为探明山西不同生态型大豆(Glycine max)品种对苗期低温胁迫的应答表现, 寻求大豆苗期耐低温性综合评价指标和评价方法, 选取了山西普遍种植的‘晋大53’、‘晋大70’和‘晋豆24’ 3个不同生态型大豆品种, 在苗期将材料分别置于14、17和20 ℃人工气候箱中, 保持昼夜恒温, 进行低温胁迫处理。分别测定了各品种光合与产量性状值, 用基因型主效应及其与环境互作(GGE)双标图分析各性状对品种的效应及性状间的相关性, 应用隶属函数法综合评价各品种的苗期耐低温性。结果显示: 低温胁迫下不同生态型大豆品种苗期延长1-12天; 苗期光合性状值均下降, 其中, 叶片气孔导度(Gs)和蒸腾速率(Tr)下降最明显; 产量性状值均呈下降趋势, 单株生物量和单株荚数下降最明显; 各项性状在不同品种中对低温的应答效应不同, 且性状间存在明显的相关性, 可作为耐低温性的评价指标。品种‘晋大70’的耐低温性最佳。
Aims Low temperature at the seedling stage is the key factor constraining growth and yield in spring-sowing soybeans (Glycine max) in North China. The objectives of this research were to explore responses of soybean cultivars of different eco-types in Shanxi Province to low temperatures at the seedling stage, to develop indices and approaches for comprehensive evaluation of low-temperature tolerance in soybeans, and ultimately to provide theoretical basis for breeding soybean cultivars of low-temperature tolerance in order to maintain stable yield under the conditions of low temperature stress at the seedling stage. Methods We selected three soybean cultivars (‘Jinda 53’, ‘Jinda 70’ and ‘Jindou 24’) bred and grown widely in Shanxi Province. At the seedling stage, the plant materials were subjected to stress treatments at three levels of low temperatures and a control treatment in growth cabinets. The low temperature treatments were set for 14, 17 and 20 °C, respectively, and the control treatment was maintained at 23 °C. Upon completion of the temperature treatments, the seedlings were transplanted into larger pots and grown in a greenhouse. Values of photosynthetic traits (including net photosynthetic rates (Pn), intercellular CO2 concentration (Ci), stomatal conductance (Gs) and transpiration rate (Tr)) were determined on seedlings. The yield traits (plant height, plant mass, pods per plant and yield per plant) were assessed after harvesting. Furthermore, the genotype main effect plus genotype-environment interaction (GGE) biplot was employed to analyze the effects of various traits on different cultivars and correlations among the traits. Then, subordinate function was applied for comprehensive evaluation of low-temperature tolerance of the three cultivars studied. Important findings (1) The seedling stage of all three cultivars was extended by 1-12 days by the low temperature treatments. (2) Values of the four photosynthetic traits were reduced in seedlings subjected to low temperature treatments; the rate of reduction was significantly greater for Gs and Tr than for the other two traits. Reductions in the values of photosynthetic traits were significantly smaller in the cultivar ‘Jinda 53’ than in other two cultivars, suggesting the stronger low temperature tolerance of this cultivar in terms of photosynthetic capacity. Additionally, ‘Jinda 70’ maintained higher Pn values than the other two cultivars, which was beneficial to greater dry matter accumulation in this cultivar. (3) Values of the four yield traits were all significantly reduced in plants subjected to low temperature treatments at the seedling stage. The rates of reduction were significantly greater for plant mass and pods per plant than for the other two traits. Among the three cultivars tested, the rates of reduction in plant mass and pods per plant were significantly smaller in ‘Jinda 70’ than in other two cultivars. Furthermore, the yield per plant in ‘Jinda 70’ was reduced by less than 50% as a result of low temperature treatments at the seedling stage, indicating that the low temperature stress at the seedling stage had the least effect on the yield in ‘Jinda 70’. (4) GGE biplot analysis revealed the rates of reduction in Tr and Gs had the most apparent effects on ‘Jinda 70’, the rate of reduction in Pn had the most apparent effects on ‘Jindou 24’, and the rate of reduction in Ci affected both ‘Jinda 70’ and ‘Jindou 24’, and that ‘Jinda 53’ was not affected by reductions in any of the photosynthetic traits. Meanwhile, the biplot indicated that there were significant positive correlations among the reduction rates of Tr, Gs, Ci, and Pn. Analysis of the yield traits using the biplot showed that the reduction rates of plant height and plant mass had the most apparent effects on ‘Jinda 53’, the reduction rate of yield per plant had the most apparent effects on ‘Jindou 24’, and the reduction rate of pods per plant affected both ‘Jinda 53’ and ‘Jindou 24’, and that the reduction rates of yield trait values had no apparent effects on ‘Jinda 70’. There were significant positive correlations among the reduction rates of plant mass, plant height, pods per plant, and yield per plant. Hence, the photosynthetic and yield traits can be used as indices for evaluation of low-temperature tolerance. Using subordinate function, the ranking of low-temperature tolerance of the three cultivars at the seedling stage is in the ascending order of ‘Jinda 70’, ‘Jinda 53’, and ‘Jindou 24’.
全 文 :植物生态学报 2014, 38 (9): 990–1000 doi: 10.3724/SP.J.1258.2014.00093
Chinese Journal of Plant Ecology http://www.plant-ecology.com
——————————————————
收稿日期Received: 2014-01-28 接受日期Accepted: 2014-07-02
* 通讯作者Author for correspondence (E-mail: li-gui-quan@126.com)
山西不同生态型大豆品种苗期耐低温性综合评价
郭数进1 李玮瑜2 马艳芸1 赵 恒1 乔 玲1 李贵全1*
1山西农业大学农学院, 山西太谷 030801; 2中国科学院遗传与发育生物学研究所, 北京 100101
摘 要 为探明山西不同生态型大豆(Glycine max)品种对苗期低温胁迫的应答表现, 寻求大豆苗期耐低温性综合评价指标和
评价方法, 选取了山西普遍种植的‘晋大53’、‘晋大70’和‘晋豆24’ 3个不同生态型大豆品种, 在苗期将材料分别置于14、17和
20 ℃人工气候箱中, 保持昼夜恒温, 进行低温胁迫处理。分别测定了各品种光合与产量性状值, 用基因型主效应及其与环境
互作(GGE)双标图分析各性状对品种的效应及性状间的相关性, 应用隶属函数法综合评价各品种的苗期耐低温性。结果显示:
低温胁迫下不同生态型大豆品种苗期延长1–12天; 苗期光合性状值均下降, 其中, 叶片气孔导度(Gs)和蒸腾速率(Tr)下降最明
显; 产量性状值均呈下降趋势, 单株生物量和单株荚数下降最明显; 各项性状在不同品种中对低温的应答效应不同, 且性状
间存在明显的相关性, 可作为耐低温性的评价指标。品种‘晋大70’的耐低温性最佳。
关键词 生态型, 耐低温性, 苗期, 山西, 大豆
Comprehensive evaluation of low-temperature tolerance in soybean cultivars of different
eco-types at seedling stage in Shanxi Province
GUO Shu-Jin1, LI Wei-Yu2, MA Yan-Yun1, ZHAO Heng1, QIAO Ling1, and LI Gui-Quan1*
1College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and 2Institute of Genetics and Developmental Biology, Chinese Academy
of Sciences, Beijing 100101, China
Abstract
Aims Low temperature at the seedling stage is the key factor constraining growth and yield in spring-sowing
soybeans (Glycine max) in North China. The objectives of this research were to explore responses of soybean cul-
tivars of different eco-types in Shanxi Province to low temperatures at the seedling stage, to develop indices and
approaches for comprehensive evaluation of low-temperature tolerance in soybeans, and ultimately to provide
theoretical basis for breeding soybean cultivars of low-temperature tolerance in order to maintain stable yield un-
der the conditions of low temperature stress at the seedling stage.
