免费文献传递   相关文献

Effect of climate change on net primary productivity of Korean pine (Pinus koraiensis) at different successional  stages of broad-leaved Korean pine forest.

气候变化对阔叶红松林不同演替阶段红松种群生产力的影响


本文以长白山地区阔叶红松林不同演替阶段(次生杨桦林、次生针阔混交林、原始红松林)内红松种群作为研究对象,采用树轮学与相对生长式相结合,获取红松种群净初级生产力(NPP)连年生长(1921—2006年)数据以及相对增长率的年际变化数据,建立红松种群NPP与年际和季节性气候因子的关系,分析不同气候时期长白山阔叶红松林不同演替阶段内红松种群NPP年际变化特征及其对气候变化的响应差异.结果表明: 研究期间,不同演替阶段红松种群NPP与气候因子响应关系存在差异.随着温度上升,次生杨桦林红松种群NPP与上年生长季和当年生长季低温由显著负相关关系转变为显著正相关关系;次生针阔混交林红松种群NPP由与当年春季最低温度的正相关关系转变为与上年和当年生长季温度的显著正相关关系,气候因素对次生针阔混交林红松种群NPP影响的滞后效应增强;原始红松林红松种群NPP与温度的相关性减弱,与上年生长季降水量的正相关关系增强.研究区气候变化表现为低温和平均温度显著上升,而最高温度和降水没有明显变化.气候变化有利于提高演替初级阶段次生杨桦林和演替中级阶段次生针阔混交林内红松种群生产力,尤其是次生针阔混交林,而对演替顶极阶段红松种群NPP影响不明显.

Pinus koraiensis in broadleaved Korean pine forests of Changbai Mountain at different successional stages (secondary poplarbirch forest, secondary coniferous and broadleaved forest and the primitive Korean pine forest) were selected in this paper as the research objects. In this research, the annual growth of net primary productivity (NPP) (1921-2006) of P. koraiensis was obtained by combining the treering chronology and relative growth formulae, the correlation between NPP of P. koraiensis and climatic factors was developed, and the annual growth of NPP of P. koraiensis at different successional stages in relation to climatic variation within different climate periods were analyzed. The results showed that, in the research period, the correlations between climatic factors and NPP of P. koraiensis at different successional stages were different. With increasing the temperature, the correlations between NPP of P. koraiensis in the secondary poplarbirch forest and the minimum temperatures of previous and current growing seasons changed from being significantly negative  to being significantly positive. The positive correlation between NPP of P. koraiensis in the secondary coniferous and broadleaved forest and the minimum temperature in current spring changed into significantly positive correlation  between NPP of P. koraiensis and the temperatures in previous and current growing seasons. The climatic factors had a stronger hysteresis effect on NPP of P. koraiensis in the secondary coniferous and broad-leaved forest, but NPP of P. koraiensis in the primitive Korean pine forest had weaker correlation with temperature but stronger positive correlation  with the precipitation of previous growing season. The increases of minimum and mean temperatures were obvious, but no significant variations of the maximum temperature and precipitation were observed at our site. The climatic variation facilitated the increase of the NPP of P. koraiensis in the secondary poplarbirch forest at the initial successional stage and in secondary coniferous and broad-leaved forest  at the  intermediate successional stage, and this effect was especially obvious for the secondary coniferous and broad-leaved forest, but very small for the primitive Korean pine forest which was at the climax phase.


全 文 :气候变化对阔叶红松林不同演替阶段
红松种群生产力的影响*
丘摇 阳摇 高露双**摇 张摇 雪摇 郭摇 静摇 马志远
(北京林业大学森林资源与生态系统过程北京市重点实验室, 北京 100083)
摘摇 要摇 本文以长白山地区阔叶红松林不同演替阶段(次生杨桦林、次生针阔混交林、原始红
松林)内红松种群作为研究对象,采用树轮学与相对生长式相结合,获取红松种群净初级生产
力(NPP)连年生长(1921—2006 年)数据以及相对增长率的年际变化数据,建立红松种群 NPP
与年际和季节性气候因子的关系,分析不同气候时期长白山阔叶红松林不同演替阶段内红松
种群 NPP 年际变化特征及其对气候变化的响应差异.结果表明: 研究期间,不同演替阶段红
松种群 NPP与气候因子响应关系存在差异.随着温度上升,次生杨桦林红松种群 NPP与上年
生长季和当年生长季低温由显著负相关关系转变为显著正相关关系;次生针阔混交林红松种
群 NPP由与当年春季最低温度的正相关关系转变为与上年和当年生长季温度的显著正相关
关系,气候因素对次生针阔混交林红松种群 NPP 影响的滞后效应增强;原始红松林红松种群
NPP与温度的相关性减弱,与上年生长季降水量的正相关关系增强.研究区气候变化表现为
低温和平均温度显著上升,而最高温度和降水没有明显变化.气候变化有利于提高演替初级
阶段次生杨桦林和演替中级阶段次生针阔混交林内红松种群生产力,尤其是次生针阔混交
林,而对演替顶极阶段红松种群 NPP影响不明显.
关键词摇 净初级生产力摇 演替阶段摇 气候响应
*“十二五冶国家科技支撑计划项目(2012BAC01B03)资助.
**通讯作者. E鄄mail: gaolushuang@ bifu. edu. cn
2013鄄12鄄02 收稿,2014鄄04鄄22 接受.
