害(Chen & Liao, 2006)。
大约有200多种PAHs以气态或者颗粒态存在于大
气、水体、土壤中(匡少平和孙亚东, 2007)。这类污
染物主要产生于有机化合物的不完全燃烧过程
(Maliszewska-Kordybach, 2005)。研究发现PAHs主
要来源于石油化工和焦化冶炼(Xu et al., 2006), 另
外, 交通工具燃料的燃烧(Castellano et al., 2003),
家庭装修, 锅炉和香烟的燃烧等(Jedrychowski et
al., 2005)也是其来源之一。近年来, 由于各国经济
和交通的巨大发展, PAHs在各个国家持续快速地释
放进入大气、水体和土壤之后, 通过大气沉降及污
水灌溉被植物吸收。PAHs在植物体内的积累严重影
响农产品质量与品质, 并通过食物链危害人与其他
生物的健康和生命安全, 所以PAHs已经被很多国
家列为优先控制污染物之一(Yan et al., 2004)。
PAHs的环境污染 (Tremolada et al., 2009;
Slezakova et al., 2013)、转移(Niu et al., 2013)、降解
(Yuan et al., 2000)及对人和动物的危害(Donnellya
et al., 2004)一直是研究的热点问题。关于植物的研
究主要集中在植物修复、耐毒性和生理影响上(刘宛
等, 2003; Pašková et al., 2006), 对蔬菜作物的生长
及品质的影响研究较少。本实验以最常见的油菜
(Brassica chinensis)为供试植物, 系统地研究了荧蒽
(FLU)和苯并芘(B[a]P)对油菜生长、生理和品质的
影响, 测定了两种物质在油菜茎叶中的积累量, 以
期为科学预测和评估PAHs污染物对油菜的生态效
应以及作物安全生产提供基础资料和科学依据。
1 材料和方法
1.1 试验材料
供试土壤为棕壤(未检测到PAHs), 其基本农化
性状为 : pH 6.34, 有机质13.89 g·kg–1, 全氮1.91
g·kg–1, 速效磷64.72 mg·kg–1, 速效钾37.50 mg·kg–1。
供试油菜品种为‘四月慢’, 由山东省青州市宏源蔬
菜种子有限公司提供。供试试剂苯并(a)芘(B[a]P)
购自上海亨代劳生物有限公司(CAS: 50-32-8), 荧
蒽 (FLU)购自上海安普科学仪器有限公司 (CAS:
206-44-0)。二氯甲烷、丙酮、正己烷为分析纯, 甲
醇为色谱纯, PAHs标准液购自美国Supelco公司。
主要仪器: KQ-300DE医用数控超声波清洗器
(苏州江东精密仪器公司), NE-1001旋转蒸发器 ,
LC-10AVP型高效液相色谱仪 (HPLC) (Shimadzu
Scientific Instruments, Kyoto, Japan), 硅胶柱, 0.22
μm滤膜。
1.2 试验设计
盆栽试验于2012年3–6月在山东农业大学南校
区试验站(36°10′15′′ N, 117°08′55′′ E, 海拔130 m)网
室内进行, 将预先制成的有机污染物丙酮溶液倒入
2 kg土壤中, 试验各处理浓度为0、0.5、1.0、5.0、
10.0 mg·kg–1 (每个处理只加入一种污染物), 搅拌均
匀, 置于黑暗条件下, 待丙酮挥发干净; 将含各浓
度有机物的土壤装于瓦盆(内径15 cm ×高17 cm)中,
加等量去离子水调节土壤含水量为最大持水量的
70%, 捣碎土壤以防止结块, 整平后往盆内移栽长
势一致的6叶油菜幼苗。各处理置于自然条件下避
雨培养, 常规管理。各处理培养42天后收获。
1.3 测定指标及测定方法
1.3.1 油菜茎叶中多环芳烃积累量的测定
油菜收获后洗净擦干, 65 ℃烘干, 粉碎, 取2 g
样品于25 mL玻璃离心管中, 用30 mL 1:1的丙酮和
正己烷溶液分3次, 每次10 mL超声萃取30 min, 萃
取液全部转移到旋转蒸发瓶中; 40 ℃条件下浓缩至
干, 用正己烷定容到2 mL, 取1 mL定容后的溶液过
硅胶柱净化, 用一定量的二氯甲烷溶液洗脱; 洗脱
液转移至旋转蒸发瓶中, 40 ℃条件下浓缩至干, 甲
醇定容至2 mL, 过0.22 μm孔径滤膜, 用高效液相
色谱分析(凌婉婷等, 2006)。测定过程中每进10个样
增加一个标样进行浓度校正。样品采用外标法定
量。
分析条件(黄东勤, 2007)为: 柱温为20 ℃; 流
动相为水/乙腈; 流速为1.0 mL·min–1; 进样量为10
μL; 紫外检测器的波长为389 nm。梯度洗脱条件见
表1。
王海翠等: 多环芳烃(PAHs)对油菜生长的影响及其积累效应 1125
doi: 10.3724/SP.J.1258.2013.00115
1.3.2 生物量、叶长、叶宽、株高、光合速率(Pn)、
叶绿素相对含量、叶绿素含量、还原性维生素C的
测定
油菜收获之前用刻度尺测定其叶长、叶宽及株
高; 用SPAD-502Plus型手持叶绿素仪(北京合众博
普科技发展有限公司)测定相对叶绿素值(SPAD);
用Yaxin-1102型便携式光合蒸腾仪(北京雅欣理仪
科技有限公司)测定Pn; 叶绿素的定量测定参照赵
世杰等(2002)的文献; 将收获的油菜地上和地下部