Methods We selected three soybean cultivars (‘Jinda 53’, ‘Jinda 70’ and ‘Jindou 24’) bred and grown widely in
Shanxi Province. At the seedling stage, the plant materials were subjected to stress treatments at three levels of
low temperatures and a control treatment in growth cabinets. The low temperature treatments were set for 14, 17
and 20 °C, respectively, and the control treatment was maintained at 23 °C. Upon completion of the temperature
treatments, the seedlings were transplanted into larger pots and grown in a greenhouse. Values of photosynthetic
traits (including net photosynthetic rates (Pn), intercellular CO2 concentration (Ci), stomatal conductance (Gs) and
transpiration rate (Tr)) were determined on seedlings. The yield traits (plant height, plant mass, pods per plant and
yield per plant) were assessed after harvesting. Furthermore, the genotype main effect plus genotype-environment
interaction (GGE) biplot was employed to analyze the effects of various traits on different cultivars and correla-
tions among the traits. Then, subordinate function was applied for comprehensive evaluation of low-temperature
tolerance of the three cultivars studied.
Important findings (1) The seedling stage of all three cultivars was extended by 1–12 days by the low tempera-
ture treatments. (2) Values of the four photosynthetic traits were reduced in seedlings subjected to low temperature
treatments; the rate of reduction was significantly greater for Gs and Tr than for the other two traits. Reductions in
the values of photosynthetic traits were significantly smaller in the cultivar ‘Jinda 53’ than in other two cultivars,
suggesting the stronger low temperature tolerance of this cultivar in terms of photosynthetic capacity. Addition-
ally, ‘Jinda 70’ maintained higher Pn values than the other two cultivars, which was beneficial to greater dry mat-
ter accumulation in this cultivar. (3) Values of the four yield traits were all significantly reduced in plants
郭数进等: 山西不同生态型大豆品种苗期耐低温性综合评价 991
doi: 10.3724/SP.J.1258.2014.00093
subjected to low temperature treatments at the seedling stage. The rates of reduction were significantly greater for
plant mass and pods per plant than for the other two traits. Among the three cultivars tested, the rates of reduction
in plant mass and pods per plant were significantly smaller in ‘Jinda 70’ than in other two cultivars. Furthermore,
the yield per plant in ‘Jinda 70’ was reduced by less than 50% as a result of low temperature treatments at the
seedling stage, indicating that the low temperature stress at the seedling stage had the least effect on the yield in
‘Jinda 70’. (4) GGE biplot analysis revealed the rates of reduction in Tr and Gs had the most apparent effects on
‘Jinda 70’, the rate of reduction in Pn had the most apparent effects on ‘Jindou 24’, and the rate of reduction in Ci
affected both ‘Jinda 70’ and ‘Jindou 24’, and that ‘Jinda 53’ was not affected by reductions in any of the photo-
synthetic traits. Meanwhile, the biplot indicated that there were significant positive correlations among the reduc-
tion rates of Tr, Gs, Ci, and Pn. Analysis of the yield traits using the biplot showed that the reduction rates of plant
height and plant mass had the most apparent effects on ‘Jinda 53’, the reduction rate of yield per plant had the
most apparent effects on ‘Jindou 24’, and the reduction rate of pods per plant affected both ‘Jinda 53’ and ‘Jindou
24’, and that the reduction rates of yield trait values had no apparent effects on ‘Jinda 70’. There were significant
positive correlations among the reduction rates of plant mass, plant height, pods per plant, and yield per plant.
Hence, the photosynthetic and yield traits can be used as indices for evaluation of low-temperature tolerance.