文章编号摇 1001-9332(2014)07-1870-09摇 中图分类号摇 Q948摇 文献标识码摇 A
Effect of climate change on net primary productivity of Korean pine (Pinus koraiensis) at
different successional stages of broad鄄leaved Korean pine forest. QIU Yang, GAO Lu鄄shuang,
ZHANG Xue, GUO Jing, MA Zhi鄄yuan (Key Laboratory for Forest Resources & Ecosystem Processes
of Beijing, Beijing Forestry University, Beijing 100083, China) . 鄄Chin. J. Appl. Ecol. , 2014, 25
(7): 1870-1878.
Abstract: Pinus koraiensis in broad鄄leaved Korean pine forests of Changbai Mountain at different
successional stages ( secondary poplar鄄birch forest, secondary coniferous and broad鄄leaved forest
and the primitive Korean pine forest) were selected in this paper as the research objects. In this re鄄
search, the annual growth of net primary productivity (NPP) (1921-2006) of P. koraiensis was
obtained by combining the tree鄄ring chronology and relative growth formulae, the correlation be鄄
tween NPP of P. koraiensis and climatic factors was developed, and the annual growth of NPP of P.
koraiensis at different successional stages in relation to climatic variation within different climate pe鄄
riods were analyzed. The results showed that, in the research period, the correlations between cli鄄
matic factors and NPP of P. koraiensis at different successional stages were different. With increas鄄
ing the temperature, the correlations between NPP of P. koraiensis in the secondary poplar鄄birch
forest and the minimum temperatures of previous and current growing seasons changed from being
significantly negative to being significantly positive. The positive correlation between NPP of P. ko鄄
raiensis in the secondary coniferous and broad鄄leaved forest and the minimum temperature in current
spring changed into significantly positive correlation between NPP of P. koraiensis and the tempera鄄
tures in previous and current growing seasons. The climatic factors had a stronger hysteresis effect
on NPP of P. koraiensis in the secondary coniferous and broad鄄leaved forest, but NPP of P. ko鄄
raiensis in the primitive Korean pine forest had weaker correlation with temperature but stronger pos鄄
应 用 生 态 学 报摇 2014 年 7 月摇 第 25 卷摇 第 7 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇
Chinese Journal of Applied Ecology, Jul. 2014, 25(7): 1870-1878
itive correlation with the precipitation of previous growing season. The increases of minimum and
mean temperatures were obvious, but no significant variations of the maximum temperature and pre鄄
cipitation were observed at our site. The climatic variation facilitated the increase of the NPP of P.
koraiensis in the secondary poplar鄄birch forest at the initial successional stage and in secondary co鄄
niferous and broad鄄leaved forest at the intermediate successional stage, and this effect was especial鄄
ly obvious for the secondary coniferous and broad鄄leaved forest, but very small for the primitive Ko鄄
rean pine forest which was at the climax phase.
Key words: net primary productivity (NPP); successional stage; climatic responses.
摇 摇 森林生产力是森林与环境之间本质联系的重要
标志,随着全球气候变化日益受到关注,学者们开展
了大量关于森林生产力对气候变化的响应研
究[1-4] .温度上升、CO2浓度增加、降水格局改变都将
直接影响森林生产力[5-9],而气候变化带来的火灾、
虫害和树种分布格局的改变也将间接导致森林生产
力的变化[10-13] .同时,气候格局的改变、土壤过程以
及树木个体响应差异等诸多因素也将导致森林演替
过程发生偏离[14],改变植物群落中树种的组成、数
量和质量,从而影响森林生产力[15] .另外,即使在同
一区域内部,受地形、地势、海拔等不同环境梯度的
影响,同一树种对气候变化的响应也不尽相同.基于
NEWCOP 模型的预测结果表明,温度上升将改变长
白山北坡阔叶红松林树种组成,进而提高红松种群
生物量[16];而森林动态模型 BKPF 预测结果指出,
气温上升将抑制树木的生理过程,进而导致红松种
群地上生物量降低[17];生态系统过程模型 PnET鄄域
则提出,阔叶红松林净初级生产力(NPP)变化呈先
增加后减少的趋势[18] .构建模型的依据是植物生理
生态特性与气候变量的相关关系,然而,不同气候条
件和演替阶段都可能影响种群与气候变量的关系,
而这种关系的不确定性有可能降低模型的可靠性,
同时模型忽略了植物对气候的响应滞后性,这也将
导致模拟结果有所差异. 树木年轮资料具有定年准
确、连续性强、分辨率高和易于获取大量样本等诸多
特点[19],在国内外广泛应用于年表特征对比分
析[20-23]、树木生长对气候因子的响应分析[24-26]以
及重建区域过去的气候变化[27-30]等研究中.基于树
轮资料,何吉成[31]重建了长白山森林净初级生产
力,但未考虑不同演替阶段以及不同气候条件对种
群生产力的影响.
阔叶红松林是长白山地区地带性顶极植被类
型,红松(Pinus koraiensis)是阔叶红松林演替的顶极
树种,对气候变化具有较强的敏感性[27-29] .因此,本
文以长白山地区典型阔叶红松林演替初级皆伐后天
然更新的次生杨桦林、演替中级择伐后的次生针阔
混交林和演替顶极保护区内未受干扰的原始阔叶红
松林内红松种群为研究对象,通过分析不同演替阶
段红松种群 NPP以及相对增长率特征,探讨了气候
变化对不同演替阶段红松种群生产力的影响,以期
为气候变化背景下阔叶红松林的可持续经营提供理
论基础.