分开, 用蒸馏水洗净并用吸水纸擦干后称重测定生
物量; 还原性维生素C的测定采用2,6-二氯靛酚法
(鲍士旦, 2000)。
1.4 数据统计
采用SPSS 16.0和Excel进行数据统计与分析。
2 结果和分析
2.1 B[a]P和FLU在油菜茎叶中的积累
油菜茎叶烘干之后进行B[a]P和FLU的高效液
相色谱(HPLC)检测, 结果表明(图1): 油菜茎叶中
B[a]P和FLU的积累量随土壤中施加浓度的升高而
增加。土壤中B[a]P的浓度不小于0.5 mg·kg–1时,
B[a]P的积累量与对照(CK)相比显著增加, 且不同
处理间差异显著。土壤中FLU的浓度为0.5和1.0
mg·kg–1时, 油菜茎叶中FLU的积累量与CK相比略
有增加 , 但差异不显著 ; FLU浓度为5.0和10.0
mg·kg–1时, 积累量显著增加。油菜茎叶对B[a]P和
FLU的吸收积累效应不同, 在10.0 mg·kg–1处理浓度
下, B[a]P的积累量为1.103 μg·kg–1干样, FLU的积累
量为15.629 μg·kg–1干样, 是B[a]P的14.17倍。在CK
中检测到B[a]P, 但在土壤中并没有检测出来。B[a]P
是一种毒性很强的PAHs类物质, FLU属于低毒类
PAHs。我国食品中污染物限量标准(GB 2762-2012)
规定食品中B[a]P的含量不超过5.0μg·kg–1, 对FLU
表1 高效液相色谱梯度洗脱条件
Table 1 Gradient elution of high performance liquid chroma-
tography
时间
Time (min)
水
Water (%)
乙腈
Acetonitrile (%)
0 40 60
1 40 60
20 0 100
42 0 100
50 40 60
60 40 60
图1 多环芳烃在油菜茎叶内的积累量(平均值±标准误差, n = 3)。不同小写字母表示处理间差异显著(p < 0.05) (Duncan多重比
较)。
Fig. 1 The accumulated concentrations of polycyclic aromatic hydrocarbons in stems and leaves of rape (mean ± SE, n = 3). Dif-
ferent lower-case letters indicate significant difference (p < 0.05) (Duncan’s multiple range test). B[a]P, benzo-a-pyrene; FLU,
fluoranthene.
1126 植物生态学报 Chinese Journal of Plant Ecology 2013, 37 (12): 1123–1131
www.plant-ecology.com
没有做出规定。从试验结果看, 油菜茎叶中B[a]P的
积累量没有超过我国食品质量标准。Pearson相关性
分析结果表明(表2)油菜茎叶中B[a]P和FLU的残留
量与土壤中施加的污染物有极显著的相关性, 相关
系数r分别是0.953 (p < 0.01)和0.958 (p < 0.01)。
2.2 对油菜生长的影响
不同浓度B[a]P、FLU胁迫下的油菜叶片外部形
态及生物量变化不同(表3)。随着B[a]P浓度的升高,
油菜叶片的叶长呈现不规律变化, 叶宽呈先升高后
降低的趋势, 株高呈降低趋势, 地上生物量在一定
浓度范围内先增加后降低。与CK相比, 叶长在5.0
mg·kg–1时显著升高, 10.0 mg·kg–1时叶宽略有下降,
但差异不显著; 株高随着B[a]P浓度的升高显著降
低; 地上生物量在0–1.0 mg·kg–1浓度范围内呈增加
趋势, 1.0 mg·kg–1时与CK相比显著增加, 超过1.0
mg·kg–1后地上生物量呈降低趋势, 10.0 mg·kg–1时与
CK相比显著降低。相关关系分析结果(表2)表明, 油
菜的株高与油菜茎叶中B[a]P的累积量具有极显著
负相关性(r = –0.918, p < 0.01), 生物量是植物光合
作用之后积累的有机物的总量(麦博儒等, 2010), 油
菜地上生物量的测定结果可以反映植物光合作用
强弱及对养分吸收的能力。研究结果表明地上部生
物量与茎叶中B[a]P的累积量具有显著负相关性(r =
–0.548, p < 0.05)。FLU胁迫下, 随着土壤中FLU浓度
的升高, 油菜叶长、叶宽及地上生物量呈先增加后
降低的趋势, 株高呈现降低趋势。与CK相比, 叶宽
在0.5 mg·kg–1时显著增大, 其他浓度下变化不显著,
地上生物量在0.5和1.0 mg·kg–1时显著增加, 在10.0
mg·kg–1时显著降低。相关性分析结果表明(表2)株高
与油菜茎叶中FLU的累积量具有极显著负相关性(r
= –0.953, p < 0.01), 地上部生物量与茎叶中FLU的
累积显著负相关(r = –0.554, p < 0.05)。
2.3 对油菜光合和叶绿素含量的影响
光合作用是影响作物产量形成的决定性因素,
在试验中利用便携式光合速率测定仪测定油菜的
Pn, 结果显示(图2), FLU胁迫下, 油菜的Pn随着土
壤中FLU浓度的升高呈先降低后升高的趋势; B[a]P