Using subordinate function, the ranking of low-temperature tolerance of the three cultivars at the seedling stage is
in the ascending order of ‘Jinda 70’, ‘Jinda 53’, and ‘Jindou 24’.
Key words ecotype, low-temperature tolerance, seedling stage, Shanxi Province, soybean
山西地处黄土高原(34.57°–40.72° N、110.23°–
114.55° E), 拥有生态类型丰富的大豆(Glycine max)
品种(林汉明等, 2009)。大豆是一种典型的喜温作物,
全生育期最适生长温度平均为22–25 ℃ (于振文,
2007), 北方春播大豆苗期易受低温危害, 温度低于
14 ℃时, 大豆生长停滞(于振文, 2007), 继而直接影
响生殖生长(da Cruz et al., 2010; Ohnishi et al.,
2010)。因此, 研究山西不同生态型大豆品种在苗期
低温胁迫下的应答表现及其耐低温性, 并寻求大豆
苗期耐低温性综合评价的指标与方法, 既有揭示该
作物对生态因子反应方式的理论意义; 也有准确筛
选耐低温大豆品种, 保证大豆在异常生态条件下稳
产的实践意义。
作物对低温胁迫的应答深刻影响其生长发育
(Bartholomew & Williams, 2005)。低温下苗期新叶形
成速率显著减慢, 叶片延展程度降低, 冠层捕光和
干物质积累能力降低(Shimono et al., 2011), 光合速
率也急剧下降(Timlin et al., 2006)。不同作物或品种
能以最适当的方式应答低温胁迫, 由于基因型不同
以及与环境互作的差异, 不同品种对低温胁迫的应
答能力显著不同, 造成了品种间耐低温能力的差
异。研究表明, 特定性状对低温胁迫应答能力的差
异, 可以作为品种间耐低温性比较的量度: 如在水
稻生态育种中发现, 可以将受低温损害最大的苗期
和孕穗期时长作为耐低温性评价指标(da Cruz et al.,
2013); 豆科作物的生育期时长和成荚量也可用作
筛选耐低温品种的指标(Berger et al., 2012)。大豆对
低温的反应灵敏而复杂, 涉及发育、生理和生化等
多个层面(Mizoi et al., 2013), 所以难以用单一指标
评价大豆品种的耐低温性。目前对大豆耐低温性的
研究已有一些报道, 蒋洪蔚等(2009)利用大豆回交
导入系, 经过芽期耐低温筛选鉴定, 得到46个耐低
温导入系个体, 并结合随机对照群体和基因型分析,
检测到分布于8个连锁群的12个与大豆芽期耐低温
性相关的数量性状基因(QTL)。张大伟等(2010)测定
了低温胁迫下, 12个大豆品种萌发期的相对电导率、
丙二醛含量、脯氨酸含量和可溶性糖含量等生理指
标, 发现相对电导率、丙二醛含量、脯氨酸含量和
可溶性糖含量在低温时均升高。邱鹏程等(2011)以
大豆回交导入系为材料定位芽期耐盐和耐低温
QTL, 并对这两类QTL进行了遗传重叠分析, 共检
测到22个耐盐QTL和15个耐低温QTL, 有31.81%的
耐盐和耐低温QTL存在遗传重叠。这些研究注重大
豆耐低温基因分析以及低温对保护酶系和渗透调节
物质的影响, 少有报道涉及苗期低温胁迫下, 光合
性状对低温的响应、苗期低温对产量性状及最终产
量所造成的影响。本研究基于山西不同生态型大豆
品种对苗期低温的应答表现, 综合考察光合性状和
产量性状, 检测各品种光合作用和产量形成方面的
耐低温能力, 甄别出受苗期低温影响最大的光合性
992 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (9): 990–1000
www.plant-ecology.com
状和产量性状; 继而用基因型主效应及其与环境互
作(genotype main effect plus genotype-environment
interaction, GGE)双标图揭示各性状对品种的效应
及性状间的相关性, 作为苗期耐低温性评价的直观
指标; 最后, 用隶属函数法综合分析各项指标, 评
价不同生态型品种的苗期耐低温性, 为鉴定、筛选
耐低温种质和大豆耐低温生态育种提供科学依据。
1 材料和方法
1.1 试验材料
选取山西农业大学大豆育种室选育的大豆品种
‘晋大53’ (国审豆2001006)、 ‘晋大70’ (国审豆
2003006)和‘晋豆24’ (晋审豆S-301)为试验材料。供
试材料均为山西或周边省份适生地区广泛种植的大
豆品种, 其中‘晋大53’的种植地区为: 山西中部、河
北南部、河南北部、山东中北部和陕西关中; ‘晋大
70’的种植地区为: 山西晋中、运城、临汾、晋城、
长治、吕梁以及河北、河南、甘肃、宁夏的适生地
区; ‘晋豆24’的种植地区为: 山西太原、忻州、大同、
吕梁、晋中、阳泉、长治、晋城、临汾、侯马、运
城。各品种生物学性状见表1。
1.2 试验设计
试验于2013年在山西农业大学进行。室内对试
验材料进行严格筛选、去杂, 选取饱满、整齐的种
子, 用0.1‰ KMnO4溶液消毒5 min之后, 蒸馏水洗
净, 再用蒸馏水浸种24 h, 5月9日于沙土基质营养钵
中播种。5月15日出苗 (VE期 (Fehr & Caviness,
1977)), 出苗后25天(V4期(Fehr & Caviness, 1977))
开始进行温度处理, 将材料置于4个人工气候箱中,
4个人工气候箱设定温度依次为: 14 ℃、17 ℃、20 ℃
和23 ℃ (对照), 每个处理中, 每品种3次重复。处理
20天后, 将材料全部移栽至温室中盆栽种植, 以保
证材料的土壤条件与管理水平一致。盆栽基质为沙
土有机肥的混合物, 每盆沙:土:有机肥= 2:1:0.1, 土
壤肥力为有机质65.3 g·kg–1, 速效氮70.3 mg·kg–1,
速效磷48.9 mg·kg–1, 速效钾266.6 mg·kg–1。盆高27
cm, 上口径直径为35 cm, 底部直径为22 cm, 每盆
装土20 kg。将盆埋入土壤中, 盆口与地面平齐, 栽
培管理按正常方法进行。
1.3 测定项目与方法
苗期时长测定: 依据Fehr和Caviness (1977)对
大豆营养生长期和生殖生长期的划分, 分别测定各
温度处理下品种的苗期天数。
苗期光合性状测定: 测定不同温度处理下各品
种的净光合速率(Pn)、细胞间CO2浓度(Ci)、叶片气
孔导度(Gs)和蒸腾速率(Tr) 。这4个光合性状是光
合作用受低温抑制时主要的响应指标, 彼此间关
系密切(Cornic, 2000; Flexas et al., 2004, 2006)。在
V4期(6月中下旬), 选择光线好、晴朗无云天气, 用
便携式CI-340超轻型便携式光合测定系统 (CID,
Camas, USA)分别测定各性状指标 , 测定时间从
9:00–17:00, 每2 h测定1次, 每个指标测3次重复,
取平均值。
产量性状测定: 单株产量是大豆总产量的最基
本保证。单株产量与株高、单株生物量和单株荚数
密切关联(Board et al., 2003), 且均呈极显著正相关
(赵晶, 2009)。株高、单株生物量、单株荚数也是干
物质积累并向籽粒中分配, 从而形成产量的直接表
现(Board & Maricherla, 2008)。因此, 在生育期结束
后, 分别测定不同处理下各品种的株高、单株生物
量、单株荚数和单株产量, 考察苗期低温胁迫对大
豆产量的影响。
表1 供试大豆品种生物学性状
Table 1 Biological traits of the soybean cultivars tested
品种
Cultivar
株高
Plant height
(cm)
叶形
Leaf shape
花色
Flower color
茸毛色
Fluff color
种皮色
Seed coat
color
脐色
Hilum color
生育期时长
Breeding period
duration (d)
结荚习性
Growth habit
品种类型
Cultivar type
‘晋大53’
‘Jinda 53’
95–105 椭圆
Ellipse
白色
White
棕色
Brown
黄色
Yellow
褐脐
Brown
125–135 无限
Indeterminate
高产、晚熟
High yield and
late maturity
‘晋大70’
‘Jinda 70’
75–90 椭圆
Ellipse
白色
White
棕色
Brown
黄色
Yellow
淡白
Light white
115–128 有限