1摇 研究方法
1郾 1摇 样本采集及处理
采样点位于吉林省延边朝鲜族自治州安图县二
道白河长镇白山北坡已建好的次生杨桦林
(42毅21忆 N,128毅08忆 E,海拔 899 m,5. 2 hm2)、次生
针阔混交林(42毅21忆 N,128毅08忆 E,海拔 784 m,5. 2
hm2)和原始红松林(42毅20忆 N,128毅06忆 E,海拔 784
m,1 hm2)固定样地内(表 1). 选取胸径>10 cm 的
健康红松为采样木,利用生长锥在采样木胸径处
表 1摇 不同演替阶段红松基本信息
Table 1摇 Basic information about the permanent sample plots
样地
Plot
演替阶段
Successional stage
多度
Abundance
重要值
Importance
value
胸径范围
DHB range
(cm)
平均年龄
Average
age (a)
样芯数量
Number of
samples
树种组成
Species composition
玉 次生杨桦林
Secondary poplar鄄birch forest
439 3. 79 10. 2 ~ 20. 7 86 51 2 椴 2 白 1 杨 1 水 1 栎
1 红 1 臭 1 色
域 次生针阔混交林 Secondary conifer鄄
ous and broad鄄leaved forest
709 6. 35 11. 8 ~ 32. 8 72 55 2 白 1 水 1 杨 1 椴 1 红
1 栎+臭+榆
芋 原始红松林
Primitive Korean pine forest
88 12. 31 12. 6 ~ 31. 2 176 61 3 红 2 栎 2 水 2 椴 1 色
椴: 紫椴 Tilia amurensis;白:白桦 Betula platyphylla;杨:山杨 Populus davidiana;水:水曲柳 Fraxinus mandshurica;栎:蒙古栎 Querus mongoli鄄
ca; 红: 红松 Pinus koraiensis; 臭: 臭松 Abies nephrolepis; 色: 色木槭 Acer mono; 榆: 春榆 Ulmus japonica.
17817 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 丘摇 阳等: 气候变化对阔叶红松林不同演替阶段红松种群生产力的影响摇 摇 摇 摇 摇 摇
(距地面 1. 3 m)采集 1 个宽度样芯,确保通过髓心.
将样本带回实验室进行固定、打磨,并利用年轮分析
仪(LINTAB 5)在 0. 001 mm水平上测定逐年树轮宽
度,通过 TSAP、COFECHA 对样本宽度序列进行交
叉定年,剔除相关性低和特异样本,最终保留 167 个
样芯.
1郾 2摇 净初级生产力计算
净初级生产力 ( NPP)是生物量的年增加量
(驻W)、凋落枯死量 ( D)和动物采食量 ( G)的总
和[1] .由于凋落枯死量和动物采食量的估算工作很
复杂,不确定性大,冠层郁闭以后,凋落量基本恒定,
所以本文忽略凋落枯死量和动物采食量,将净初级
生产力直接用生物量的年增加量表示,即 NPP =
驻W,第 N年红松种群的净初级生产力 驻NPPN =WN-
WN-1 .通过测量获取红松胸径处树芯的逐年宽度值
和当前胸径,得到逐年胸径,结合徐振邦等[30]和何
怀江等(未发表)关于红松的各器官生物量与其胸
径的相关关系公式(表 2),得到红松全株逐年生物
量.每个样地划分若干个面积为 0. 04 hm2(20 m伊20
m)的小样方(其中,次生杨桦林和次生针阔混交林
内各 135 个,原始红松林内 25 个),在取样过程中,
记录下取样红松所占据的小样方数 n,将红松逐年
生物量的增加量通过面积换算得到逐年的 NPP,最
终获得样地红松种群 NPP序列.
1郾 3摇 气候数据来源
受季风影响,该地区年均气温约 2. 8 益,气温的
年较差和日较差大,年降水量为 600 ~ 900 mm,降水
多集中在夏季,6—9 月降水量占全年降水量的
80% .气候资料来源于中国科学院长白山森林生态
系统定位站(42毅28忆 N,128毅55忆 E,海拔 740 m)和
CRU TS 3. 1 全球气候数据库. 其中,长白山生态定
位站记录了 1982—2013 年的月平均气温和月降水
量观测数据, CRU TS 3. 1 全球气候数据库包含
1901—2006 年间隔为 0. 5毅伊0. 5毅的网格点的月降水
量,月平均、最高及最低温度. CRU 与生态定位站的
降水量,年平均、最低和最高温度等气象数据的相关
关系均达到了显著水平,说明本文所选取 CRU数据
能够反映该地区的气候变化. 鉴于气候数据的长效
性以及气候要素的完整性,最终选取 CRU TS3. 1 的
1901—2006 年气候要素.鉴于红松生长的节律和气
候因子对树木生长的滞后作用,将气候资料分为上
年生长季(5—9 月)和上年冬季(10—12 月)、当年
春季(1—4 月)、当年生长季前期(5—6 月)和当年
生长季中后期(7—9 月).
1郾 4摇 数据分析
为探讨红松种群 NPP 与气候因子关系的动态
变化,根据温度和降水量的变化趋势,通过分段拟合
对气候数据的有效性区间(1901—2006 年)进行格
局划分,研究区 1901—2006 年的气候变化可划分为
3 个时期:1)降温期(1901—1920 年),年平均最高
温度(R2 =0. 07,P<0. 05)和平均温度(R2 = 0. 19,P<
0. 05)呈显著下降趋势,其气候变化倾斜率分别为
-0. 63和-0. 76 益·10 a-1;2)平稳期(1921—1980
年),年均温度和降水量均没有明显的变化趋势;3)
升温期(1980—2006 年),年平均温度(R2 =0. 12,P<
0. 05)和年均最低温度(R2 = 0. 41,P<0. 05)均呈显
著上升趋势,其气候变化倾斜率分别为 0. 5 和 0. 8
益·(10 a) -1 .