胁迫下, Pn随着土壤中B[a]P浓度的升高呈逐渐降低
表2 油菜茎叶内苯并[a]芘和荧蒽积累量与相关指标的
Pearson相关性分析
Table 2 Pearson correlation analysis between benzo-a-pyrene
(B[a]P) and fluoranthene (FLU) concentrations and relevant
indicators
指标
Indicator
苯并[a]芘
B[a]P
荧蒽
FLU
施入土壤中污染物浓度
Pollutant concentration added in soil
0.953** 0.958**
叶长 Leaf length –0.011 –0.339
叶宽 Leaf width –0.019 –0.318
株高 Plant height –0.918
** –0.953**
地上生物量 Aboveground biomass –0.548
* –0.554*
光合速率 Photosynthetic rate –0.904
** –0.242
叶绿素 Chlorophyll –0.801
** –0.909**
叶绿素a Chlorophyll a –0.816
** –0.909**
叶绿素b Chlorophyll b –0.744
** –0.896**
还原性维生素C Reducing vitamin C –0.477 –0.446
*, p < 0.05; **, p < 0.01.
表3 不同浓度苯并[a]芘(B[a]P)和荧蒽(FLU)胁迫对油菜生长指标的影响(平均值±标准误差)
Table 3 Influences of different levels of benzo-a-pyrene (B[a]P) and fluoranthene (FLU) treatments on growth indicators in rape
(mean ± SE)
污染物
Pollutant
浓度
Concentration (mg·kg–1)
叶长
Leaf length (cm)
叶宽
Leaf width (cm)
株高
Plant height (cm)
地上部生物量
Aboveground biomass (g·pot–1)
B[a]P 0 12.54 ± 0.162bc 8.01 ± 0.076b 28.99 ± 0.275a 205.67 ± 1.764b
0.5 11.67 ± 0.211c 8.08 ± 0.232b 26.65 ± 0.491b 191.67 ± 5.044b
1.0 12.77 ± 0.216ab 8.39 ± 0.591b 24.86 ± 0.267c 249.00 ± 4.583a
5.0 13.67 ± 0.309a 9.98 ± 0.643a 23.97 ± 0.543c 199.67 ± 6.642b
10.0 11.84 ± 0.484bc 7.45 ± 0.484b 22.73 ± 0.135d 154.33 ± 6.119c
FLU 0 12.54 ± 0.162a 8.01 ± 0.076b 28.99 ± 0.275a 205.67 ± 1.764cd
0.5 13.52 ± 0.993a 10.10 ± 0.865a 27.55 ± 0.492b 239.33 ± 10.039ab
1.0 13.56 ± 0.423a 9.10 ± 0.787ab 27.14 ± 0.516b 260.67 ± 4.177a
5.0 13.02 ± 0.637a 9.00 ± 0.562ab 23.59 ± 0.358c 218.05 ± 14.189c
10.0 11.97 ± 0.770a 7.76 ± 0.255b 22.58 ± 0.133c 183.13 ± 7.024d
不同小写字母表示处理间差异显著(p < 0.05) (Duncan多重比较)。
Different lower-case letters indicate significant difference (p < 0.05) (Duncan’s multiple range test).
王海翠等: 多环芳烃(PAHs)对油菜生长的影响及其积累效应 1127
doi: 10.3724/SP.J.1258.2013.00115
图2 不同浓度多环芳烃(PAHs)胁迫对油菜光合速率的影响
(平均值±标准误差, n = 3)。不同小写字母表示处理间差异显
著(p < 0.05) (Duncan多重比较)。B[a]P, 苯并[a]芘; FLU, 荧
蒽。
Fig. 2 Influences of different levels of polycyclic aromatic
hydrocarbons (PAHs) treatments on photosynthetic rate (Pn) in
rape (mean ± SE, n = 3). Different lower-case letters indicate
significant difference (p < 0.05) (Duncan’s multiple range test).
B[a]P, benzo-a-pyrene; FLU, fluoranthene.
