免费文献传递   相关文献

Leaf economics spectrum among different plant functional types in Beijing Botanical Garden, China.

北京植物园不同功能型植物叶经济谱


通过对北京植物园不同功能型植物的叶片光合参数、叶绿素荧光参数、叶面积、叶干质量以及叶氮含量等性状参数进行测定,分析了不同功能型植物的叶经济谱.结果表明: 生活型中草本植物、生活史中一年生植物、光合型中C4植物靠近叶经济谱中快速投资收益型物种的一端,而生活型中乔木和灌木、生活史中多年生植物、光合型中C3植物位于缓慢投资收益型物种的一端,表明不同功能型植物通过叶片性状间的权衡采取不同的环境适应策略,验证了不同功能型植物叶经济谱的存在.不同功能型植物叶片性状具有明显差异,其中不同生活型间的叶片比叶面积(SLA)、叶氮含量(Nmass)、最大净光合速率(Amass)、光合氮利用效率(PNUE)均表现出草本植物>藤本植物>灌木>乔木;不同生活史间一年生植物的SLA、NmassAmass、PNUE均显著高于多年生植物;不同光合型间植物的Amass、PNUE、PSⅡ实际光化学效率(ΦPSⅡ)均表现出C4>C3.Nmass、Amass、SLA两两之间呈显著正相关,而PSⅡ有效光化学量子产量(Fv′/Fm′)与SLA呈显著负相关;PNUE与SLA呈显著正相关.

We measured leaf photosynthetic and chlorophyll fluorescence parameters as well as leaf area, dry biomass, and nitrogen content of different plant functional types (PFTs) at the Beijing Botanical Garden, and analyzed the leaf economics spectrum (LES) among different PFTs. The results showed that the plants with the life form of grasses, those with an annual type of life history, and with a C4 photosynthetic pathway might provide a quick return on investment for the species located at one end of the LES. Similarly, the plants with a life form of trees and shrubs, with a perennial type of life history, and with a C3 photosynthetic pathway might provide a slower return on investment for the species located at the other end of the LES. This indicated that plants with different PFTs might have diverse strategies that allowed them to adapt to the environment through a tradeoff among leaf traits. The results showed that the LES existed among different PFTs. Remarkable differences were observed in most of the leaf traits among different PFTs. The various life forms analyzed here were ranked in the order of grasses > vines > shrubs > trees based on specific leaf area (SLA), massbased nitrogen concentration (Nmass), massbased photosynthetic capacity (Amass), and photosynthetic nitrogen use efficiency (PNUE). Among the different life histories, SLA, Nmass,Amass, and PNUE in annual species were significantly higher than those in perennial species. In addition, Amass, PNUE, and the quantum yield of PSⅡ electron transport (ΦPSⅡ) were higher in C4 species than in C3 species. Nmass, Amass, and SLA were significantly positively correlated with each other. SLA was significantly negatively correlated with the photochemical efficiency of PSⅡ in the light (Fv′/Fm′), whereas it was significantly positively correlated with PNUE.


全 文 :北京植物园不同功能型植物叶经济谱
宋  贺1,2  于鸿莹1,2  陈莹婷1,2  许振柱1∗  周广胜1,3
( 1中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093; 2中国科学院大学生命科学学院, 北京 100049; 3中
国气象科学研究院, 北京 100081)
摘  要  通过对北京植物园不同功能型植物的叶片光合参数、叶绿素荧光参数、叶面积、叶干
质量以及叶氮含量等性状参数进行测定,分析了不同功能型植物的叶经济谱.结果表明: 生活
型中草本植物、生活史中一年生植物、光合型中 C4 植物靠近叶经济谱中快速投资⁃收益型物
种的一端,而生活型中乔木和灌木、生活史中多年生植物、光合型中 C3 植物位于缓慢投资⁃收
益型物种的一端,表明不同功能型植物通过叶片性状间的权衡采取不同的环境适应策略,验
证了不同功能型植物叶经济谱的存在.不同功能型植物叶片性状具有明显差异,其中不同生
活型间的叶片比叶面积(SLA)、叶氮含量(Nmass)、最大净光合速率(Amass)、光合氮利用效率
(PNUE)均表现出草本植物>藤本植物>灌木>乔木;不同生活史间一年生植物的 SLA、Nmass、
Amass、PNUE均显著高于多年生植物;不同光合型间植物的 Amass、PNUE、PSⅡ实际光化学效率
(ΦPSⅡ)均表现出 C4>C3.Nmass、Amass、SLA两两之间呈显著正相关,而 PSⅡ有效光化学量子产
量(Fv′ / Fm′)与 SLA呈显著负相关;PNUE与 SLA呈显著正相关.
关键词  叶经济谱; 植物功能型; 功能性状
本文由国家自然科学基金项目(31170456)和植被与环境变化国家重点实验室开放课题项目(LVEC2011zyts09)资助 This work was supported by
the National Natural Science Foundation of China (31170456) and the Open Project of State Key Laboratory of Vegetation and Environmental Change
(LVEC2011zyts09) .
2015⁃11⁃09 Received, 2016⁃03⁃08 Accepted.
∗通讯作者 Corresponding author. E⁃mail: xuzz@ ibcas.ac.cn
Leaf economics spectrum among different plant functional types in Beijing Botanical Gar⁃
den, China. SONG He1,2, YU Hong⁃ying1,2, CHEN Ying⁃ting1,2, XU Zhen⁃zhu1∗, ZHOU Guang⁃
sheng1,3 ( 1State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chi⁃
nese Academy of Sciences, Beijing 100093, China; 2College of Life Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China; 3Chinese Academy of Meteorological Sciences, Beijing
100081, China) .
Abstract: We measured leaf photosynthetic and chlorophyll fluorescence parameters as well as leaf
area, dry biomass, and nitrogen content of different plant functional types (PFTs) at the Beijing
Botanical Garden, and analyzed the leaf economics spectrum (LES) among different PFTs. The re⁃
sults showed that the plants with the life form of grasses, those with an annual type of life history,
and with a C4 photosynthetic pathway might provide a quick return on investment for the species lo⁃
cated at one end of the LES. Similarly, the plants with a life form of trees and shrubs, with a peren⁃
nial type of life history, and with a C3 photosynthetic pathway might provide a slower return on in⁃
vestment for the species located at the other end of the LES. This indicated that plants with different
PFTs might have diverse strategies that allowed them to adapt to the environment through a trade⁃off
among leaf traits. The results showed that the LES existed among different PFTs. Remarkable diffe⁃
rences were observed in most of the leaf traits among different PFTs. The various life forms analyzed
here were ranked in the order of grasses > vines > shrubs > trees based on specific leaf area
(SLA), mass⁃based nitrogen concentration (Nmass), mass⁃based photosynthetic capacity (Amass),
and photosynthetic nitrogen use efficiency (PNUE). Among the different life histories, SLA, Nmass,
Amass, and PNUE in annual species were significantly higher than those in perennial species. In ad⁃
dition, Amass, PNUE, and the quantum yield of PSⅡ electron transport (ΦPSⅡ) were higher in C4
应 用 生 态 学 报  2016年 6月  第 27卷  第 6期                                            http: / / www.cjae.net
Chinese Journal of Applied Ecology, Jun. 2016, 27(6): 1861-1869                  DOI: 10.13287 / j.1001-9332.201606.010
species than in C3 species. Nmass, Amass, and SLA were significantly positively correlated with each
other. SLA was significantly negatively correlated with the photochemical efficiency of PSⅡ in the
light (Fv′ / Fm′), whereas it was significantly positively correlated with PNUE.