采用多重比较分析不同气候时期内各演替阶段
净初级生产力的差异(琢 = 0郾 05),利用相关函数法
构建红松种群 NPP 与年际和季节性气候因子的关
系,研究不同气候格局内各演替阶段红松种群 NPP
变化特征及其对气候因子的响应.以上过程由 SPSS
16. 0 软件完成.
2摇 结果与分析
2郾 1摇 红松种群生产力的年际变化特征
不同气候时期内红松种群 NPP 均呈上升趋势,
升温期内增加更明显,在 2000 年前后出现大幅度增
长(图1) ,且原始红松林内红松种群的NPP增长速
表 2摇 阔叶红松林各树种干、枝、叶生物量(W)与其胸径(D)的相关关系
Table 2摇 Correlations between the biomass of stem, branch and leaf and the DBH (diameter at breast height)
器官
Organ
回归方程
Regression equation
相关系数
Correlation coefficient
干生物量 Biomass of trunk W=0. 0417D2. 579 0. 99
枝生物量 Biomass of branches W=0. 0178D2. 417 0. 92
叶生物量 Biomass of leaves 2 年生以上老叶 Old leaf over 2 years W=3. 7伊10-3D2. 282 0. 89
当年生叶 New leaf W=3伊10-3D2. 207 0. 96
根生物量
Biomass of root
地上生物量 /地下生物量=31 颐 10
Aboveground biomass / underground biomass=31 颐 10
2781 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 25 卷
图 1摇 不同演替阶段红松种群 NPP的变化
Fig. 1摇 NPP variation of Pinus koraiensis at different successional stages.
玉: 次生杨桦林 Secondary poplar鄄birch forest; 域: 次生针阔混交林 Secondary coniferous and broad鄄leaved forest; 芋: 原始红松林 Primitive Korean
pine forest. 下同 The same below.
率显著高于次生杨桦林和次生针阔混交林. 不同演
替阶段红松种群 NPP 绝对增长量和相对增长率变
化幅度均存在显著差异(图 2).在平稳期,次生杨桦
林和次生针阔混交林内红松种群 NPP 年际变化均
呈缓慢上升趋势,1940—1960 年次生杨桦林内红松
种群 NPP显著高于次生针阔混交林;原始红松林内
红松种群 NPP 相对增长率呈现升鄄降鄄升的趋势,
1960 年原始红松林内红松种群 NPP 以及相对
增长率均达到第 1 个峰值,平均增长量为 854郾 44
kg·hm-2·a-1,相对增长率为 1. 2% . 在升温期,次
生针阔混交林内红松种群 NPP 增加幅度最明显,
2005 年次生针阔混交林内红松种群 NPP 增长量达
到峰值(1404. 35 kg·hm-2 ·a-1 ),相对增长率为
4郾 2% .
气候变化有利于提高红松种群生产力以及相对
增长率,但对不同演替阶段红松种群的影响存在差
异,平稳期内原始红松林内红松种群对外界环境表
现更敏感,升温期内次生针阔混交林红松种群变化
最明显.因此,有必要研究不同气候时期不同演替阶
段内红松种群 NPP 相对增长率对外界环境的响应
差异.
2郾 2摇 种群生产力对气候因子的响应
不同演替阶段红松种群 NPP 主要受到温度的
影响,不同演替阶段红松种群 NPP 对年际(表 3)和
季节性(图 3、图 4)气候因子的响应方式也有差异.
次生杨桦林和原始红松林内红松种群对年际气候因
子具有较强的敏感性,而次生针阔混交林内红松种
群 NPP与年际气候因子的相关关系不明显.平稳期
内,次生杨桦林红松种群 NPP与年均最高温度呈显
著正相关,原始红松林红松种群 NPP 与年降水量呈
显著正相关,随着温度的上升,次生杨桦林红松种群
NPP分别与年均最低温度和年均最高温度呈显著正
相关.原始红松林内红松种群 NPP 与年降水量的相
关关系减弱,未达到显著水平.
不同演替阶段红松种群 NPP 对季节性气候因
子的响应具有一定共性,但不同气候条件下具有相
37817 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 丘摇 阳等: 气候变化对阔叶红松林不同演替阶段红松种群生产力的影响摇 摇 摇 摇 摇 摇
表 3摇 各气候格局内不同演替阶段红松种群 NPP与年际气候因子的相关系数
Table 3摇 Correlation coefficients between NPP of Pinus koraiensis species at different successional stages and climatic factors
气候因子
Climatic factor
平稳期
Stationary phase (1921—1980)
次生杨桦林
Secondary
poplar鄄birch
forest
次生针阔
混交林
Secondary coniferous
and broad鄄
leaved forest
原始红松林
Primitive
Korean
pine forest
升温期
Temperature raising phase (1981—2006)
次生杨桦林
Secondary
poplar鄄birch
forest
次生针阔
混交林
Secondary coniferous
and broad鄄
leaved forest
原始红松林
Primitive
Korean
pine forest
年降水量
Annual precipitation
-0. 100 -0. 073 0. 161 0. 188 0. 035 0. 008
年均最低温度
Annual minimum temperature
0. 013 0. 239 -0. 078 0. 435* 0. 087 0. 019
年均温度
Annual mean temperature
0. 066 -0. 029 0. 037 0. 246 0. 075 -0. 015
年均最高温度
Annual maximum temperature
0. 399** -0. 086 0. 299* 0. 408* 0. 212 -0. 249
* P<0. 05; ** P<0. 01.