趋势。与CK相比, FLU处理下的Pn显著降低, 但是
FLU胁迫的各个处理之间变化不显著, 1.0 mg·kg–1
时Pn值最小, 与CK相比降低了16.35%, 相关性结果
(表2)显示FLU胁迫下, Pn与油菜茎叶内FLU的积累
量没有显著相关性。不同浓度的B[a]P处理下油菜
Pn与CK相比显著降低, 10.0 mg·kg–1时Pn值最低, 与
CK相比降低了29.97%, 相关性结果显示油菜茎叶
内B[a]P的积累量与Pn之间有极显著负相关性, 相
关系数r值是–0.904 (p < 0.01)。
油菜叶片中叶绿素含量用Chl a + Chl b表示,
叶绿素a的含量用Chl a表示, 叶绿素b含量用Chl b
表示。不同浓度FLU、B[a]P胁迫下的油菜叶片的Chl
a + Chl b、 Chl a、Chl b都随着这两种污染物浓度
的升高呈先增加后降低的趋势(表4)。FLU胁迫下,
Chl a、Chl b在0.5 mg·kg–1时, 与对照(CK)相比显著
增加, 1.0 mg·kg–1时两者的含量略有下降但与对照
(CK)相比并不显著, 5.0和10.0 mg·kg–1时显著降低,
各个处理之间差异显著。B[a]P胁迫下, 与对照(CK)
相比Chl a、Chl b在0.5 mg·kg–1时显著升高, Chl a在
1.0 mg·kg–1时略有下降但不显著, 5.0和10.0 mg·kg–1
时, Chl a与对照(CK)相比显著降低。Chl b含量在
10.0 mg·kg–1时与对照(CK)相比显著降低。
相关性分析结果显示(表2) Chl a + Chl b、Chl
a、Chl b与油菜茎叶中FLU的积累量有极显著相关
性, 相关系数r分别为–0.909、–0.909、–0.896 (p <
0.01), 与B[a]P的相关系数r分别为–0.801、–0.816、
–0.744 (p < 0.01)。
2.4 对油菜还原性维生素C的影响
维生素C是人体生命活动必不可缺的营养物质,
是评价油菜品质的一个重要指标之一。图3显示不
同浓度的FLU胁迫下, 油菜茎叶中的还原性维生素
C随着FLU浓度的升高呈现先降低后升高的变化,
B[a]P胁迫下, 还原性维生素C随着B[a]P浓度的升
高变化不规律。FLU胁迫下, 与CK相比, 1.0和5.0
mg · kg – 1时还原性维生素C含量显著降低 , 5 .0
mg·kg–1时含量最低, 比CK降低了42.41%, 0.5和10.0
mg·kg–1时与CK相比变化不显著。B[a]P胁迫下, 超
表4 不同浓度苯并[a]芘和荧蒽胁迫对油菜叶绿素含量的影响(平均值±标准误差)
Table 4 Influences of different levels of benzo-a-pyrene (B[a]P) and fluoranthene (FLU) treatments on chlorophyll content in rape
(mean ± SE)
荧蒽 FLU 苯并[a]芘 B[a]P 浓度
Concentration
(mg·kg–1) 叶绿素含量 Chl a + Chl b (mg·kg–1)
叶绿素a含量
Chl a (mg·kg–1)
叶绿素b含量
Chl b (mg·kg–1)
叶绿素含量
Chl a + Chl b (mg·kg–1)
叶绿素a含量
Chl a (mg·kg–1)
叶绿素b含量
Chl b (mg·kg–1)
0 1.539 ± 0.081b 1.102 ± .0055b 0.437 ± 0.028b 1.539 ± 0.081b 1.102 ± 0.055b 0.437 ± 0.028b
0.5 1.938 ± 0.033a 1.412 ± 0.026a 0.526 ± 0.007a 2.079 ± 0.064a 1.470 ± 0.053a 0.609 ± 0.012a
1.0 1.511 ± 0.024b 1.061 ± 0.019b 0.451 ± 0.005b 1.517 ± 0.013b 1.094 ± 0.019b 0.423 ± 0.004b
5.0 1.120 ± 0.009c 0.757 ± 0.008c 0.363 ± 0.004c 1.317 ± 0.027c 0.899 ± 0.008c 0.417 ± 0.003b
10.0 0.876 ± 0.017d 0.589 ± 0.014d 0.287 ± 0.006d 0.832 ± 0044d 0.575 ± 0.014d 0.257 ± 0.015c
不同小写字母表示处理间差异显著(p < 0.05) (Duncan多重比较)。
Different lower-case letters indicate significant difference (p < 0.05) (Duncan’s multiple range test).
1128 植物生态学报 Chinese Journal of Plant Ecology 2013, 37 (12): 1123–1131
www.plant-ecology.com
图3 不同浓度多环芳烃(PAHs)胁迫对油菜茎叶中还原性维生素C的影响(平均值±标准误差, n = 3)。不同小写字母表示处理间
差异显著(p < 0.05) (Duncan多重比较)。B[a]P, 苯并[a]芘; FLU, 荧蒽。
Fig. 3 Influences of different levels of polycyclic aromatic hydrocarbons (PAHs) treatments on reduced vitamin C in stems and
leaves of rape (mean ± SE, n = 3). Different lower-case letters indicate significant difference (p < 0.05) (Duncan’s multiple range
test). B[a]P, benzo-a-pyrene; FLU, fluoranthene.