Key words: leaf economics spectrum; plant functional type; functional trait.
    叶经济谱( leaf economics spectrum, LES)在植
物生态研究领域是一个相对较新的概念,由 Wright
等[1]于 2004 年首次提出.叶经济谱量化了植物功能
性状之间的关系,是在叶片水平上的一系列连续变
化的有规律的权衡策略谱[2-7] .谱的两端分别排列着
具有营养物质含量高、光合速率大、呼吸速率快、寿
命短等特点的快速投资⁃收益型物种和具有营养物
质含量低、光合速率小、寿命长等特点的缓慢投资⁃
收益型物种[8-13] .叶经济谱诠释了不同生长型、生活
型、功能型以及植被类型植物在不同生境条件下的
资源权衡策略,体现了叶片主要的化学性状、结构性
状、生理性状之间的相互协调关系,并作为一个独立
概念而存在[11,14-18] .叶经济谱的提出为今后生态学
研究提供了新的理论和方法,也为在全球变化大背
景下,更好地理解植物的环境适应机制和生态恢复
策略制定提供了依据[7,12-13] .
植物叶经济谱概念的提出,引起了生态学者的
广泛关注[6-7,11,19-22],在全球范围内有关叶经济谱的
研究工作相继展开,并取得了较为一致的结论,充分
说明了叶经济谱的普适性.这些研究分布在不同地
区、不同生态系统类型中,并应用到不同的研究领
域.其中,研究涉及的地域主要有:中国青藏高
原[19,23]、中国三峡大坝地区[24]、中国内蒙古地
区[25]、亚北极地区[10]、南非草原[26]、法国南部[27]、
欧洲山地[28]、北美地区[29];研究应用的领域主要
有:植物功能性状与环境的关系[30-33]、植物凋落物
分解能力[34]、群落构建[35]、群落演替[36-37]、生态服
务功能[6,38]、生产力[39]、生物多样性[40]、外来物种入
侵[41]、经典生活史策略[42]、古植物区系演化[43-44]、全
球动态植被模型[45]、气候变化[13,21,29,44]等.
近年来,北京的环境问题日益突出,如干旱、沙
尘暴、雾霾天气等[46-48],植被破坏是环境恶化的主
要原因[49-50] .叶经济谱作为一种新的理论和方法,
在探讨全球气候变化背景下生态系统的脆弱性和适
应性、遏制环境恶化、促进生态恢复方面具有重要价
值[18,21] .但从研究地区来看,目前中国有关叶经济谱
的研究工作主要集中在青藏高原和内蒙古等,在北
京地区的相关研究还未见报道.本文对北京植物园
内的主要功能型植物的叶经济谱进行研究,以期为
区域生态恢复提供科学依据.
1  研究地区与研究方法
1􀆰 1  研究区概况
北京植物园位于北京市西北部,地处温带季风
气候带内,属于暖温带大陆性季风气候,夏季高温多
雨,冬季寒冷干燥,春秋短促,年平均气温 11.8 ℃,7
月平均气温 26.1 ℃,1 月平均气温-4.7 ℃,全年平
均降水量 640 mm.园区地带性植被类型为温带落叶
阔叶林.土壤类型主要是褐土类,且多为中性.因园
区处在西山暖区带前,大部分区域具有较好的湿热
条件,为各种植物提供了优越的自然生长环境[51] .
同时,北京植物园内植物种类较多.目前已利用植物
园内丰富的植物资源进行了植物功能性状的研
究[52-54] .
1􀆰 2  测定项目与方法
1􀆰 2􀆰 1光合参数与荧光参数的测定  2014 年 8 月中
旬,在雨后晴朗的天气进行叶片光合参数与荧光参
数的测定,以确保阳光和水分充足.测定时,每种植
物随机选取长势良好的成熟植物个体 3 株,每株植
物随机选取完全展开的完好新叶一枚,使用 CIRAS⁃
2 便携式光合测定仪 ( PP Systems, Hertfordshire,
UK)进行测定.
测定光合参数时,使用仪器系统提供的红、蓝内
置光源,光强设定为 1500 μmol·m-2·s-1,为保证
较为充足的温湿条件,测定时间选择在雨后晴朗天
气9:00—11:00[25] .测定单位面积最大净光合速率
(Aarea), 计算单位质量最大净光合速率:Amass(μmol·
g-1·s-1)= Aarea×SLA×10000.整个测定过程使用开放
气路,空气相对湿度控制在 50% ~ 70%,CO2浓度控
制在 380~390 μmol·mol-1,叶片温度控制在 27 ℃
左右.
对同一叶片进行荧光参数的测定.首先将叶片
于 1500 μmol·m-2·s-1光强下适应 15 min,测定稳
态荧光 ( Fs ),然后加一个强闪光 ( 5100 μmol ·
m-2·s-1,脉冲时间 0. 3 s),测定光下最大荧光
(Fm′),之后叶片遮光暗适应 3 s,打开远红光,5 s后
测定光下最小荧光(Fo′) [25] .系统自动计算出最大
可变荧光强度 Fv′,光系统Ⅱ(PSⅡ)有效光化学量
2681 应  用  生  态  学  报                                      27卷
子产量 ( Fv′ / Fm′) 及 PS Ⅱ的实际光化学效率
(ΦPSⅡ).
1􀆰 2􀆰 2叶面积、干质量、比叶面积的测定  从测定光
合参数及荧光参数的植株上,根据不同植物种类叶
片形态特征采集叶片,使用 WinRHIZO / WinFOLIA
根 /叶分析系统 ( WinRhizo, Régent Instruments,
Quebec, Canada)测定叶面积.将叶片放于 70 ℃烘
箱中烘 48 h 至恒量,用电子天平进行称量并记录.
计算比叶面积:SLA ( cm2·g-1)= 叶面积( cm2) /叶
片干质量(g) [55] .
1􀆰 2􀆰 3叶片全氮的测定  将烘干的叶片用混合研磨
仪 Retsch MM400 (Retsch, Haan, Germany)研磨至
粉末状,用凯氏定氮仪 Kjeltec 2200 ( Foss Tecator
AB, Höganäs, Sweden)测定全氮.计算单位质量叶
氮含量:
Nmass(g·kg
-1)= (V-VCK)×C×14 / m
式中:V为滴定样品使用酸标准溶液的体积(mL);
VCK为滴定空白对照使用酸标准溶液的体积(mL);C
为酸标准溶液的浓度(mol·L-1);14 为氮原子的摩
尔质量(g·mol-1);m为烘干样品的质量(g).
单位面积叶氮含量(Narea, g·m
-2)计算公式
为[56]:
Narea =Nmass×10 / SLA
光合氮利用效率(PNUE, μmol·g-1 N·s-1)计
算公式为:
PNUE=Aarea / Narea
式中: Aarea为单位面积最大净光合速率[19] .