Determinate
稳产、中熟
Stable yield and
medium maturity
‘晋豆24’
‘Jindou 24’
80–95 尖叶
Sharp
紫色
Purple
棕色
Brown
黄色
Yellow
淡脐
Light
95–110 亚有限
Semi-
determinate
中产、早熟
Medium yield and
early maturity
郭数进等: 山西不同生态型大豆品种苗期耐低温性综合评价 993
doi: 10.3724/SP.J.1258.2014.00093
1.4 数据处理与统计分析
1.4.1 苗期延长率和性状值下降率的计算
苗期延长率=(某温度苗期天数– 23 ℃苗期天
数)/23 ℃苗期天数× 100%
性状值下降率= (23 ℃性状值–某温度性状
值)/23 ℃性状值× 100%
1.4.2 耐低温隶属函数值
通过隶属函数法, 将各品种苗期延长率、苗期
光合性状值下降率和产量性状值下降率转换为隶属
函数值Xij(u)综合分析, 转换方法如下:
当指标性状值与耐低温性呈正相关时,
Xij(u) = (Xij – Xjmin) / (Xjmax – Xjmin)
当指标性状值与耐低温性呈负相关时,
Xij(u) = (1–Xij – Xjmin) / (Xjmax – Xjmin)
其中, Xij(u)为i品种j性状的隶属函数值; Xij为i品种j
性状值; Xjmin为各品种j性状的最小值; Xjmax为各品
种j性状的最大值。
然后把每个品种各性状隶属函数值进行累加,
求平均值: n为指标性状数量; iX 为品种隶属函数
平均值, 同一温度处理下, 平均值越大, 品种耐低
温性越强。
1.4.3 数据分析
采用统计分析软件DPS 6.5和Microsoft Excel
2003处理所有数据, 用Duncan’s新复极差测验法进
行数据比较。
1.4.4 GGE双标图
采用GGE biplot软件(Yan, 2001)作GGE双标图,
分析性状对品种的效应及性状之间的关系。GGE双
标图是研究基因型与环境互作的新方法。该模型采
用环境中心化后的数据, 结果中只含有与品种评价
有关的G (品种效应)和GE (品种与环境互作效应)
(罗俊等, 2013)。GGE双标图可解决基因环境互作的
影响, 并以图解的方式, 借助辅助线有效地反映各
性状间、各性状与不同品种间的关系(杨进文等,
2013)。
2 结果
2.1 低温对各品种苗期长度和生长性状的影响
对苗期的3个品种进行不同温度胁迫后, 通过
测定各品种苗期的时长可知, 14、17、20 ℃处理后,
各品种苗期时长相比于23 ℃时均有所延长。图1表
明, 各胁迫温度处理后, 虽然3个品种的苗期均有所
延长, 但不同品种的苗期延长率有显著差异: ‘晋大
70’各处理的苗期延长率均显著低于其他两个品种,
尤其是14 ℃处理时 , ‘晋大70’苗期延长率仅为
12.40%, 而 ‘晋大53’和 ‘晋豆24’分别为25.42%和
27.21%。在不同温度因子作用下, 3个品种除苗期时
长发生显著变化外, 各生长性状也表现出极大差异,
从表2可以看出, 14 ℃处理后3个品种的开花数、成
荚率都显著低于23 ℃的水平, 此时主要形成一粒
荚, 而二粒荚数、三粒荚数均显著低于23 ℃的水平,
四粒荚数均为0, 说明这一胁迫温度对各品种的生
殖生长都产生了严重影响; 17和20 ℃处理后, 各品
种的结荚能力有所提高, 但开花数、成荚率和多粒
荚数仍低于23 ℃水平。
图1 胁迫温度处理后各品种苗期延长率(平均值±标准误
差)。不同大写字母表示在0.01水平上差异显著。
Fig. 1 Extension of seedling stage of different cultivars fol-
lowing low temperature stress treatments (mean ± SE). Differ-
ent capital letters indicate significant differences at the level of
0.01.
2.2 低温对各品种苗期光合性状的影响
如图2所示, 在胁迫温度下, 3个品种苗期的4个
光合性状值均有所下降, 其中每个品种的叶片Gs和
Tr的下降率都明显高于另外两个指标的下降率: ‘晋
大53’在14和17 ℃处理下, Tr下降率分别为65.78%和
41.16%, 叶片Gs下降率分别为39.70%和30.02%, 这
两个指标的下降率显著高于其他指标; ‘晋大70’叶
片Gs下降率最显著, 3个处理分别为69.04%、45.07%
和32 .64%, 其次为T r下降率 , 3个处理分别为
49.94%、40.69%和29.71%, 也显著高于另两个指标;
而‘晋豆24’叶片Gs和Tr的下降率也基本高于其他两
个指标。由此可见, 胁迫温度下, 叶片Gs和Tr是对低
∑
=
=
1
1
1
j
Xij
n
iX
994 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (9): 990–1000
www.plant-ecology.com
表2 不同温度处理后各品种生长性状比较(平均值±标准误差, n = 3)
Table 2 Comparisons of growth traits of different cultivars subjected to different temperature treatments (mean ± SE, n = 3)
品种
Cultivar
温度处理
Treatment (℃)
开花数
Flower number
成荚率
Pod-bearing rate
一粒荚数
1-seed pod
number
二粒荚数
2-seed pod
number
三粒荚数
3-seed pod
number
四粒荚数
4-seed pod
number
14 28.33 ± 2.517C 37.67% ± 0.051C 6.00 ± 2.000B 3.67 ± 1.528C 1.00 ± 1.000C 0C
17 46.00 ± 4.583B 44.00% ± 0.040BC 9.33 ± 2.309A 6.33 ± 0.577C 3.33 ± 0.577C 1.33 ± 0.577B
20 52.00 ± 5.568B 53.33% ± 0.067B 4.33 ± 0.577B 11.67 ± 1.155B 10.00 ± 2.00B 1.33 ± 0.577B
‘晋大53’
‘Jinda 53’
23 63.00 ± 4.359A 71.33% ± 0.083A 3.33 ± 0.577B 17.00 ± 2.646A 21.33 ± 1.528A 3.00 ± 0.00A
14 43.00 ± 2.646D 44.33% ± 0.032C 8.67 ± 0.577A 9.67 ± 0.577C 0.67 ± 0.577D 0B
17 58.33 ± 5.132C 56.33% ± 0.025B 5.67 ± 0.577B 15.67 ± 1.154A 11.00 ± 1.00C 0.67 ± 0.577AB
20 67.67 ± 4.509B 64.00% ± 0.032B 2.00 ± 0.000C 11.67 ± 2.081BC 31.33 ± 1.53B 1.33 ± 0.577A
‘晋大70’
‘Jinda 70’
23 77.00 ± 3.606A 83.00% ± 0.078A 1.00 ± 0.000D 13.67 ± 3.055AB 49.00 ± 1.00A 1A
14 24.33 ± 2.517C 47.67% ± 0.015B 4.33 ± 0.577A 6.67 ± 0.577B 0.67 ± 0.577C 0B
17 39.00 ± 0.000B 54.67% ± 0.015B 4.67 ± 0.577A 11.00 ± 1.000A 4.67 ± 0.577B 1B
20 56.33 ± 6.807A 68.67% ± 0.032A 3.00 ± 1.000AB 12.00 ± 1.732A 17.33 ± 1.154A 1.33 ± 0.577B
‘晋豆24’
‘Jindou 24’
23 64.33 ± 6.506A 69.00% ± 0.079A 1.67 ± 1.154B 6.00 ± 1.732B 20.00 ± 3.464A 17.00 ± 3.605A
不同字母表示同一品种的不同处理间在0.01水平上差异显著。
Different letters indicate significant differences among treatments within same cultivars at the level of 0.01.