过0.5 mg·kg–1时, 还原性维生素C与CK相比, 随着
B[a]P浓度的升高显著降低, 5.0 mg·kg–1时含量最低,
比CK降低了33.45%。相关性分析结果表明(表2)还
原性维生素C含量的变化与FLU、B[a]P在油菜茎叶
内的积累量没有显著Pearson相关性。
3 讨论
从过去几十年到现在, 一部分学者认为, 土壤
中PAHs的去除主要是通过植物根部吸收累积和生
物降解(宋玉芳等, 2001)。但也有研究并不认同这种
方式, 认为PAHs是亲脂性物质, 能够强烈地吸附在
土壤中, 很难进入植物组织中, 或者可以进入植物
的根部但不会进入植物组织内部, PAHs能够在植物
地上部分积累主要是由于植物的地上部分吸收了
大气中的PAHs (Wild & Jones, 1994)。在本试验中,
因周期较短, 土壤中的B[a]P和FLU只有微量挥发
到空气中, 且空气中的PAHs被植物地上部分的吸
收也是一个缓慢的过程, 因此我们认为, 油菜对
FLU、B[a]P的吸收主要是通过根部。
油菜茎叶中FLU, B[a]P的积累量随着土壤中这
两种污染物施加浓度的升高而增加, 在油菜茎叶的
空白对照中检测出了B[a]P, 但没有检测到FLU。这
是因为随着现代化工业的发展, B[a]P的生产积累量
迅速上升, 并且B[a]P具有生成量大、分布范围广、
传播速度快、稳定性强、挥发性小、附着性大的特
性, 绝大部分以颗粒态存在于大气中, 能通过大气
沉降被植物叶片吸收(匡少平和孙亚东, 2001; 冉飞
亚, 2010), 所以推测对照中检测出的B[a]P来自于大
气沉降。从试验结果(图1)还得出油菜茎叶中FLU的
积累量远远超过B[a]P的积累量, 说明FLU比B[a]P
更容易通过根系转移到地上部分。我们认为可能有
三方面的原因: 一是在其他外界条件一致的前提
下, FLU更容易被油菜根系吸收。植物体内物质的运
输以水为主(Simonich & Hites, 1995 ), FLU与苯
B[a]P的水溶解度分别为0.26和0.003 8 mg·L–1 (丁
锁, 2007; 李静等, 2008), FLU的水溶解度是B[a]P的
68.42倍, 且B[a]P是高毒类物质, FLU是低毒类物
质, 根据油菜抵制外界不良条件的自身保护机制及
两者的水溶解度推测, 油菜根系更容易通过吸收水
分来吸收FLU。二是油菜根系中的FLU比B[a]P容易
转移到茎叶中 , 高拯民等 (1981)研究指出水稻
(Oryza sativa)根系吸收的B[a]P很难转移到地上部
分, 但关于FLU从根系转移到植物地上部分的研究
很少, 从图1的结果及高拯民等(1981)的研究可推测
FLU比B[a]P更容易转移到茎叶中。三是因为中低环
PAHs比高环PAHs可能更容易被蔬菜根部吸收。尹
春芹等(2008)在研究农田土壤中16种优先控制的
PAHs污染物在蔬菜体内的积累特征时证明了这一
点。因为B[a]P是5环PAHs, FLU是4环PAHs, 以此推
测, 油菜根系比较容易吸收FLU, 向地上部分转移
的量更多。
植物生长指标的变化是植物受到不同程度胁
迫伤害的直观表现症状, 通常, 植物对一些物质的
胁迫具有一定的耐受域值, 在一定域值内, 植物生
王海翠等: 多环芳烃(PAHs)对油菜生长的影响及其积累效应 1129
doi: 10.3724/SP.J.1258.2013.00115
长受到的抑制影响并不显著, 甚至能够刺激植物的
生长; 超过这一域值, 植物的正常生长就会受到抑
制, Maliszewska-Kordybach和Smreczak (2000)报道,
由芴、蒽、芘及屈4种PAHs组成的混合物, 在浓度
不超过10 mg·kg–1时促进了小麦(Triticum aestivum)、
玉米(Zea mays)及燕麦(Avena sativa)的生长, 高浓
度时抑制生长; 刘泓等(2008)研究了不同浓度FLU
培养基对拟南芥(Arabidopsis thaliana)生长的影响,
发现不同浓度FLU胁迫30天后拟南芥生长量明显受
到不同程度的抑制, 且随着浓度的升高, 拟南芥的
个体逐渐变小, 叶片变小且数量变少。这些研究都
表明, 高浓度PAHs胁迫抑制植物的生长, 但很多
PAHs的抑制作用机制尚不明确, 低浓度的PAHs对
油菜生长的促进作用, 有学者推测是因为PAHs具
有与植物生长激素类似的作用(陈世军等, 2012), 但
也仅仅局限于推测, 还没有被试验和实践证实。Chl
a、Chl b是影响植物光合作用的两个重要因素, 图2
和表4的结果显示, Pn的变化与Chl a、Chl b含量的变
化并不一致, FLU、B[a]P胁迫下, Chl a、Chl b的含
量升高时Pn值反而下降, 黄健等(2000)研究蒽对海
洋微藻的光合和叶绿素含量的影响时发现, 有时光
合色素含量低时光合作用反而强, 这证明叶绿素含
量与Pn的变化并不是一直一致。McCan等(2000)研
究认为PAHs能够影响细胞膜结构, 所以我们推测
PAHs影响了油菜光合作用进行的场所或者某个光
合过程。关于PAHs对植物体内Chl a、Chl b的影响
的研究表明, 在PAHs胁迫下, 叶绿素含量普遍会降
低(刘泓等, 2008; 尹春芹等, 2007), Reilley等(1996)
认为植物地上部叶片叶绿素含量下降的原因可能
是PAHs对植物根系从土壤中吸收水分和养分的能
力有影响, 导致色素合成受影响, 因此本研究今后
应对油菜的水分吸收和养分吸收能力进行深入的