1􀆰 3  数据处理
采用 Excel 2007 和 SPSS 20.0 软件对数据进行
统计分析.采用独立样本非参数检验(Kruskal⁃Wallis
H Test)分析不同功能型植物叶片性状间的差异
(α= 0.05),用 Pearson法分析不同物种叶片性状间
的相关性,用主成分分析进行不同物种叶片性状的
综合研究.利用 Excel 2007 和 SPSS 20.0 软件作图.
图表中数据为平均值±标准差.
2  结果与分析
2􀆰 1  北京植物园植物类型
本研究选取具有代表性的野生或长期栽培植物
共 34种,涵盖 22科 33属(表 1).其中,根据生活型
划分,包括草本 20 种、藤本 3 种、灌木 6 种、乔木 5
种;根据生活史划分,包括一年生植物 9 种、多年生
植物 25种;根据光合型划分,包括 C3 植物 29 种、
C4植物 5种.
2􀆰 2  不同功能型物种之间叶片性状的比较
不同生活型物种之间,草本植物的 SLA、Nmass、
Amass、PNUE均表现出草本植物>藤本植物>灌木>乔
木的趋势(表 2),且草本植物的性状在灌木和乔木
中差异达到显著水平,而与藤本无显著差异,藤本植
物的 SLA与乔木差异显著,与草本和灌木差异不显
著,草本植物的 Fv′ / Fm′显著低于灌木和乔木,藤本、
灌木、乔木之间的 Nmass、Amass、PNUE、Fv′ / Fm′无显著
性差异,各生活型物种叶片的 ΦPSⅡ差异不显著;不
同生活史物种之间,一年生植物的 SLA、Nmass、Amass、
PNUE均显著高于多年生植物,而 Fv′ / Fm′、ΦPSⅡ差
异不显著;不同光合型物种之间,Amass、PNUE、ΦPSⅡ
均表现出 C4>C3 的趋势,且达显著水平,而 SLA、
Nmass、Fv′ / Fm′差异不显著.
表 1  北京植物园 34种植物类型
Table 1  Plant types of 34 species in Beijing Botanical Gar⁃
den
物种
Species
生活型
Life
form
生活史
Life
history
光合型
Photosynthetic
pathway
狗尾草 Setaria viridis 草本 一年生 C4
马齿苋 Portulaca oleracea 草本 一年生 C4
马唐 Digitaria sanguinalis 草本 一年生 C4
斑地锦 Euphorbia maculata 草本 一年生 C4
藜 Chenopodium album 草本 一年生 C3
铁苋菜 Acalypha australis 草本 一年生 C3
打碗花 Calystegia hederacea 草本 一年生 C3
鸭跖草 Commelina communis 草本 一年生 C3
圆叶牵牛 Pharbitis purpurea 草本 一年生 C3
狼尾草 Pennisetum alopecuroides 草本 多年生 C4
早开堇菜 Viola prionantha 草本 多年生 C3
蒲公英 Taraxacum mongolicum 草本 多年生 C3
蛇莓 Duchesnea indica 草本 多年生 C3
酢浆草 Oxalis corniculata 草本 多年生 C3
田旋花 Convolvulus arvensis 草本 多年生 C3
半夏 Pinellia ternata 草本 多年生 C3
萱草 Hemerocallis fulva 草本 多年生 C3
麦冬 Ophiopogon japonicus 草本 多年生 C3
鸢尾 Iris tectorum 草本 多年生 C3
玉簪 Hosta plantaginea 草本 多年生 C3
鸡矢藤 Paederia scandens 藤本 多年生 C3
茜草 Rubia cordifolia 藤本 多年生 C3
地锦 Parthenocissus tricuspidata 藤本 多年生 C3
迎春花 Jasminum nudiflorum 灌木 多年生 C3
棣棠花 Kerria japonica 灌木 多年生 C3
女贞 Ligustrum lucidum 灌木 多年生 C3
糯米条 Abelia chinensis 灌木 多年生 C3
连翘 Forsythia suspensa 灌木 多年生 C3
叉子圆柏 Sabina vulgaris 灌木 多年生 C3
玉兰 Magnolia denudata 乔木 多年生 C3
杜仲 Eucommia ulmoides 乔木 多年生 C3
圆柏 Sabina chinensis 乔木 多年生 C3
华北落叶松 Larix principis⁃rupprechtii 乔木 多年生 C3
水杉 Metasequoia glyptostroboides 乔木 多年生 C3
36816期                            宋  贺等: 北京植物园不同功能型植物叶经济谱           
表 2  北京植物园不同功能型植物叶片性状
Table 2  Leaf traits of different plant functional types in Beijing Botanical Garden
SLA
(cm2·g-1)
Nmass
(mg·g-1)
Amass
(μmol·g-1
·s-1)
PNUE
(μmol·g-1N
·s-1)
ΦPSⅡ Fv ′ / Fm ′
生活型 草本 265.75±12.97a 40.86±1.50a 0.30±0.03a 7.30±0.79a 0.43±0.02a 0.61±0.01b
Life form 藤本 224.18±24.91ab 27.16±4.19ab 0.15±0.05ab 5.08±1.07ab 0.44±0.04a 0.58±0.03ab
灌木 138.28±18.81bc 22.23±1.82b 0.07±0.01b 3.72±1.06b 0.48±0.02a 0.66±0.01a
乔木 112.87±12.64c 21.21±1.06b 0.05±0.01b 2.63±0.47b 0.46±0.04a 0.66±0.02a
生活史 一年生 259.24±14.14a 43.18±1.64a 0.44±0.06a 10.22±1.41a 0.48±0.01a 0.62±0.02a
Life history 多年生 201.94±13.38b 30.08±1.55b 0.13±0.02b 4.19±0.42b 0.43±0.01a 0.62±0.01a
光合型 C3 218.82±12.35a 33.17±1.53a 0.15±0.02b 4.26±0.34b 0.43±0.01b 0.62±0.01a
Photosynthetic pathway C4 207.17±16.52a 35.21±2.37a 0.55±0.10a 14.61±1.99a 0.52±0.02a 0.65±0.02a
同列不同字母表示差异显著(P<0.05)Different letters in the same column meant significant difference at 0.05 level. SLA:比叶面积 Specific leaf area;
Nmass: 单位质量叶氮含量 Nitrogen concentration on mass basis; Amass: 单位质量最大净光合速率 Photosynthetic capacity on mass basis; PNUE: 光
合氮利用效率 Photosynthetic nitrogen use efficiency; ΦPSⅡ: PSⅡ的实际光化学效率 Quantum yield of PSⅡ electron transport; Fv ′ / Fm ′: PSⅡ有效
光化学量子产量 Photochemical efficiency of PSⅡ in the light. 下同 The same below.
2􀆰 3  不同物种叶片各性状之间的关系
2􀆰 3􀆰 1不同功能型物种叶片各性状之间的关系  表
3表明,在叶片结构性状间,Nmass与 SLA呈显著正相
关;在叶片结构性状和生理性状之间,Amass、PNUE
与 SLA呈显著正相关,Fv′ / Fm′与 SLA 呈显著负相
关,Amass、 PNUE 与 Nmass呈显著正相关,Fv′ / Fm′与
Nmass呈显著负相关,PNUE 与 Amass呈显著正相关,
Fv′ / Fm′与 ΦPSⅡ呈显著正相关.