图 2摇 不同演替阶段红松种群 NPP及其相对增长率
Fig. 2摇 NPP and its relative growth rate of Pinus koraiensis at
different successional stages.
似响应关系的演替阶段有所差异.在平稳期,次生杨
桦林和原始红松林红松种群 NPP 与季节性气候因
子相关关系基本一致,均与上年生长季和当年生长
季低温呈显著负相关,而与当年春季和生长季前最
高温度呈显著正相关,次生杨桦林红松种群 NPP 还
与当年春季低温呈显著正相关,与当年春季降水量
呈显著负相关,次生针阔混交林红松种群 NPP 仅与
当年春季最低温度呈显著正相关(图 3);进入升温
期,次生杨桦林和次生针阔混交林红松种群 NPP 对
季节性气候因子的响应相似,均与上年生长季和当
年生长季前最低温度、上年生长季平均温度和最高
温度呈显著正相关,原始红松林仅与上年生长季降
水量呈显著正相关(图 4).
3摇 讨摇 摇 论
研究期间,研究区不同演替阶段红松种群 NPP
年际变化量和相对增长率均呈上升趋势,且随着温
度上升,红松种群 NPP 上升趋势更明显,说明研究
区气候变化趋势有利于提高红松种群 NPP,这与前
人研究结果基本一致[16] .研究区年平均温度和年均
最低温度分别以 0. 5 和 0. 8 益·(10 a) -1的气候变
化斜率上升,而年均最高温度和降水量无明显变化,
温度在光合最低温度与最适温度下限之间上升有助
于延长植物的生长周期,提高光合作用效率[32],进
而提高森林生产力[33-36] .
在不同气候条件下,演替顶极原始红松林内红
松种群年均 NPP均显著高于其他演替阶段,但相对
增长率的变化幅度均低于其他演替阶段,具有更好
的稳定性.演替顶极原始红松林内红松种群平均年
龄为 176 a,大于次生杨桦林(86 a)和次生针阔混交
林(72 a). 种群生物量随林龄的增大而逐步积
累[37-39],这有可能是导致演替顶极红松种群 NPP较
高的原因.同时,不同气候条件下不同演替阶段红松
种群年均 NPP的变化幅度存在显著差异,次生针阔
混交林红松种群 NPP增加最明显,次生杨桦林种群
NPP也有大幅提高,而原始红松林则无明显变化.随
着温度上升,次生杨桦林红松种群 NPP 与上年生长
季和当年生长季低温的相关关系由显著负相关转变
为显著正相关.有研究表明,上年冬季和当年春季温
度促进红松径向生长[28],春季和生长季低温上升将
促进红松细胞生长[40],研究区低温的显著上升将提
高红松种群 NPP.但也有研究指出,次生杨桦林中红
松径向生长对温度的敏感性偏低,主要受降水量影
响[41] .种群NPP的变化包括胸径(径向)和树高(纵
4781 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 25 卷
图 3摇 平稳期不同演替阶段红松种群 NPP与季节性气候因子的相关关系
Fig. 3摇 Correlations between NPP of Pinus koraiensis population and seasonal climatic factors at different successional stages during the
stable period.
Tmean: 平均温度 Mean temperature; Tmin: 最低温度 Minimum temperature; Tmax: 最高温度 Maximum temperature; P: 降水量 Precipitation. * P<
0郾 05; ** P<0. 01. PG: 上年生长季 Previous growing season; PW: 上年冬季 Pervious winter; CS: 当年春季 Current spring; CGB: 当年生长季
前期 Beginning of current growing season; CGE: 当年生长季中后期 Middle and end of current growing season. 下同 The same below.
图 4摇 升温期不同演替阶段红松种群 NPP与季节性气候因子的相关关系
Fig. 4摇 Correlations between NPP of Pinus koraiensis population and seasonal climatic factors at different successional stages during the
warming period.
向)生长.红松的树高生长主要在生长季前[42],温度
升高有利于增强红松的树高生长,增加红松的材
积[43],进而提高红松种群 NPP[44] .次生针阔混交林
红松种群 NPP 由与当年春季最低温度呈正相关转
变为主要受到上年和当年生长季温度的促进作用,
气候因素对次生针阔混交林红松种群 NPP 的滞后
效应增强.树木的径向生长是树干形成层细胞向内
分化的过程.形成层生长结束的时间一般在 10 月上
旬,此时用于形成层细胞生长的光合产物的消耗减
少,而光合速率随着温度的升高而增大;因此,10 月
的气温越高,为下一年储存的养料越多,进而促进下
年红松的径向生长[23],且长白山阔叶红松林 6—8
57817 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 丘摇 阳等: 气候变化对阔叶红松林不同演替阶段红松种群生产力的影响摇 摇 摇 摇 摇 摇
月的净生态系统生产力占全年总量的 90% 以
上[45],进一步突出了当年生长季温度的作用. Yu
等[46-47]研究发现,随着温度上升,红松径向生长与
温度的正相关关系转变为负相关关系,与生长季降
水量显著相关,生长季前期降水量对红松径向生长
的促进作用增强[48],这就导致原始红松林内红松种
群 NPP与温度的相关关系呈现减弱趋势,而与上年
生长季降水量的正相关关系则逐步增强. 有研究表
明,兴安落叶松林生产力的年际变化与气温呈显著
负相关,而与降水量呈弱的正相关[49] . 原始红松林
内红松种群 NPP无明显变化,主要是由于研究区的
温度和降水量变化不明显.因此,演替顶极阶段红松
种群 NPP受气候变化影响不明显,而温度上升有利
于演替初级阶段次生杨桦林和演替中级阶段次生针
阔混交林内红松种群生产力的增加,尤其是次生针
阔混交林.