研究。
FLU和B[a]P单独胁迫下, 油菜茎叶的还原性
维生素C含量并没有随着土壤中这两种污染物浓度
的升高而一直降低。FLU胁迫下还原性维生素C含
量随着这两种污染物浓度的升高表现为先减少后
增加, 在10.0 mg·kg–1时, 与CK相比略有降低但差
异不显著; B[a]P胁迫下随着浓度的升高呈先增加后
降低再增加的波浪形变化, 在10.0 mg·kg–1时, 与
CK相比含量显著降低。关于PAHs对蔬菜品质的影
响鲜有报道, 对油菜中维生素C含量的影响尚未见
报道, 本研究对油菜茎叶中还原性维生素C含量的
影响只是初步的研究, B[a]P和FLU在10.0 mg·kg–1
时, 油菜的还原性维生素C含量呈现升高趋势的原
因尚未知, 这两种污染物胁迫下的还原性维生素C
的变化规律也不相同 , 这些都有待于进一步的
研究。
基金项目 国家公益性行业 (环保 )科研专项
(200809047)。
参考文献
Bamforth SM, Singleton L (2005). Bioremediation of poly-
cyclic aromatic hydrocarbons: current knowledge and fu-
ture directions. Journal of Chemical Technology and Bio-
technology, 80, 723–736.
Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd
edn. China Agricultural Press, Beijing. 359–362. (in Chi-
nese) [鲍士旦 (2000). 土壤农化分析. 第三版. 中国农
业出版社, 北京. 359–362.]
Castellano AV, Cancio JL, Alemán SP, Rodríguez JS (2003).
Polycyclic aromatic hydrocarbons in ambient air particles
in the city of Las Palmas de Gran Canaria. Environment
International, 29, 475–480.
Chen SC, Liao CM (2006). Health risk assessment on human
exposed to environmental polycyclic aromatic hydrocar-
bons pollution sources. Science of the Total Environment,
366, 112–123.
Chen SJ, Zhu XL, Feng XZ, Huang LQ, Mei YQ (2012). Effect
of polycyclic aromatic hydrocarbons (PAHs) on plant.
Bulletin of Biology, 45(2), 9–11. (in Chinese) [陈世军, 祝
贤凌, 冯秀珍, 黄烈琴, 梅运群 (2012). 多环芳烃对植
物的影响. 生物学通报, 45(2), 9–11.]
Ding S (2007). Studies on Transport and Degradation of Poly-
cyclic Aromatic Hydrocarbons in Soil-Plant Systems.
Master degree dissertation, Shandong Agricultural Uni-
versity, Taian. 23. (in Chinese with English abstract). [丁
锁 (2007). 多环芳烃在土壤-植物系统中的迁移及其降
解研究. 硕士学位论文, 山东农业大学, 泰安. 23.]
Donnellya KC, Lingenfelterb R, Cizmas L, Falahatpisheh MH,
Tang YC, Garcia S, Ramos K, Tiffany-Castiqlioni E,
Mumtaz MM (2004). Toxicity assessment of complex
mixtures remains a goal. Environmental Toxicology and
Pharmacology, 18, 135–141.
Gao ZM, Wu WZ, Xie CG, Wu YY, Sun TH, Chen QR, Shi Y,
Liu JH, Xiong XZ, Dai TS, Deng TS, Deng WD (1981).
Carcinogenic benzo(a)pyrene pollution in soil-plant sys-
tem. Acta Scientiae Circumstantiae, 1, 12–30. (in Chinese
with English abstract) [高拯民, 吴维中, 谢重阁, 吴燕
玉, 孙铁珩, 陈铨荣, 石英, 刘均祜, 熊先哲, 戴同顺,
邓卫东 (1981). 致癌物苯并(a)芘[Benzo(a)Pyrene]对土
1130 植物生态学报 Chinese Journal of Plant Ecology 2013, 37 (12): 1123–1131
www.plant-ecology.com
壤-植物系统污染研究. 环境科学学报, 1, 12–30.]