2􀆰 3􀆰 2 C3、C4植物叶片各性状之间的关系  表 4 表
明,在叶片结构性状间,C3 植物叶片 Nmass与 SLA 呈
显著正相关;在叶片结构性状和生理性状之间,
Amass、PNUE 与 SLA 呈显著正相关,Fv′ / Fm′与 SLA
呈显著负相关,Amass、PNUE 与 Nmass呈显著正相关,
Fv′ / Fm′与 Nmass呈显著负相关,PNUE 与 Amass呈显著
正相关,Fv′ / Fm′与 ΦPSⅡ呈显著正相关.
    在叶片结构性状间,C4 植物叶片 Nmass与 SLA
无显著的相关关系;在叶片结构性状和生理性状之
间,Amass、PNUE与 SLA 均呈现显著正相关,ΦPSⅡ与
SLA 呈显著负相关, Amass与 Nmass呈显著正相关,
PNUE与 Amass呈显著正相关,ΦPSⅡ与 Amass呈显著负
相关,ΦPSⅡ与 PNUE呈显著负相关,Fv′ / Fm′与 ΦPSⅡ
表 3  北京植物园植物叶片不同功能性状间的相关系数
Table 3   Correlation coefficients between different func⁃
tional traits of plant leaves in Beijing Botanical Garden
SLA Nmass Amass PNUE ΦPSⅡ
Nmass 0.729∗∗
Amass 0.428∗∗ 0.548∗∗
PNUE 0.243∗∗ 0.241∗ 0.899∗∗
ΦPSⅡ -0.110 0.031 0.117 0.141
Fv′ / Fm′ -0.332∗∗ -0.253∗ -0.030 0.057 0.636∗∗
∗P<0.05; ∗∗P<0.01. 下同 The same below.
呈显著正相关.
2􀆰 4  主成分分析
由图 1A 可以看出,前 2 个成分的特征值之和
占总方差的 73.3%,即前 2 个因子解释原始变量的
73.3%的变异.其中,第 1 个因子与 Amass、 PNUE、
Nmass、SLA相关性较高,主要反映叶片结构与光合能
力,第 2 个因子与 Fv′ / Fm′、ΦPSⅡ相关性较高,主要
概括叶片的荧光参数,反映了植物的光合特性以及
外界环境对植物的影响.
由图 1B可以看出,第 1因子分数高的为马齿苋
(Portulaca oleracea)、马唐(Digitaria sanguinalis),分
数低的为圆柏(Sabina chinensis)和叉子圆柏(Sabina
vulgaris);第 2 因子得分较高的为狼尾草(Pennise⁃
tum alopecuroides)、马唐,得分较低的为玉簪(Hosta
plantaginea)、鸢尾( Iris tectorum).
表 4  北京植物园 C3、C4植物叶片不同功能性状间的相关
系数
Table 4   Correlation coefficients between different func⁃
tional traits of C3, C4 plant leaves in Beijing Botanical
Garden
SLA Nmass Amass PNUE ΦPSⅡ
C3 Nmass 0.750∗∗
Amass 0.652∗∗ 0.755∗∗
PNUE 0.364∗∗ 0.278∗∗ 0.743∗∗
ΦPSⅡ -0.073 0.049 0.132 0.128
Fv′ / Fm′ -0.327∗∗ -0.273∗ -0.075 0.023 0.629∗∗
C4 Nmass 0.445
Amass 0.713∗∗ 0.719∗∗
PNUE 0.694∗∗ 0.473 0.943∗∗
ΦPSⅡ -0.546∗ -0.350 -0.555∗ -0.572∗
Fv′ / Fm′ -0.457 -0.247 -0.330 -0.260 0.644∗∗
4681 应  用  生  态  学  报                                      27卷
图 1  北京植物园不同物种叶片性状主成分分析
Fig.1  Principal component analysis of leaf traits in different species in Beijing Botanical Garden.
A: 各叶片性状的载荷 Loadings of various leaf traits; B: 各物种的因子得分 Factor scores of different species. Eu: 斑地锦 Euphorbia maculata; Pi:
半夏 Pinellia ternata; Sa:叉子圆柏 Sabina vulgaris; Ox:酢浆草 Oxalis corniculata; Ca:打碗花 Calystegia hederacea; Pa:地锦 Parthenocissus tricus⁃
pidata; Ke: 棣棠花 Kerria japonica; Euc:杜仲 Eucommia ulmoides; Se: 狗尾草 Setaria viridis; La: 华北落叶松 Larix principis⁃rupprechtii; Pae:鸡矢
藤 Paederia scandens; Li: 女贞 Ligustrum lucidum; Pe: 狼尾草 Pennisetum alopecuroides; Ch: 藜 Chenopodium album; Fo: 连翘 Forsythia suspensa;
Po: 马齿苋 Portulaca oleracea; Di: 马唐 Digitaria sanguinalis; Op: 麦冬 Ophiopogon japonicus; Ab: 糯米条 Abelia chinensis; Ta: 蒲公英 Taraxacum
mongolicum; Ru: 茜草 Rubia cordifolia; Du: 蛇莓 Duchesnea indica; Me: 水杉 Metasequoia glyptostroboides; Co: 田旋花 Convolvulus arvensis; Ac: 铁
苋菜 Acalypha australis; He: 萱草 Hemerocallis fulva; Com: 鸭跖草 Commelina communis; Ja: 迎春花 Jasminum nudiflorum; Ma: 玉兰 Magnolia
denudata; Ho:玉簪 Hosta plantaginea; Ir:鸢尾 Iris tectorum; Sab:圆柏 Sabina chinensis; Ph:圆叶牵牛 Pharbitis purpurea; Vi:早开堇菜 Viola prio⁃
nantha.
3  讨    论
3􀆰 1  基于叶经济谱的不同功能型植物叶片性状组
合特征
植物性状组合对其生活史对策和竞争能力起决
定性作用,而对竞争贡献较大的为植物结构性状
(如叶面积) 和生理性状 (如叶片光合作用速
率) [30,57] .植物可通过各功能性状间的权衡形成最
佳功能组合,从而更好地适应外界环境[58] .
本研究中,在不同生活型之间,草本植物的
SLA、Nmass、Amass、PNUE 显著高于灌木和乔木,即草
本植物的结构性状和生理性状的特定组合使其具有
叶片薄、光合能力强的特征,表明了草本植物在生境
中具有较强的竞争能力.这与文献[59]结果一致.但
各生活型的 ΦPSⅡ差异不显著,其原因可能是:ΦPSⅡ
是在环境胁迫下反映 PSⅡ反应中心光化学效率高
低的一个指标[60-63],而研究区植物的环境条件适
宜,因此各生活型的 ΦPSⅡ无显著差异.乔木和灌木
处在群落的中上层,受到强光等不良环境的影响,它
们往往分配较多的生物量和氮素于细胞壁,以增强
叶片韧性,同时积累较多的光合产物为越冬和翌年
的生长做准备,因此其 SLA 较低,分配到光合机制
的氮素较少,以致其光合能力较低[64-66];而草本植
物分配较多的氮素于类囊体和 RuBP 羧化酶,因此
叶片较薄,叶面积增大,SLA 较高,具有较高的光合
能力[1,59,67] .