温最敏感、受影响最大的光合性状。
虽然胁迫温度下, 各品种的光合性状值均呈下
降趋势, 但由于其各自基因型不同, 与环境因子的
互作能力和对生态条件的应答能力也不同, 因此在
遭遇低温时, 各品种光合性状受影响的程度表现出
差异。图3表明, ‘晋大53’在各胁迫温度下, 4个光合
指标的下降率基本都显著低于其他两个品种; ‘晋大
70’的叶片Gs、Tr和Ci 3个指标的下降率均为最高, 而
其Pn整体下降率却并不高, 尤其在20 ℃处理下, 其
Pn下降率反而显著低于其他两个品种(仅为10.32%,
其他两个品种分别为22.52%和27.22%)。
2.3 苗期低温对各品种产量性状的影响
如图4所示, 各胁迫温度处理后, 4个产量性状
值都表现出下降趋势。具体而言, ‘晋大53’和‘晋大
70’单株生物量下降率最高(14 ℃处理后分别高达
85.67%和73.67%), 其次为单株荚数下降率(14 ℃处
理后分别为79.33%和67.33%); 而‘晋豆24’下降率最
高的为单株荚数(14 ℃处理后为82.33%), 其次为单
株生物量(14 ℃处理后为68.33%)。由此可见, 单株
生物量和单株荚数是受苗期低温影响最大的两个产
量性状。
遭受苗期低温胁迫后, 各品种产量性状值均有
所下降, 而就同一性状而言, 不同品种下降程度显
著不同, 说明不同品种的同一产量性状对苗期低温
胁迫的反应能力显著不同。根据图5, 从低温最敏感
的单株生物量和单株荚数下降率可知, ‘晋大70’在
各胁迫处理后, 单株生物量下降率分别为73.67%、
20.33%和10.00%, 低于同处理的其他两个品种(只
有14 ℃处理后的下降率略高于‘晋豆24’); 而其单
株荚数下降率分别为67.33%、24.33%和16.67%, 均
显著低于同处理的其他两个品种。表现在单株产量
上, ‘晋大70’各处理的单株产量下降率显著低于其
他两个品种, 分别仅有41.67%、24.33%和14.33%,
即在低温胁迫后, 减产量均低于50%。从表3也可以
看出, 在14、17和20 ℃ 3个胁迫温度处理后, ‘晋大
70’的最终产量值都高于其他两个品种。
2.4 性状的效应表现与相关性
2.4.1 苗期低温胁迫时光合性状的效应表现与相
关性
如图6所示, 在GGE双标图中, 把各品种的标
志点以直线相连接, 形成一个囊括3个品种及全部
下降率指标的三角形, 从原点(0, 0)起做各边垂线,
把图分为3个扇区, 各下降率落于不同区内, 每区的
顶角代表一个品种, 处在该区内的, 即是对此品种
效应最明显、对其耐低温性影响最大的指标(Yan &
Rajcan, 2002)。4个下降率落于2个分区。Tr和Gs的下
降率落于‘晋大70’区内, Pn下降率落于‘晋豆24’区
内, Ci下降率位于两区交界处, ‘晋大53’区内没有
指标。
如图7所示, 从坐标系原点到每个指标标志点
的连线作为指标向量, 以某一指标向量为起始, 顺
时针旋转, 其他任一指标向量与该线夹角的余弦值
郭数进等: 山西不同生态型大豆品种苗期耐低温性综合评价 995
doi: 10.3724/SP.J.1258.2014.00093
图2 胁迫温度下各品种苗期光合性状值下降率(平均值±标
准误差)。Ci, 胞间CO2浓度; Gs, 气孔导度; Pn, 净光合速率;
Tr, 蒸腾速率。不同大小写字母分别表示在0.01和0.05水平上
差异显著。
Fig. 2 Reduction rates in photosynthetic trait values in seed-
lings of different cultivars subjected to low temperature treat-
ments (mean ± SE). Ci, intercellular CO2 concentration; Gs,
stomatal conductance; Pn, net photosynthetic rate; Tr, transpire-
tion rate. Different capital letters and lower letters indicate sig-
nificant differences at the levels of 0.01 and 0.05, respectively.
即表示这两个指标的相关系数, 两个指标间夹角小
于90°时, 夹角越小, 正相关性越显著; 两个指标间
图3 胁迫温度下各品种光合性状值下降率的比较(平均值±
标准误差)。Ci, 胞间CO2浓度; Gs, 气孔导度; Pn, 净光合速
率; Tr, 蒸腾速率。不同大小写字母分别表示在0.01和0.05水
平上差异显著。
Fig. 3 Comparisons of reduction rates in photosynthetic trait
values among cultivars subjected to low temperature treatments
(mean ± SE). Ci, intercellular CO2 concentration; Gs, stomatal
conductance; Pn, net photosynthetic rate; Tr, transpiration rate.
Different capital letters and lowercase letters indicate signify-
cant differences at the levels of 0.01 and 0.05, respectively.
夹角大于90°时, 夹角越大, 负相关性越显著(Yan &
Rajcan, 2002)。可以看出, Tr下降率、Gs下降率、Ci
996 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (9): 990–1000
www.plant-ecology.com
图4 胁迫温度处理后各品种产量性状值下降率(平均值±标
准误差)。不同大小写字母分别表示在0.01和0.05水平上差异
显著。
Fig. 4 Reduction rates in yield trait values of different culti-
vars subjected to low temperature treatments (mean ± SE). Dif-
ferent capital letters and lowercase letters indicate significant
differences at the levels of 0.01 and 0.05, respectively.
下降率、Pn下降率两两间的夹角均小于90°。
2.4.2 苗期低温胁迫后产量性状的效应表现与相关性
如图8所示, 产量性状值的4个下降率落于2个
分区内。株高和株重下降率落于‘晋大53’区内, 单株
产量下降率落于‘晋豆24’区内, 单株荚数下降率位
于两区交界处, ‘晋大70’区内没有相关指标。由图9
可知, 株重、株高、单株荚数和单株产量4个下降率
两两夹角小于90°。
2.5 各品种苗期耐低温性综合评价
从表4可看出, 经14、17和20 ℃ 3个温度处理后,
‘晋大70’均保持最高的耐低温性, ‘晋大53’与‘晋
图5 胁迫温度处理后各品种产量性状值下降率的比较(平
均值±标准误差)。不同大小写字母分别表示在0.01和0.05水
平上差异显著。
Fig. 5 Comparisons of reductions rates in yield trait values
among cultivars subjected to low temperature treatments (mean
± SE). Different capital letters and lowercase letters indicate
significant differences at the levels of 0.01 and 0.05, respec-
tively.