Huang DQ, Wang SC, Chen YQ, Wu XP, Luo YP (2008). De-
termination of 16 PAHs in soil samples using accelerated
solvent extraction and HPLC. Environmental Monitoring
in China, 24(3), 26–28. (in Chinese with English abstract)
[黄东勤, 王盛才, 陈一清, 吴小平, 罗岳平 (2008). 高
效液相色谱法测定土壤中16种多环芳烃. 中国环境监
测, 24(3), 26–28.]
Huang J, Tang XX, Wang RQ, Li YQ (2000). Toxic effects of
anthracene on three species of marine microalgae. Acta
Phytoecologica Sinica, 24, 736–738. (in Chinese with
English abstract) [黄健 , 唐学玺 , 王仁卿 , 李永祺
(2000). 蒽对3种海洋微藻致毒效应的研究. 植物生态
学报, 24, 736–738.]
Jedrychowski W, Galas A, Pac A, Flak E, Camman D, Rauh V,
Perera F (2005). Prenatal ambient air exposure to poly-
cyclic aromatic hydrocarbons and the occurrence of respi-
ratory symptoms over the first year of life. European
Journal of Epidemiology, 20, 775–782.
Jung JE, Lee DS, Kim SJ, Kim DW, Kim SK, Kim JG (2010).
Proximity of field distribution of polycyclic aromatic hy-
drocarbons to chemical equilibria among air, water, soil,
and sediment and its implications to the coherence criteria
of environmental quality objectives. Environ Science &
Technology, 44, 8056–8061.
Kuang SP, Sun YD (2007). Toxicological characteristics and
biomarkers of polycyclic aromatic hydrocarbons (PAHs).
World Sci-Tech R&D, 29(2), 41–47. (in Chinese with
English abstract) [匡少平, 孙亚东 (2007). 多环芳烃的
毒理学特征与生物标记物研究. 世界科技研究与发展,
29(2), 41–47.]
Li J, Lü YL, Wang TY, Jiao WT, Shi YJ, Luo W, Wang G,
Wang B (2008). Simulation of multi-media transfer and
fate of benzo[a]pyrene. Chinese Journal of Environmental
Engineering, 2, 279–284. (in Chinese with English ab-
stract) [李静, 吕永龙, 王铁宇, 焦文涛, 史雅娟, 罗维,
汪光, 王斌 (2008). 苯并[a]芘的环境多介质迁移和归
宿模拟. 环境工程学报, 2, 279–284.]
Ling WT, Gao YZ, Li QL, Xie ZM, Xiong W (2006). Uptake
of phenanthrene and pyrene by ryegrass from water. Acta
Ecologiga Scinica, 26, 3332–3338. (in Chinese with Eng-
lish abstract) [凌婉婷, 高彦征, 李秋玲, 谢正苗, 熊巍
(2006). 植物对水中菲和芘的吸收 . 生态学报 , 26,
3332–3338.]
Liu H, Ye YB, Cui B, Zheng LM, Huang YH, Wang ZH
(2008). Responses of Arabidopsis thaliana to oxidative
stress induced by polycyclic aromatic hydrocarbon
fluoranthene. Chinese Journal of Applied Ecology, 19,
413–418. (in Chinese with English abstract) [刘泓, 叶媛
蓓, 崔波, 郑荔敏, 黄炎和, 王宗华 (2008). 多环芳烃
荧蒽诱导拟南芥氧化胁迫. 应用生态学报, 19, 413–
418.]
Liu W, Li PJ, Zhou QX, Sun TH, Tai PH, Xu HX, Zhang HR
(2003). Effect of short-term phenanthrene stress on SOD
activities and MDA contents in soybean (Glycine max)
seedlings. Chinese Journal of Applied Ecology, 14,
581–584. (in Chinese with English abstract) [刘宛, 李培
军, 周启星, 孙铁珩, 台培华, 许华夏, 张海荣 (2003).
短期菲胁迫对大豆幼苗超氧化物歧化酶活性及丙二醛
含量的影响. 应用生态学报, 14, 581–584.]
Mai BR, Zheng YF, Wu RJ, Liang J, Liu X (2010). Effects of
simulated sulfur-rich, nitric-rich and mixed acid rain on
the physiology, growth and yield of rape (Brassica napus).
Chinese Journal of Plant Ecology, 34, 427–437. (in Chi-
nese with English abstract) [麦博儒, 郑有飞, 吴荣军,
粱骏, 刘霞 (2010). 模拟硫酸型、硝酸型及其混合型酸
雨对油菜生理特性、生长和产量的影响. 植物生态学报,
34, 427–437.]
Maliszewska-Kordybach B (2005). Dissipation of polycyclic
aromatic hydrocarbons in freshly contaminated soils-the
effect of soil physicochemical properties and aging. Wa-
ter, Air, and Soil Pollution, 168, 113–128.
Maliszewska-Kordybach B, Smreczak B (2000). Ecotoxi-
cological activity of soils polluted with polycyclic aro-
matic hydrocarbons (PAHs)—effect on plants. Environ-
mental Technology, 21, 1099–1110.