在不同的生活史中,一年生植物的 SLA、Nmass、
Amass、PNUE显著高于多年生植物,不同的性状组合
特征体现了一年生植物和多年生植物不同的环境适
应策略.相对于多年生植物来说,一年生植物通常会
把更多的资源分配给繁殖器官和地上部分[68-70],因
此其叶片光合能力会高于多年生植物.
在不同光合型植物之间,C4、C3的 Amass、PNUE、
ΦPSⅡ均有显著差异,且 C4>C3. Amass反映了叶片的
光合能力,而 PNUE是关系叶片生理、形态及适应环
境机制的重要指标[59] .这 2 个性状组合说明 C4 植
物具有生长快、生产力高的特点.
3􀆰 2  基于叶经济谱的植物叶片性状关系
在处于不同功能型的所有研究植物物种之间,
基于叶经济谱的某些性状指标存在着某种特定的联
系,这种相关关系是植物物种趋同进化的一种证
明[71-73] .本研究中,SLA、Nmass、Amass之间存在显著的
正相关关系,与已有研究结果一致[19,54,72,74-77] . SLA
体现了植物叶片对其生长光环境的长期适应[78] .它
能反映叶片捕获光的能力以及强光下的自我保护能
力[25,56,79] .SLA直接或间接地影响着植物的光合作
用、呼吸作用、蒸腾作用[71-72,74,80-81] .因此,高 SLA 的
植物叶片光合能力强,即有高的 Amass .单位质量叶氮
含量 Nmass是描述叶片结构性状的基本参数[56],同时
直接决定着叶片的光合能力[72,74,80,82-84] .即 Nmass与
Amass有正相关关系.同时,植物叶片的 SLA 越高,其
细胞壁组分和碳含量越低,而叶片水分含量和叶片
56816期                            宋  贺等: 北京植物园不同功能型植物叶经济谱           
含氮量越高.
本研究也发现,PNUE 与 SLA 呈显著的正相关
关系,Fv′ / Fm′与 SLA 呈显著的负相关关系. PNUE
与叶片生理、形态及适应环境机制有关,PNUE 越
高,意味着植株把更多的氮用于构建光合机制,其生
长会越快,生产力越高[25,59,67,85] .因此,PNUE 与 SLA
对于植物叶片的性能有着异曲同工之效,二者之间
呈正相关关系.Fv′ / Fm′ 为 PSⅡ有效光化学量子产
量,反映了开放的 PSⅡ反应中心原初光能捕获效
率[86],较高的 Fv′ / Fm′意味着 PSⅡ反应中心拥有较
多的能量捕获陷阱[87],本研究表明 Fv′ / Fm′与 SLA
呈负相关.
分析 C3、C4植物叶片各性状间的关系后发现:
C3植物各性状间关系与综合不同功能型的所有研
究物种基本一致;C4植物各性状间关系与总体分析
结果不同,表现在 SLA 与 Amass和 ΦPSⅡ呈显著负相
关,而与 Nmass、Fv′ / Fm′无显著相关关系.这是由于光
合碳同化过程的差异,C4 植物较 C3 植物具有较强
的光合能力[88],因此 C4 植物 SLA 较 C3 植物对光
合指标的影响不大.
3􀆰 3  不同功能型植物在叶经济谱上的位置分析
叶经济谱量化了植物功能性状之间的关系,不
同物种在叶经济谱上有不同位点[1,11,25] .本研究中,
不同生活型草本植物的 SLA、Nmass、Amass、PNUE 显著
高于灌木和乔木,乔木最低,表明在叶经济谱中,草
本植物位于具有营养物质浓度高、光合速率大、呼吸
速率快、寿命短等特点的快速投资⁃收益型物种的一
端,而灌木、乔木位于营养物质浓度低、光合速率小、
寿命长等特点的缓慢投资⁃收益型物种的一端.不同
生活史物种之间,一年生植物的 SLA、Nmass、Amass、
PNUE均显著高于多年生植物,表明一年生植物靠
近叶经济谱上叶片薄、光合速率大、寿命短的一端,
而多年生植物位于与之性状特征相反的另一端.不
同光合型之间,Amass、PNUE、ΦPSⅡ均表现出 C4>C3
的趋势,表明相对于 C3植物,C4植物位于光合能力
强的一端.
在因子分析中,第 1 个因子与 Amass、 PNUE、
Nmass、SLA相关性较高,主要反映叶片结构与光合能
力;第 2 个因子与 Fv′ / Fm′、ΦPSⅡ相关性较高,主要
概括叶片的荧光参数,反映了植物的光合特性以及
外界环境对植物的影响.第 1 因子分数较高的植株
中,生活型多为草本植物,生活史多为一年生植物,
光合型多为 C4植物,而分数较低的植株中,生活型
多为乔木,生活史多为多年生植物,光合型多为 C3
植物.这表明生活型中草本植物、生活史中一年生植
物以及光合型中 C4植物靠近叶经济谱中快速投资⁃
收益型物种的一端,而生活型中乔木、生活史中多年
生植物、光合型中 C3 植物位于缓慢投资⁃收益型物
种的一端,与Wright等[1]研究结果相似.第 2因子得
分较高与较低的植株都为草本植物,可能是因为样
本中草本植物的叶片结构多样,导致了草本植物的
叶片荧光参数变化范围较大.
叶经济谱的研究为分析全球气候变化对植物的
影响及其适应机制提供了新的理论和方法,已成为
生态学研究热点问题之一[7,11-13,18,22,54] .对不同功能
型植物叶经济谱的研究表明,叶经济谱现象在北京
植物园不同功能型植物中同样存在,并进一步指出
了不同功能型植物叶片性状组合特征以及性状之间
的相互关系,体现了不同功能型植物会通过性状间
的权衡,采取不同的环境适应策略,为区域生态恢复
提供了科学依据,有重要的现实意义和理论意义.同
时,北京植物园是一个受人为扰动较大的系统,与自
然系统存在差异,但植物各种性状是对周围环境长
期适应的结果,植物园内不同功能型物种的汇集较
为齐全,为植物叶经济谱的研究提供了一个方便可
行的平台.这对于植物园的物种引种和驯化工作也
具有一定的指导意义.
参考文献
[1]  Wright IJ, Reich PB, Westoby M, et al. The worldwide
leaf economics spectrum. Nature, 2004, 428: 821-827
[2]  Wright IJ, Reich PB, Cornelissen JHC, et al. Assessing
the generality of global leaf trait relationships. New Phy⁃
tologist, 2005, 166: 485-496
[3]  Shipley B, Lechowicz MJ, Wright I, et al. Fundamental
trade⁃offs generating the worldwide leaf economics spec⁃
trum. Ecology, 2006, 87: 535-541
[4]  Enquist BJ, Kerkhoff AJ, Stark SC, et al. A general
integrative model for scaling plant growth, carbon flux,
and functional trait spectra. Nature, 2007, 449: 218-
222
[5]  Funk JL, Cornwell WK. Leaf traits within communities:
Context may affect the mapping of traits to function.