不同演替阶段红松种群 NPP 对气候因子响应
的差异性,可能是由于不同演替阶段林分树种组成、
林分密度以及红松种群的重要度(表 1)有所不同,
且在长白山地区红松树轮生态学研究也发现,不同
采样点红松径向生长对气候因子的响应不
同[46-48,50] .另外,本文只考虑了温度和降水量,没有
考虑 CO2浓度的影响. CO2浓度增加在短期内可促
进树木的光合速率,提高生产力,但长期处于高 CO2
浓度下,树木光合速率会逐渐恢复到原有水平,且不
同演替阶段内树种组成的差异,有可能导致小环境
CO2浓度差异,进而导致红松种群受 CO2浓度影响.
CO2浓度增加和温度增加对森林 NPP 的影响较复
杂,要彻底掌握气候变化对不同演替阶段红松种群
的影响机理还有待深入研究.
参考文献
[1]摇 Pastor J, Post WM. Response of northern forests to
CO2 鄄induced climate change. Nature, 1988, 334: 55-
58
[2]摇 Shugart HH, Smith TM. A review of forest patch models
and their application to global change research. Climatic
Change, 1996, 34: 131-153
[3]摇 Mouillot F, Rambal S, Joffre R. Simulating climate
change impacts on fire frequency and vegetation dynam鄄
ics in a Mediterranean鄄type ecosystem. Global Change
Biology, 2002, 8: 423-437
[4]摇 Sohngen B, Sedjo R. Impacts of climate change on for鄄
est product markets: Implications for North American
producers. Forest Chronology, 2005, 81: 669-674
[5]摇 Elfving B, Tegnhammar L. Trends of tree growth in
Swedish forests 1953-1992: An analysis based on sam鄄
ple trees from the national forest inventory. Scandinavi鄄
an Journal of Forest Research, 1996, 11: 26-37
[6]摇 Barber VA, Juday GP, Finney BP. Reduced growth of
Alaskan white spruce in the twentieth century from tem鄄
perature induced drought stress. Nature, 2000, 405:
668-673
[7]摇 Ollinger SV, Aber JD, Reich PB, et al. Interactive
effects of nitrogen deposition, tropospheric ozone, ele鄄
vated CO2 and land use history on the carbon dynamics
of northern hardwood forests. Global Change Biology,
2002, 8: 545-562
[8]摇 Hayhoe K, Wake C, Huntington T, et al. Past and
future changes in climate and hydrological indicators in
the U. S. Northeast. Climate Dynamics, 2007, 28:
381-407
[9]摇 Foley JA, Kutzbach JE, Coe MT, et al. Feedbacks
between climate and boreal forests during the Holocene
epoch. Nature, 1994, 371: 52-55
[10]摇 Shiyatov SG, Mazepa VS, Moiseev PA, et al. Climate
change and its impacts on mountain ecosystems of
National ‘ Park爷 Taganai during the last centuries / /
Kokorin A, Kojarinov A, Minin A, eds. Climate
Change Impacts on Ecosystems: Protected Natural Terri鄄
tories of Russia. Moscow: Analyses of Long鄄Term
Observations, 2001: 23-36
[11]摇 Gillett NP, Weaver AJ, Zwiers FW, et al. Detecting the
effect of climate change on Canadian forest fires. Geo鄄
physical Research Letters, 2004, 31: doi: 10. 1029 /
2004GL020876
[12]摇 Woods KD. Intermediate disturbance in a late鄄
successional hemlock鄄northern hardwood forest. Journal
of Ecology, 2004, 92: 464-476
[13]摇 Goetz SJ, Bunn AG, Fiske GJ, et al. Satellite observed
photosynthetic trends across boreal North America asso鄄
ciated with climate and fire disturbance. Proceedings of
the National Academy of Sciences of the United States of
America, 2005, 102: 13521-13525
[14]摇 Guetter PJ, Kutzbach JE. A modified K觟ppen classifica鄄
tion applied to model simulations of glacial and intergla鄄
cial climates. Climatic Change, 1990, 16: 193-215
[15] 摇 Beck PS, Juday GP, Alix C, et al. Changes in forest
productivity across Alaska consistent with biome shift.
Ecology Letters, 2011, 14: 373-379
[16] 摇 Yan X鄄D (延晓冬), Zhao S鄄D (赵士洞), Yu Z鄄L
(于振良). Modeling growth and succession of north鄄
eastern China forests and its application in global change
studies. Acta Phytoecologica Sinica (植物生态学报),
2000, 24(1): 1-8 (in Chinese)
[17]摇 Chen X鄄W (陈雄文), Wang F鄄Y (王凤友). Simula鄄
tion of the potential responses of mixed coniferous and
broad鄄leaved Korean pine communities by BKPF model.