豆24’在特定处理或性状上各有优势, 但综合评价
表明, ‘晋大53’的耐低温性优于‘晋豆24’。
郭数进等: 山西不同生态型大豆品种苗期耐低温性综合评价 997
doi: 10.3724/SP.J.1258.2014.00093
表3 不同温度处理后各品种最终产量比较(g, 平均值±标准误差, n = 3)
Table 3 Comparison of the final yields of different cultivars subjected to different temperature treatments (g, mean ± SE, n = 3)
品种 Cultivar 14 ℃ 17 ℃ 20 ℃ 23 ℃
‘晋大53’ ‘Jinda 53’ 92.09 ± 12.84B 100.52 ± 20.90B 215.33 ± 5.51A 243.67 ± 21.73A
‘晋大70’ ‘Jinda 70’ 148.69 ± 37.31C 196.24 ± 12.38BC 214.68 ± 19.56AB 251.67 ± 27.54A
‘晋豆24’ ‘Jindou 24’ 104.77 ± 17.61C 103.67 ± 23.82C 115.43 ± 13.33B 233.00 ± 15.87A
不同字母表示同一品种的不同处理间在0.01水平上差异显著。
Different letters indicate significant differences among treatments within same cultivars at the level of 0.01.
图6 苗期低温胁迫时光合性状对各品种的效应。Ci, 胞间
CO2浓度; Gs, 气孔导度; Pn, 净光合速率; Tr, 蒸腾速率。
Fig. 6 Effects of photosynthetic traits on cultivars under low
temperature stress at seedling stage. Ci, intercellular CO2 con-
centration; DR, decline rate; Gs, stomatal conductance; Pn, net
photosynthetic rate; Tr, transpiration rate.
图7 苗期低温胁迫时光合性状间的相关性。Ci, 胞间CO2浓
度; Gs, 气孔导度; Pn, 净光合速率; Tr, 蒸腾速率。
Fig. 7 Correlations among photosynthetic traits under low
temperature stress at seedling stage. Ci, intercellular CO2 con-
centration; DR, decline rate; Gs, stomatal conductance; Pn, net
photosynthetic rate; Tr, transpiration rate.
3 讨论
大豆品种对低温胁迫的应答, 表现在发育、光
图8 苗期低温胁迫后产量性状对各品种的效应。
Fig. 8 Effects of yield traits on cultivars under low tempera-
ture stress at seedling stage. DR, decline rate; PH, plant hight;
PPP, pods per plant; PM, plant mass; YPP, yield per plant.
图9 苗期低温胁迫后产量性状间的相关性。
Fig. 9 Correlations among yield traits under low temperature
stress at seedling stage. DR, decline rate; PH, plant hight; PPP,
pods per plant; PM, plant mass; YPP, yield per plant.
合作用和产量形成等多个方面, 综合形成品种特有
的耐低温性。白书农(2005)认为, 苗期细胞发育正处
于接受环境条件“诱导”并“启动”自身发育模式的特
998 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (9): 990–1000
www.plant-ecology.com
表4 各品种苗期耐低温性综合评价
Table 4 Comprehensive evaluation of low-temperature tolerance in different cultivars at seedling stage
隶属函数值 Values of subordinate function
14 ℃ 17 ℃ 20 ℃
性状 Trait
‘晋大53’
‘Jinda 53’
‘晋大70’
‘Jinda 70’
‘晋豆24’
‘Jindou 24’
‘晋大53’
‘Jinda 53’
‘晋大70’
‘Jinda 70’
‘晋豆24’
‘Jindou 24’
‘晋大53’
‘Jinda 53’
‘晋大70’
‘Jinda 70’
‘晋豆24’
‘Jindou 24’
苗期延长率
Extension of seedling stage
0.121 1.000 0 0.170 1.000 0 0.298 1.000 0
Pn下降率
Reduction rate of Pn
1.000 0.498 0 1.000 0.941 0 0.278 1.000 0
Ci下降率
Reduction rate of Ci
1.000 0 0.268 1.000 0.254 0 1.000 0.934 0
Gs下降率
Reduction rate of Gs
1.000 0 0.437 1.000 0.309 0 0.430 0 1.000
Tr下降率
Reduction rate of Tr
1.000 0 0.437 0.872 1.000 0 1.000 0 0.735
株高下降率
Reduction rate of plant height
0 1.000 0.583 0.072 1.000 0 0 0.461 1.000
单株生物量下降率
Reduction rate of plant mass
0 0.692 1.000 0 1.000 0.411 0 1.000 0.662
单株荚数下降率
Reduction rate of pods per plant
0.200 1.000 0 0.270 1.000 0 0 1.000 0.366
单株产量下降率
Reduction rate of yield per plant
0 1.000 0.317 0.270 1.000 0 1.000 0.922 0
iX 0.48 0.58 0.34 0.52 0.83 0.05 0.45 0.70 0.42
耐低温性
Low-temperature tolerance
‘晋大70’ > ‘晋大53’ > ‘晋豆24’
‘Jinda 70’ > ‘Jinda 53’ > ‘Jindou 24’
‘晋大70’ > ‘晋大53’ > ‘晋豆24’
‘Jinda 70’ > ‘Jinda 53’ > ‘Jindou 24’
‘晋大70’ > ‘晋大53’ > ‘晋豆24’
‘Jinda 70’ > ‘Jinda 53’ > ‘Jindou 24’
Ci, 胞间CO2浓度; Gs, 气孔导度; Pn, 净光合速率; Tr, 蒸腾速率。 iX , 隶属函数平均值。
Ci, intercellular CO2 concentration; Gs, stomatal conductance; Pn, net photosynthetic rate; Tr, transpiration rate. iX , mean of subordinate function
value.