Ecology, 2013, 94: 1893-1897
[6]  Lavorel S. Plant functional effects on ecosystem services.
Journal of Ecology, 2013, 101: 4-8
[7]  Niinemets Ü. Is there a species spectrum within the
world⁃wide leaf economics spectrum? Major variations in
leaf functional traits in the Mediterranean sclerophyll
Quercus ilex. New Phytologist, 2015, 205: 79-96
[8]  Kazakou E, Garnier E, Navas ML, et al. Components of
nutrient residence time and the leaf economics spectrum
in species from Mediterranean old⁃fields differing in suc⁃
cessional status. Functional Ecology, 2007, 21: 235 -
6681 应  用  生  态  学  报                                      27卷
245
[9]  Santiago LS. Extending the leaf economics spectrum to
decomposition: Evidence from a tropical forest. Ecology,
2007, 88: 1126-1131
[10]   Freschet GT, Cornelissen JHC, van Logtestijn RSP, et
al. Evidence of the ‘ plant economics spectrum’ in a
subarctic flora. Journal of Ecology, 2010, 98: 362-373
[11]  Osnas JLD, Lichstein JW, Reich PB, et al. Global leaf
trait relationships: Mass, area, and the leaf economics
spectrum. Science, 2013, 340: 741-744
[12]   Read QD, Moorhead LC, Swenson NG, et al. Conver⁃
gent effects of elevation on functional leaf traits within
and among species. Functional Ecology, 2014, 28: 37-
45
[13]  Sakschewski B, von Bloh W, Boit A, et al. Leaf and
stem economics spectra drive diversity of functional plant
traits in a dynamic global vegetation model. Global
Change Biology, 2015, 21: 2711-2725
[14]  Ordoñez JC, Van Bodegom PM, Witte JPM, et al. A
global study of relationships between leaf traits, climate
and soil measures of nutrient fertility. Global Ecology
and Biogeography, 2009, 18: 137-149
[15]  Wright JP, Sutton⁃Grier A. Does the leaf economic spec⁃
trum hold within local species pools across varying envi⁃
ronmental conditions? Functional Ecology, 2012, 26:
1390-1398
[16]  Cianciaruso MV, Silva IA, Manica LT, et al. Leaf habit
does not predict leaf functional traits in cerrado woody
species. Basic and Applied Ecology, 2013, 14: 404 -
412
[17]  Flores O, Garnier E, Wright IJ, et al. An evolutionary
perspective on leaf economics: Phylogenetics of leaf
mass per area in vascular plants. Ecology and Evolution,
2014, 4: 2799-2811
[18]  Chen Y⁃T (陈莹婷), Xu Z⁃Z (许振柱). Review on
research of leaf economics spectrum. Chinese Journal of
Plant Ecology (植物生态学报), 2014, 38(10): 1135-
1153 (in Chinese)
[19]  He JS, Wang ZH, Wang XP, et al. A test of the gene⁃
rality of leaf trait relationships on the Tibetan Plateau.
New Phytologist, 2006, 170: 835-848
[20]  Donovan LA, Maherali H, Caruso CM, et al. The evolu⁃
tion of the worldwide leaf economics spectrum. Trends in
Ecology & Evolution, 2011, 26: 88-95
[21]  Xu ZZ, Shimizu H, Ito S, et al. Effects of elevated
CO2, warming and precipitation change on plant growth,
photosynthesis and peroxidation in dominant species from
North China grassland. Planta, 2014, 239: 421-435
[22]  Prieto I, Roumet C, Cardinael R, et al. Root functional
parameters along a land⁃use gradient: Evidence of a
community⁃level economics spectrum. Journal of Ecolo⁃
gy, 2015, 103: 361-373
[23]  Ma JJ, Ji CJ, Han M, et al. Comparative analyses of
leaf anatomy of dicotyledonous species in Tibetan and
Inner Mongolian grasslands. Science China: Life Sci⁃
ences, 2012, 55: 68-79
[24]  Jie S⁃L (揭胜麟), Fan D⁃Y (樊大勇), Xie Z⁃Q (谢
宗强), et al. Features of leaf photosynthesis and leaf
nutrient traits in reservoir riparian region of Three Gorges
Reservoir, China. Acta Ecologica Sinica (生态学报),
2012, 32(6): 1723-1733 (in Chinese)
[25]  Yu H⁃Y (于鸿莹), Chen Y⁃T (陈莹婷), Xu Z⁃Z (许
振柱), et al. Analysis of relationships among leaf func⁃
tional traits and economics spectrum of plant species in
the desert steppe of Nei Mongol. Chinese Journal of Plant
Ecology (植物生态学报), 2014, 38(10): 1029-1040
(in Chinese)
[26]  Fynn R, Morris C, Ward D, et al. Trait⁃environment re⁃
lations for dominant grasses in South African mesic
grassland support a general leaf economic model. Journal
of Vegetation Science, 2011, 22: 528-540
[27]  Pérez⁃Ramos IM, Roumet C, Cruz P, et al. Evidence
for a ‘plant community economics spectrum’ driven by
nutrient and water limitations in a Mediterranean range⁃
land of southern France. Journal of Ecology, 2012,
100: 1315-1327
[28]  Grigulis K, Lavorel S, Krainer U, et al. Relative contri⁃
butions of plant traits and soil microbial properties to
mountain grassland ecosystem services. Journal of Ecolo⁃
gy, 2013, 101: 47-57
[29]  Grady KC, Laughlin DC, Ferrier SM, et al. Conservative
leaf economic traits correlate with fast growth of genotypes
of a foundation riparian species near the thermal maxi⁃
mum extent of its geographic range. Functional Ecology,
2013, 27: 428-438
[30]  Meng T⁃T (孟婷婷), Ni J (倪  健), Wang G⁃H (王
国宏). Plant functional traits, environments and ecosys⁃
tem functioning. Chinese Journal of Plant Ecology (植物
生态学报), 2007, 31(1): 150-165 (in Chinese)
[31]  Feng Q⁃H (冯秋红), Shi Z⁃M (史作民), Dong L⁃L
(董莉莉). Response of plant functional traits to envi⁃
ronment and its application. Scientia Silvae Sinicae (林
业科学), 2008, 44(4): 125-131 (in Chinese)
[32]  Ding J (丁   佳), Wu Q (吴   茜), Yan H (闫  
慧), et al. Effects of topographic variations and soil
characteristics on plant functional traits in a subtropical
evergreen broad⁃leaved forest. Biodiversity Science (生物
多样性), 2011, 19(2): 158-167 (in Chinese)
[33]  Fan Y⁃W (樊艳文). Leaf and Stem Functional Traits of
Superior Woody Species and Their Influencing Factors in
Northeast China’s Forests. Master Thesis. Beijing: Bei⁃
jing Forestry University, 2011 (in Chinese)
[34]  Yuan ZY, Chen HYH. Global trends in senesced⁃leaf
nitrogen and phosphorus. Global Ecology and Biogeogra⁃
phy, 2009, 18: 532-542
[35]  Siefert A, Ravenscroft C, Weiser MD, et al. Functional
beta⁃diversity patterns reveal deterministic community
assembly processes in eastern North American trees.