Acta Phytoecologica Sinica (植物生态学报), 2000, 24
(3): 327-331 (in Chinese)
[18] 摇 Zhou C鄄H (周春华), Hao Z鄄Q (郝占庆), He H鄄S
(贺红士), et al. Modeling response of mixed Korean
pine and broad鄄leaf forest to climate change. Journal of
Liaoning Technical University (Natural Science) (辽宁
6781 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 25 卷
工程技术大学学报·自然科学版), 2009, 28(3):
485-487 (in Chinese)
[19]摇 Wu D鄄X (吴祥定). Tree鄄Ring and Climatic Variation.
Beijing: China Meteorological Press, 1990 (in Chinese)
[20]摇 Peng J鄄F (彭剑峰), Gou X鄄H (勾晓华), Chen F鄄H
(陈发虎), et al. The characteristics of tree鄄ring width
of Sabina przewalskii Kom for different elevations in the
Any觕aq觕 Mountains. Journal of Glaciology and Geocryo鄄
logy (冰川冻土), 2006, 28(5): 713 -721 ( in Chi鄄
nese)
[21]摇 Chen Z鄄J (陈振举), Chen W (陈摇 玮), He X鄄Y (何
兴元), et al. Development of Chinese pine tree鄄ring
width chronology in Fuling Mausoleum, Shenyang of
northeastern China. Journal of Beijing Forestry Universi鄄
ty (北京林业大学学报), 2007, 9(4): 100-108 ( in
Chinese)
[22]摇 Gou X鄄H (勾晓华), Shao X鄄M (邵雪梅), Wang Y鄄J
(王亚军), et al. The establishment of tree鄄ring chro鄄
nology in east region of Qilian Mountains. Journal of
Desert Research (中国沙漠), 1999, 19(4): 364-366
(in Chinese)
[23]摇 Zhang T鄄W (张同文), Yuan Y鄄J (袁玉江), Yu S鄄L
(喻树龙), et al. Tree鄄ring chronological characteristics
at Baluntai on the south slope of the Tianshan
Mountains. Arid Land Geography (干早区地理 ),
2007, 30(1): 36-42 (in Chinese)
[24]摇 Sun F (孙摇 凡), Zhong Z鄄C (钟章成). Relationship
between tree鄄ring growth of Gordonia acuminata and cli鄄
matic factors in Mt. Jinyun. Chinese Journal of Applied
Ecology (应用生态学报), 1999, 10(2): 151 -154
(in Chinese)
[25]摇 Yu D鄄P (于大炮), Wang S鄄Z (王顺忠), Tang L鄄N
(唐立娜), et al. Relationship between tree鄄ring chro鄄
nology of Larix olgensis in Changbai Mountains and the
climate change. Chinese Journal of Applied Ecology (应
用生态学报), 2005, 16(1): 14-20 (in Chinese)
[26]摇 Huang R鄄F (黄荣凤), Zhang G鄄S (张国盛), Wang
L鄄H (王林和), et al. Analysis on main climatic factors
affecting ring鄄width variance of Sabina vulgaris grown in
Mu Us Sandland. Journal of Arid Land Resources and
Environment (干旱区资源与环境), 2004, 18 (6):
164-168 (in Chinese)
[27]摇 Li G鄄Q (李广起), Bai F (白摇 帆), Sang W鄄G (桑卫
国). Different responses of radial growth to climate war鄄
ming in Pinus koraiensis and Picea jezoensis var. komaro鄄
vii at their upper elevational limits in Changbai Moun鄄
tain, China. Chinese Journal of Plant Ecology (植物生
态学报), 2011, 35(5): 500-511 (in Chinese)
[28] 摇 Zhu HF, Fang XQ, Shao XM, et al. Tree ring鄄based
February-April temperature reconstruction for Changbai
Mountain in northeast China and its implication for East
Asian winter monsoon. Climate of the Past, 2009, 5:
661-666
[29]摇 Wang X鄄M (王晓明), Zhao X鄄H (赵秀海), Gao L鄄S
(高露双), et al. Age鄄dependent growth responses of
Pinus koraiensis to climate in the north slope of Changbai
Mountain, North鄄Eastern China. Acta Ecologica Sinica
(生态学报), 2011, 31 (21): 6378 - 6387 ( in Chi鄄
nese)
[30]摇 Xu Z鄄B (徐振邦), Li X (李 摇 昕), Dai H鄄C (戴洪
才), et al. A study on biomass and production of broad鄄
leaved Korean pine forests in Changbai Mountain. Forest
Ecosystem Research (森林生态系统研究), 1985, 5:
33-46 (in Chinese)
[31]摇 He J鄄C (何吉成). Reconstruction of Forest NPP Varia鄄
tion in Changbai Mountain from Tree Ring Width Data.