殊阶段, 对温度反应极为敏感。低温会改变发育模
式, 导致苗期延长。本研究中, 低温胁迫下, 各品种
苗期均有不同程度延长, 与这一理论一致。与其他
两个品种相比, ‘晋大70’苗期延长率低、受低温影响
小, Pagter和Arora (2013)的研究表明, 植物的这种
耐低温性可能是由于活化了低温应答基因, 能较正
常地完成细胞分化和发育。在光合作用方面, 光合
性状值下降是大豆应答苗期低温的主要表现, 尤其
表现为叶片Gs、Tr急剧下降和Pn降低。本研究中, ‘晋
大53’各低温处理下的光合性状值下降率均为最低,
其光合性状表现出较强的耐低温性。‘晋大70’的Gs
和Tr下降率显著高于其他品种, 但仍保持了较高的
Pn值, 可能是由于具有较高的光能吸收量和光化学
转化效率 , 尽可能克服了低温的抑制 , 这与
Ensminger等(2006)的研究基本一致。从产量形成方
面来看, Kaur等(2008)对豆科作物的研究发现, 干物
质积累和分配受阻时, 形态建成和最终产量形成都
会被抑制。本研究中, 各品种在苗期低温胁迫后, 正
常发育模式受阻, 光合能力减弱, 干物质积累下降,
单株生物量和单株荚数显著降低, 最终导致不同程
度的减产, 这与Kaur等(2008)的结论一致。综合比较
各品种最终产量(表3)可知, ‘晋大70’苗期低温时能
遵循固有发育模式来决定发育方向, 光合能力较强,
保证了较高的干物质积累量和结荚量, 故而其产量
受低温影响较小。表3也表明, 在各胁迫温度处理中,
各品种在20 ℃下的产量最稳定。
为甄别各品种耐低温性评价指标、明确指标间
相互关系, 本研究以GGE双标图直观体现了品种的
性状效应以及性状间的相关性。Tr和Gs下降率对‘晋
大70’效应最明显; Pn下降率对‘晋豆24’效应最明显;
Ci下降率对‘晋大70’和‘晋豆24’均有一定效应, 但不
明显; 各光合性状下降率对‘晋大53’效应均不明显
(图6)。Tr、Gs、Ci和Pn下降率4个指标互相之间呈显
著正相关。其中Tr下降率与Gs下降率之间夹角最小,
表明其相关性最密切, 这与二者在低温胁迫下的表
现一致(图7)。产量性状值的4个下降率中, 株高和单
株生物量下降率对‘晋大53’效应最明显; 单株产量
下降率对‘晋豆24’效应最明显; 单株荚数下降率对
‘晋大53’和‘晋豆24’均有一定的效应, 但都不明显;
各产量性状的下降率对‘晋大70’效应不明显, 这与
低温胁迫后, ‘晋大70’减产量较低的结果一致(图8)。
单株生物量、株高、单株荚数和单株产量下降率4
个指标互相之间呈显著正相关(图9)。这一结果与杨
进文等(2013)的研究基本一致。性状间的相关性及
郭数进等: 山西不同生态型大豆品种苗期耐低温性综合评价 999
doi: 10.3724/SP.J.1258.2014.00093
效应分析表明: 遭受低温胁迫后, 不同生态型大豆
品种, 在细胞增殖与分化、CO2供应与利用、干物质
积累与产量形成等层面, 存在显著的互作关系。不
同时期, 品种对低温应答的遗传机制不同且互相影
响。这些性状可以作为大豆耐低温性的综合评价指
标, 其相关性也可以为耐低温育种中亲本选配、后
代筛选和优化提供理论依据。
本研究中, 由于品种自身基因型对胁迫温度的
应答效应不同, 若只从单一性状值考查, 难以准确
地判断品种的耐低温性。如‘晋大53’的光合性状耐
低温性最强, 而‘晋豆24’在20 ℃时的株高下降率和
14 ℃时的单株生物量下降率均为最低, 但采用隶属
函数法综合分析光合作用、产量形成等性状(表4)后
发现, ‘晋大70’耐低温性最强。这与苗期、光合和产
量性状各水平分别评价的结果一致: ‘晋大70’在各
胁迫温度处理后, 苗期延长率最低; 苗期Pn保持较
高值, 减产量最小。‘晋大53’和‘晋豆24’的苗期延长
率差异不显著, 但‘晋大53’的苗期光合作用和产量
性状保持均优于‘晋豆24’, 因此综合评价其耐低温
性强于‘晋豆24’。表4也显示, ‘晋大70’在14、17和20
℃的隶属函数平均值分别为0.58、0.83、0.70, 表明
‘晋大70’在17 ℃时耐低温性最强, ‘晋大53’也是如
此, 而‘晋豆24’在20 ℃时耐低温性最强, 这与其整
体耐低温表现一致。由此可见, 隶属函数法能将不
同指标值做标准化处理, 置于相同尺度下统一比较,
消除单一指标评价造成的片面性, 可以作为综合评
价不同生态型大豆品种苗期耐低温性的有效方法。
大豆耐低温性是典型的数量性状, 也是基因与
环境共同作用的结果。这种抗性是在作物对生态因
子不断接受、应答、适应的累积过程中形成的。有
研究表明, 低温等生态因子可能造成染色质空间结
构变化, 这种变化可以通过有丝分裂在细胞间传递,
并最终在子代细胞中产生累积效应, 从而在发育调
控中影响基因表达的程序化启动与关闭(Gendall et
al., 2001)。此外, 低温胁迫时, 细胞内可能积累一些
小分子物质, 并通过细胞连接进行胞间传递(翟中
和等, 2010), 从而建立一种新的发育状态, 这就涉
及信号转导和质膜表面信号识别的过程(Lane &
Martin, 2012); 也可能涉及类囊体膜系统修饰、转录
后水平激活等过程(Ensminger et al., 2006)。因此, 在
生态育种实践中, 还应利用细胞学和分子生物学技
术, 继续增加细胞检测和分子标记等指标, 进一步
丰富大豆耐低温性评价体系。
基金项目 山西省科技攻关项目(20120311005-3)、
山西省农业科技成果转化资金项目和山西农业大学
科技创新基金项目(育种基金)(2006057)。
参考文献
Bai SN (2005). Plant Developmental Biology. Beijing Univer-
sity Press, Beijing. 82−83. (in Chinese) [白书农 (2005).
植物发育生物学. 北京大学出版社, 北京. 82−83.]
Bartholomew PW, Williams RD (2005). Cool-season grass
development response to accumulated temperature under a
range of temperature regimes. Crop Science, 45, 529–534.
Berger JD, Kumar S, Nayyar H, Street KA, Sandhu JH, Henzell
JM, Kaur J, Clarke HC (2012). Temperature-stratified
screening of chickpea (Cicer arietinum L.) genetic re-
source collections reveals very limited reproductive chill-
ing tolerance compared to its annual wild relatives. Field
Crop Science, 126, 119–129.
Board JE, Kang MS, Bodrero ML (2003). Yield components as
indirect selection criteria for late-planted soybean culti-
vars. Agronomy Journal, 95, 420–429.
Board JE, Maricherla D (2008). Explanations for decreased
harvest index with increased yield in soybean. Crop Sci-
ence, 48, 1995–2002.
Cornic G (2000). Drought stress inhibits photosynthesis by
decreasing stomata aperture―not by affecting ATP syn-
thesis. Trends in Plant Science, 5, 187–188.
da Cruz RP, Golombieski JI, Bazana MT, Cabreira C, Silveira
TF, da Silva LP (2010). Alterations in fatty acid composi-
tion due to cold exposure at the vegetative stage in rice.
Brazilian Journal of Plant Physiology, 22, 199–207.
da Cruz RP, Sperotto RA, Cargnelutti D, Adamski JM, de
Freitas Terra T, Fett JP (2013). Avoiding damage and
achieving cold tolerance in rice plants. Food and Energy
Security, 2, 96–119.
Ensminger I, Busch F, Huner NPA (2006). Photostasis and cold
acclimation: sensing low temperature through photosyn-
thesis. Physiologia Plantarum, 126, 28–44.
Fehr WR, Caviness CE (1977). Stages of soybean development.
Cooperative Extension Service Special Report. Agricul-
tural and Home Economics Experiment Station, Iowa State
University. 80, 5–10.
Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004). Dif-
fusive and metabolic limitations to photosynthesis under
drought and salinity in C3 plants. Plant Biology, 6,
269–279.