Global Ecology and Biogeography, 2013, 22: 682-691
[36]  Peñuelas J, Sardans J, Llusia J, et al. Foliar chemistry
and standing folivory of early and late⁃successional spe⁃
cies in a Bornean rainforest. Plant Ecology & Diversity,
2013, 6: 245-256
[37]  Suter M, Edwards PJ. Convergent succession of plant
communities is linked to species’ functional traits. Per⁃
spectives in Plant Ecology, Evolution and Systematics,
2013, 15: 217-225
[38]  Lavorel S, Grigulis K. How fundamental plant functional
76816期                            宋  贺等: 北京植物园不同功能型植物叶经济谱           
trait relationships scale⁃up to trade⁃offs and synergies in
ecosystem services. Journal of Ecology, 2012, 100: 128-
140
[39]  Baltzer JL, Gregoire DM, Bunyavejchewin S, et al. Co⁃
ordination of foliar and wood anatomical traits contributes
to tropical tree distributions and productivity along the
Malay⁃Thai Peninsula. American Journal of Botany,
2009, 96: 2214-2223
[40]  Reich PB, Tilman D, Isbell F, et al. Impacts of biodi⁃
versity loss escalate through time as redundancy fades.
Science, 2012, 336: 589-592
[41]  Ordonez A, Olff H. Do alien plant species profit more
from high resource supply than natives? A trait⁃based
analysis. Global Ecology and Biogeography, 2013, 22:
648-658
[42]  Navas ML, Roumet C, Bellmann A, et al. Suites of
plant traits in species from different stages of a Mediter⁃
ranean secondary succession. Plant Biology, 2010, 12:
183-196
[43]  Royer DL, Miller IM, Peppe DJ, et al. Leaf economic
traits from fossils support a weedy habit for early angio⁃
sperms. American Journal of Botany, 2010, 97: 438-
445
[44]  Sniderman JK, Jordan GJ, Cowling RM. Fossil evidence
for a hyperdiverse sclerophyll flora under a non⁃Mediter⁃
ranean⁃type climate. Proceedings of the National Acade⁃
my of Sciences of the United States of America, 2013,
110: 3423-3428
[45]   Scheiter S, Langan L, Higgins SI. Next⁃generation dy⁃
namic global vegetation models: Learning from commu⁃
nity ecology. New Phytologist, 2013, 198: 957-969
[46]  Zhou Z⁃J (周自江). Blowing⁃sand and sandstorm in
China in recent 45 years. Quaternary Sciences (第四纪
研究), 2001, 21(1): 9-17 (in Chinese)
[47]  Mao R (毛  睿), Gong D⁃Y (龚道溢), Fan Y⁃D (范
一大). Influences of synoptic variability on spring sand
storm frequency in north China. Acta Geographica Sinica
(地理学报), 2005, 60(1): 12-20 (in Chinese)
[48]  Mu Q (穆  泉), Zhang S⁃Q (张世秋). An evaluation
of the economic loss due to the heavy haze during January
2013 in China. China Environmental Science (中国环境
科学), 2013, 33(11): 2087-2094 (in Chinese)
[49]  Wei H⁃L (韦惠兰), Zhang H⁃L (张宏亮). The rela⁃
tionships between the sandstorm and human factors.
Journal of Arid Land Resources and Environment (干旱
区资源与环境), 2004, 18(4): 1-6 (in Chinese)
[50]  Nguyen T⁃T⁃T (阮氏清草). Analysis and Evaluation of
the Relationship between Different Types of Urban Forest
Plant Species and Vegetation in Reducing Airborne Par⁃
ticulate Matter in Urban Environment. PhD Thesis. Bei⁃
jing: Beijing Forestry University, 2014 (in Chinese)
[51]  Lei W⁃Q (雷维群). Study on the Plants Landscape of
Botanical Garden in China. Master Thesis. Beijing: Bei⁃
jing Forestry University, 2011 (in Chinese)
[52]  Gornall JL, Guy RD. Geographic variation in ecophysio⁃
logical traits of black cottonwood (Populus trichocarpa).
Canadian Journal of Botany, 2007, 85: 1202-1213
[53]  Cao KF, Yang SJ, Zhang YJ, et al. The maximum
height of grasses is determined by roots. Ecology Letters,
2012, 15: 666-672
[54]  Edwards EJ, Chatelet DS, Sack L, et al. Leaf life span
and the leaf economic spectrum in the context of whole
plant architecture. Journal of Ecology, 2014, 102: 328-
336
[55]  Dong X⁃G (董星光), Cao Y⁃F (曹玉芬), Tian L⁃M
(田路明), et al. Leaf morphology and photosynthetic
characteristics of wild Ussurian pear in China. Chinese
Journal of Applied Ecology (应用生态学报), 2015, 26
(5): 1327-1334 (in Chinese)
[56]  Lv J⁃Z (吕金枝), Miao Y⁃M (苗艳明), Zhang H⁃F
(张慧芳), et al. Comparisons of leaf traits among dif⁃
ferent functional types of plant from Huoshan Mountain
in the Shanxi Province. Journal of Wuhan Botanical Re⁃
search (武汉植物学研究), 2010, 28(4): 460-465
(in Chinese)
[57]  Rösch H, van Rooyen MW, Theron GK. Predicting
competitive interactions between pioneer plant species by
using plant traits. Journal of Vegetation Science, 1997,
8: 489-494
[58]  Qi D⁃H (戚德辉), Wen Z⁃M (温仲明), Yang S⁃S
(杨士梭), et al. Trait⁃based responses and adaptation
of Artemisia sacrorum to environmental changes. Chinese
Journal of Applied Ecology (应用生态学报), 2015, 26
(7): 1921-1927 (in Chinese)
[59]   Zheng S⁃X (郑淑霞), Shangguan Z⁃P (上官周平).
Photosynthetic characteristics and their relationships with
leaf nitrogen content and leaf mass per area in different
plant functional types. Acta Ecologica Sinica (生态学
报), 2007, 27(1): 171-181 (in Chinese)
[60]  Schreiber U. Pulse⁃amplitude⁃modulation ( PAM) flu⁃
orometry and saturation pulse method: An overview.
Dordrecht: Springer Netherlands, 2004
[61]  Bai J, Xu DH, Kang HM, et al. Photoprotective func⁃
tion of photorespiration in Reaumuria soongorica during
different levels of drought stress in natural high irradi⁃
ance. Photosynthetica, 2008, 46: 232-237
[62]  Takahashi S, Murata N. How do environmental stresses
accelerate photoinhibition? Trends in Plant Science,
2008, 13: 178-182
[63]  Zhang C (张  超), Zhan D⁃X (占东霞), Zhang P⁃P
(张鹏鹏), et al. Responses of photorespiration and
thermal dissipation in PSⅡ to soil water in cotton bracts.