McCann JH, Greenberg BM, Solomon KR (2000). The effect
of creosote on the growth of an axenic culture of Myrio-
phyllum spicatum L. Aquatic Toxicology, 50, 265–274.
Niu JF, Dai YR, Guo, HY, Xu JJ, Shen ZY (2013). Adsorption
and transformation of PAHs from water by a laccase-
loading spider-type reactor. Journal of Hazardous Materi-
als, 248–249, 254–260.
Pašková V, Hilscherová K, Feldmannová M, Bláhá L (2006).
Toxic effects and oxidative stress in higher plants exposed
to polycyclic aromatic hydrocarbons and their
N-heterocyclic derivatives. Environmental Toxicology and
Chemistry, 25, 3238–3245.
Patrolecco L, Ademollo N, Capri S, Pagnotta R, Polesello S
(2010). Occurrence of priority hazardous PAHs in water,
suspended particulate matter, sediment and common eels
(Anguilla anguilla) in the urban stretch of the River Tiber
(Italy). Chemosphere, 81, 1386–1392.
Ran FY (2010). An advance in the research on benzo[a] pyrene
in environment. Shanghai Environmental Sciences, 29(2),
82–84, 92. (in Chinese with English abstract) [冉飞亚
(2010). 环境中苯并[a]芘的研究进展. 上海环境科学,
29(2), 82–84, 92.]
Reilley KA, Banks MK, Schwab AP (1996). Dissipation of
polycyclic aromatic hydrocarbons in the rhizosphere.
Journal of Environmental Quality, 25, 212–219.
Simonich SL, Hites RA (1995). Organic pollutant accumulation
in vegetation. Environmental Science & Technology, 29,
王海翠等: 多环芳烃(PAHs)对油菜生长的影响及其积累效应 1131
doi: 10.3724/SP.J.1258.2013.00115
2905–2914.
Slezakova K, Pires JCM, Castro D, Alvim-Ferraz MC, Del-
erue-Matos C, Morais S, Pereira MC (2013). PAH air
pollution at a Portuguese urban area: carcinogenic risks
and sources identification. Environmental Science and
Pollution Research International, 20, 3932–3945.
Song YF, Xu HX, Ren LP (2001). Bioremediation of mineral
oil and polycyclic aromatic hydrocarbons (PAHs) in soils
with two plant species. Chinese Journal of Applied Ecol-
ogy, 12, 108–112 (in Chinese with English abstract) [宋玉
芳, 许华夏, 任丽萍 (2001). 两种植物条件下土壤中矿
物油和多环芳烃(PAHs)的生物修复研究. 应用生态学
报, 12, 108–112.]
Tremolada P, Parolini M, Binelli A, Ballabio C, Comolli R,
Provini A (2009). Seasonal changes and temperature-
dependent accumulation of polycyclic aromatic hydrocar-
bons in high-altitude soils. Science of the Total Environ-
ment, 407, 4269–4277.
Wild SR, Jones KC (1994). The significance of polynuclear
aromatic hydrocarbons applied to agricultural soils in
sewage sludges in the U.K. Waste Management & Re-
search, 12, 49–59.
Xu SS, Liu WX, Tao S (2006). Emission of polycyclic aro-
matic hydrocarbons in China. Environmental Science &
Technology, 40, 702–708.
Yan J, Wang L, Fu PP, Yu HT (2004). Photomutagenicity of 16
polycyclic aromatic hydrocarbons from the US EPA prior-
ity pollutant list. Mutation Research, 557, 99–108.
Yin CQ, Jiang X, Yang XL, Wang CY, Bian YR, Wang F
(2008). Characters of soil-vegetable transfer and accumu-
lation of polycyclic aromatic hydrocarbons. Environ-
mental Science, 29, 3240–3245. (in Chinese with English
abstract) [尹春芹, 蒋新, 杨兴伦, 王聪颖, 卞永荣, 王
芳 (2008). 多环芳烃在土壤-蔬菜界面上的迁移与积累
特征. 环境科学, 29, 3240–3245.]
Yin Y, Sun YY, Guo HY, Wang XR (2007). Bio-toxic effect of
pyrene on Vallisneria spiralis. Chinese Journal of Applied
Ecology, 18, 1528–1533. (in Chinese with English ab-
stract) [尹颖, 孙媛媛, 郭红岩, 王晓蓉 (2007). 芘对苦
草的生物毒性效应. 应用生态学报, 18, 1528–1533.]
Yuan SY, Wei SH, Chang BV (2000). Biodegradation of poly-
cyclic aromatic hydrocarbons by a mixed culture.
Chemosphere, 41, 1463–1468.
Zhao SJ, Shi GA, Dong XC (2002). Guidance of Plant Physio-
logical Experiment. Chinese Agricultural Science and
Technology Press, Beijing. 55–57. (in Chinese) [赵世杰,
史国安, 董新纯 (2002). 植物生理学实验指导. 中国农
业科学技术出版社, 北京. 55–57.]
责任编委: 骆世明 责任编辑: 李 敏