Flexas J, Bota J, Galmes J, Medrano H, Ribas-Carbo M (2006).
Keeping a positive carbon balance under adverse condi-
tions: responses of photosynthesis and respiration to water
stress. Physiologia Plantarum, 127, 343–352.
Gendall AR, Levy YY, Wilson A, Dean C (2001). The VER-
NALIZATION 2 gene mediates the epigenetic regulation
1000 植物生态学报 Chinese Journal of Plant Ecology 2014, 38 (9): 990–1000
www.plant-ecology.com
of vernalization in Arabidopsis. Cell, 107, 525–535.
Jiang HW, Li CD, Liu CY, Zhang WB, Qiu PC, Li WF, Gao YL,
Hu GH, Chen QS (2009). Genotype analysis and QTL map-
ping for tolerance to low temperature in germination by in-
trogression lines in soybean. Acta Agronomica Sinica, 35,
1268−1273. (in Chinese with English abstract) [蒋洪蔚, 李
灿东, 刘春燕, 张闻博, 邱鹏程, 李文福, 高运来, 胡国
华, 陈庆山 (2009). 大豆导入系群体芽期耐低温位点的
基因型分析及QTL定位. 作物学报, 35, 1268−1273.]
Kaur G, Kumar S, Nayyar H, Upadhyaya HD (2008). Cold
stress injury during the pod-filling phase in chickpea (Ci-
cer arietinum L.): effects on quantitative and qualitative
components of seeds. Journal of Agronomy and Crop Sci-
ence, 194, 457–464.
Lam HM, Chang RZ, Shao GH, Liu ZT (2009). Research on
Tolerance to Stress in Chinese Soybean. China Agriculture
Press, Beijing. 4–6. (in Chinese) [林汉明, 常汝镇, 邵桂
花, 刘忠堂 (2009). 中国大豆耐逆研究. 中国农业出版
社, 北京. 4–6.]
Lane N, Martin WF (2012). The origin of membrane bioener-
getics. Cell, 151, 1406–1416.
Luo J, Zhang H, Deng ZH, Xu LP, Xu LN, Yuan ZN, Que YX
(2013). Analysis of yield and quality traits in sugarcane va-
rieties (lines) with GGE-biplot. Acta Agronomica Sinica,
39, 142−152. (in Chinese with English Abstract) [罗俊,
张华 , 邓祖湖 , 许莉萍 , 徐良年 , 袁照年 , 阙友雄
(2013). 应用GGE双标图分析甘蔗品种(系)的产量和品
质性状. 作物学报, 39, 142−152.]
Mizoi J, Ohori T, Moriwaki T, Kidokoro S, Todaka D, Maru-
yama K, Kusakabe K, Osakabe Y, Shinozake K,
Yamaguchi-Shinozake K (2013). GmDREB2A;2, a Ca-
nonical DEHYDRATION-RESPONSIVE ELEMENT-
BINDING PROTEIN2-type transcription factor in soy-
bean, is posttranslationally regulated and mediates dehy-
dration-responsive element-dependent gene expression.
Plant Physiology, 161, 346–361.
Ohnishi S, Miyoshi T, Shirai S (2010). Low temperature stress
at different flower development stages affects pollen de-
velopment, pollination, and pot set in soybean. Environ-
mental and Experimental Botany, 69, 56–62.
Pagter M, Arora R (2013). Winter survival and deacclimation
of perennials under warming climate: physiological per-
spectives. Physiologia Plantarum, 147, 75–87.
Qiu PC, Zhang WB, Jiang HW, Liu CY, Li CD, Fan DM, Zeng
QL, Han DW, Hu GH, Chen QS (2011). Genetic overlap
between salt and low-temperature tolerance loci at germi-
nation stage of soybean. Scientia Agricultura Sinica, 44,
1980–1988. (in Chinese with English abstract) [邱鹏程,
张闻博, 蒋洪蔚, 刘春燕, 李灿东, 范冬梅, 曾庆力, 韩
冬伟, 胡国华, 陈庆山 (2011). 大豆芽期耐盐和耐低温
位点的遗传重叠. 中国农业科学, 44, 1980–1988.]
Shimono H, Ishii A, Kanda E, Suto M, Nagano K (2011).
Genotypic variation in rice cold tolerance responses during
reproductive growth as a function of water temperature
during vegetative growth. Crop Science, 290–297.
Timlin D, Lutfor Rahman SM, Baker J, Reddy VR, Fleisher D,
Quebedeaux B (2006). Whole plant photosynthesis, de-
velopment, and carbon partitioning in potato as a function
of temperature. Agronomy Journal, 98, 1195–1203.
Yan WK (2001). GGE biplot—a windows application for
graphical analysis of multienvironment trial data and other
types of two-way data. Agronomy Journal, 93, 1111–1118.
Yan WK, Rajcan I (2002). Biplot analysis of test sites and trait
relations of soybean in Ontario. Crop Science, 42, 11−20.
Yang JW, Zhu JG, Wang SG, Sun DZ, Shi YG, Chen WG
(2013). Drought-resistance of local wheat varieties in
Shanxi Province of China: a comprehensive evaluation by
using GGE biplot and subordinate function. Chinese
Journal of Applied Ecology, 24, 1031–1038. (in Chinese
with English Abstract) [杨进文, 朱俊刚, 王曙光, 孙黛
珍, 史雨刚, 陈卫国 (2013). 用GGE双标图及隶属函数
综合分析山西小麦地方品种抗旱性. 应用生态学报, 24,
1031–1038.]
Yu ZW (2007). Special Crop Cultivation. China Agriculture
Press, Beijing. 274–275. (in Chinese) [于振文 (2007). 作
物栽培学各论. 中国农业出版社, 北京. 274–275.]
Zhai ZH, Wang XZ, Ding MX (2010). Cell Biology. 3rd edn.
Higher Education Press, Beijing. 513–514. (in Chinese)
[翟中和, 王喜忠, 丁明孝 (2010). 细胞生物学. 第三
版. 高等教育出版社, 北京. 513–514.]
Zhang DW, Du XY, Liu CY, Shan DP, Wu Z, Chen QS, Hu
GH (2010). Effect of low-temperature stress on physio-
logical indexes of soybean at germination stage. Soybean
Science, 29, 228–232. (in Chinese with English abstract)
[张大伟, 杜翔宇, 刘春燕, 单大鹏, 吴铮, 陈庆山, 胡
国华 (2010). 低温胁迫对大豆萌发期生理指标的影响.
大豆科学, 29, 228–232.]
Zhao J (2009). Genetic Analysis to Yield Related Traits in
Jinda52 × Jinda57 Cross Offspring Population. Master
degree dissertation, Shanxi Agricultural University, Taigu,
Shanxi. 55–56. (in Chinese) [赵晶 (2009). 晋大52×晋大
57杂交后代产量相关性状的遗传分析. 硕士学位论文,
山西农业大学, 山西太谷. 55–56.]
特邀编委: 赵长明 责任编辑: 李 敏