Chinese Journal of Plant Ecology (植物生态学报),
2014, 38(4): 387-395 (in Chinese)
[64]  Hikosaka K, Hanba YT, Hirose T, et al. Photosynthetic
nitrogen⁃use efficiency in leaves of woody and herba⁃
ceous species. Functional Ecology, 1998, 12: 896-905
[65]  Onoda Y, Hikosaka K, Hirose T. Allocation of nitrogen
to cell walls decreases photosynthetic nitrogen⁃use effi⁃
ciency. Functional Ecology, 2004, 18: 419-425
[66]  Warren CR, Adams MA. Evergreen trees do not maxi⁃
mize instantaneous photosynthesis. Trends in Plant Sci⁃
ence, 2004, 9: 270-274
[67]  Takashima T, Hikosaka K, Hirose T. Photosynthesis or
persistence: Nitrogen allocation in leaves of evergreen
and deciduous Quercus species. Plant, Cell & Environ⁃
ment, 2004, 27: 1047-1054
[68]  Tilman D. Plant Strategies and the Dynamics and Struc⁃
8681 应  用  生  态  学  报                                      27卷
ture of Plant Communities. Princeton, IN: Princeton
University Press, 1988
[69]  Mao W, Ginger A, Li YL, et al. Life history strategy in⁃
fluences biomass allocation in response to limiting nutri⁃
ents and water in an arid system. Polish Journal of Eco⁃
logy, 2012, 60: 545-557
[70]  Mao W (毛   伟), Li Y⁃L (李玉霖), Cui D (崔  
夺), et al. Biomass allocation response of species with
different life history strategies to nitrogen and water addi⁃
tion in sandy grassland in Inner Mongolia. Chinese Jour⁃
nal of Plant Ecology (植物生态学报), 2014, 38(2):
125-133 (in Chinese)
[71]  Wright IJ, Reich PB, Westoby M. Strategy shifts in leaf
Physiology, structure and nutrient content between spe⁃
cies of high⁃ and low⁃rainfall and high⁃ and low⁃nutrient
habitats. Functional Ecology, 2001, 15: 423-434
[72]   Liu F⁃D (刘福德), Wang Z⁃S (王中生), Zhang M
(张  明), et al. Photosynthesis in relation to leaf nitro⁃
gen, phosphorus and specific leaf area of seedlings and
saplings in tropical montane rain forest of Hainan Is⁃
land, South China. Acta Ecologica Sinica (生态学报),
2007, 27(11): 4651-4661 (in Chinese)
[73]  Guo R (郭   茹), Wen Z⁃M (温仲明), Wang H⁃X
(王红霞), et al. Relationships among leaf traits and
their expression in different vegetation zones in Yanhe
River basin, Northwest China. Chinese Journal of Applied
Ecology (应用生态学报), 2015, 26(12): 3627-3633
(in Chinese)
[74]  Reich PB, Uhl C, Walters MB, et al. Leaf life⁃span as
a determinant of leaf structure and function among 23
Amazonian tree species. Oecologia, 1991, 86: 16-24
[75]  Reich PB, Ellsworth DS, Walters MB, et al. Generality
of leaf trait relationships: A test across six biomes. Eco⁃
logy, 1999, 80: 1955-1969
[76]  Reich PB, Wright IJ, Cavender⁃Bares J, et al. The evo⁃
lution of plant functional variation: Traits, spectra, and
strategies. International Journal of Plant Sciences, 2003,
164: s143-s164
[77]  Chai YF, Liu X, Yue M, et al. Leaf traits in dominant
species from different secondary successional stages of
deciduous forest on the Loess Plateau of northern China.
Applied Vegetation Science, 2015, 18: 50-63
[78]  Rosati A, Esparza G, Dejong TM, et al. Influence of
canopy light environment and nitrogen availability on leaf
photosynthetic characteristics and photosynthetic nitro⁃
gen⁃use efficiency of field⁃grown nectarine trees. Tree
Physiology, 1999, 19: 173-180
[79]  Ellsworth DS, Reich PB. Canopy structure and vertical
patterns of photosynthesis and related leaf traits in a de⁃
ciduous forest. Oecologia, 1993, 96: 169-178
[80]  Field C, Mooney HA. The Photosynthesis⁃nitrogen Rela⁃
tionship in Wild Plants. Cambridge: Cambridge Univer⁃
sity Press, 1986
[81]  Reich PB, Walters MB, Ellsworth DS. Leaf life⁃span in
relation to leaf, plant, and stand characteristics among
diverse ecosystems. Ecological Monographs, 1992, 62:
365-392
[82]  Mooney HA, Field C, Gulmon SL, et al. Photosynthetic
capacity in relation to leaf position in desert versus old⁃
field annuals. Oecologia, 1981, 50: 109-112
[83]  Korner C. The nutritional⁃status of plants from high⁃alti⁃
tudes: A worldwide comparison. Oecologia, 1989, 81:
379-391
[84]  Penuelas J, Biel C, Estiarte M. Changes in biomass
chlorophyll content and gas⁃exchange of beans and pep⁃
pers under nitrogen and water⁃stress. Photosynthetica,
1993, 29: 535-542
[85]  Catoni R, Gratani L. Morphological and physiological
adaptive traits of Mediterranean narrow endemic plants:
The case of Centaurea gymnocarpa (Capraia Island, Ita⁃
ly) . Flora: Morphology, Distribution, Functional Ecolo⁃
gy of Plants, 2013, 208: 174-183
[86]  Cai Z⁃Q (蔡志全), Cao K⁃F (曹坤芳), Feng Y⁃L
(冯玉龙), et al. Acclimation of foliar photosynthetic
apparatus of three tropical woody species to growth irra⁃
diance. Chinese Journal of Applied Ecology (应用生态
学报), 2003, 14(4): 493-496 (in Chinese)
[87]  Shi S⁃B (师生波), Zhang H⁃G (张怀刚), Shi R (师
瑞), et al. Assessment of photosynthetic photo⁃inhibi⁃
tion and recovery of PSⅡ photochemical efficiency in
leaves of wheat varieties in Qinghai⁃Xizang Plateau. Chi⁃
nese Journal of Plant Ecology (植物生态学报), 2014,
38(4): 375-386 (in Chinese)
[88]  Gong C⁃M (龚春梅), Ning P⁃B (宁蓬勃), Wang G⁃X
(王根轩), et al. A review of adaptable variations and
evolution of photosynthetic carbon assimilating pathway
in C3 and C4 plants. Chinese Journal of Plant Ecology
(植物生态学报), 2009, 33(1): 206-221 ( in Chi⁃
nese)
作者简介  宋  贺, 女, 1990年生, 硕士研究生. 主要从事
植物生态学研究. E⁃mail: songhe@ ibcas.ac.cn
责任编辑  孙  菊
宋贺, 于鸿莹, 陈莹婷, 等. 北京植物园不同功能型植物叶经济谱. 应用生态学报, 2016, 27(6): 1861-1869
Song H, Yu H⁃Y, Chen Y⁃T, et al. Leaf economics spectrum among different plant functional types in Beijing Botanical Garden, Chi⁃
na. Chinese Journal of Applied Ecology, 2016, 27(6): 1861-1869 (in Chinese)
96816期                            宋  贺等: 北京植物园不同功能型植物叶经济谱