PhD Thesis. Beijing: Institute of Geographic Sciences
and Natural Resources Research, Chinese Academy of
Sciences, 2005 (in Chinese)
[32]摇 Yin H (尹摇 红), Liu H鄄B (刘洪滨), Guo P鄄W (郭
品文), et al. An analysis on the climatic response
mechanism of the growth of Pinus koraiensis in the lower
mountains of Xiaoxinganling. Acta Ecologica Sinica (生
态学报), 2009, 29(12): 6333-6341 (in Chinese)
[33]摇 Field CB, Randerson JT, Malmstrom CM, et al. Global
net primary production: Combining ecology and remote
sensing. Remote Sensing of Environment, 1995, 51:
74-88
[34]摇 Hasenauer H, Nemani RR, Schadauer K, et al. Forest
growth response to changing climate between 1961 and
1990 in Austria. Forest Ecology and Management,
1999, 122: 209-219
[35]摇 Boisvenue C, Running SW. Impacts of climate change
on natural forest productivity: Evidence since the middle
of the 20th century. Global Change Biology, 2006, 12:
862-882
[36]摇 Medlyn BE, Duursma RA, Zeppel MJB. Forest produc鄄
tivity under climate change: A checklist for evaluating
model studies. Wiley Interdisciplinary Reviews: Climate
Change, 2011, 2: 332-355
[37]摇 Qin W鄄M (秦武明), He B (何摇 斌), Yu H鄄G (余浩
光), et al. Biomass productivity of Acacia mangium
plantations of different age classes. Journal of Northeast
Forestry University (东北林业大学学报), 2007, 35
(1): 22-24 (in Chinese)
[38]摇 Zhang Z (张摇 钊). By Investigation and Determination
of Different Densities and Different Age Groups of Chi鄄
nese Fir. PhD Thesis. Nanchang: Jiangxi Agricultural
University, 2012 (in Chinese)
[39]摇 Liu X鄄Z (刘煊章). Research on the biomass of Pinus
massoniana at different ages. Forest Resources Manage鄄
ment (林业资源管理), 1993 (2): 77 - 80 ( in Chi鄄
nese)
[40]摇 Wang H (王 摇 辉), Shao X鄄M (邵雪梅), Fang X鄄Q
(方修琦), et al. Responses of Pinus koraiensis tree鄄
ring cell scale parameters to climate elements in Chang鄄
bai Mountains. Chinese Journal of Applied Ecology (应
用生态学报), 2011, 22(10): 2643 -2652 ( in Chi鄄
nese)
[41]摇 Chen L (陈摇 列), Gao L鄄S (高露双), Zhang Y (张
赟), et al. Characteristics of tree鄄ring chronology of Pi鄄
nus koraiensis and its relationship with climate factors on
the northern slope of Changbai Mountain. Acta Ecologica
Sinica (生态学报), 2013, 33(4): 1285 -1291 ( in
77817 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 丘摇 阳等: 气候变化对阔叶红松林不同演替阶段红松种群生产力的影响摇 摇 摇 摇 摇 摇
Chinese)
[42]摇 Wang Y鄄F (王永范), Wang H鄄Z (王焕章), Yang H
(杨摇 辉), et al. A study on growth regularity and de鄄
velopment rhythm of Pinus koraiensis. Jilin Forestry Sci鄄
ence and Technology (吉林林业科技), 2005, 34(4):
34-40 (in Chinese)
[43]摇 Wu X鄄D (吴祥定), Shao X鄄M (邵雪梅). A prelimi鄄
nary study on impact of climate change on tree growth
using tree鄄ring width date. Acta Geographica Sinca (地
理学报), 1996, 51(suppl. 1): 92-101 (in Chinese)
[44]摇 Wang M (王摇 淼), Bai S鄄J (白淑菊), Tao D鄄L (陶
大立), et al. Effect of rise in air鄄temperature on tree
ring growth of forest on Changbai Mountain. Chinese
Journal of Applied Ecology (应用生态学报), 1995, 6
(2): 128-132 (in Chinese)
[45]摇 Tang F鄄D (唐凤德), Han S鄄J (韩士杰), Zhang J鄄H
(张军辉). Carbon dynamics of broad鄄leaved Korean
pine forest ecosystem in Changbai Mountains and its
responses to climate change. Chinese Journal of Applied
Ecology (应用生态学报), 2009, 20(6): 1285-1292
(in Chinese)
[46]摇 Yu DP, Zhai LJ, Wang QL, et al. Dynamics of domi鄄
nant tree species in a forest ecotone on the northern slop
of Changbai Mountain. Journal of Forestry Research,
2006, 17: 216-220
[47]摇 Yu DP, Wang QW, Wang Y, et al. Climatic effects on
radial growth of major tree species on Changbai Moun鄄
tain. Annals of Forest Science, 2011, 68: 921-933
[48]摇 Wang H, Shao XM, Jiang Y, et al. The impacts of cli鄄
mate change on the radial growth of Pinus koraiensis
along elevations of Changbai Mountain in northeastern
China. Forest Ecology and Management, 2013, 289:
333-340
[49]摇 Zhao M (赵 摇 敏), Zhou G鄄S (周广胜). Modeling
variation trend of boreal forest NPP in China and its rela鄄
tions to temperature and precipitation. Acta Botanica
Boreali鄄Occidentalia Sinica (西北植物学报), 2005,
25(3): 466-471 (in Chinese)
[50]摇 Gao L鄄S (高露双), Wang X鄄M (王晓明), Zhao X鄄H
(赵秀海). Response of Pinus koraiensis and Picea
jezoensis var. komarovii to climate in the transition zone
of Changbai Mountain, China. Chinese Journal of Plant
Ecology (植物生态学报), 2011, 35(1): 27-34 ( in
Chinese)
作者简介摇 丘摇 阳,男,1991 年生.主要从事森林生态研究.
E鄄mail: sunny_qiuyang@ 163. com
责任编辑摇 杨摇 弘
封 面 说 明
封面图片由兰州大学生命科学学院草地农业生态系统国家重点实验室博士研究生荐圣淇于
2013 年 6 月 11 日拍摄于甘肃省定西市安家沟流域. 油松(Pinus tabuliformis),为松科针叶常绿乔
木,阳性树种,浅根性,其喜光、抗贫瘠、抗风,在排水良好的酸性、中性或钙质黄土上,以及-25 益的
气温下均能生长.油松广泛分布于辽宁、山东、陕西、甘肃等省,在黄土高原地区为保持水土的优良
造林树种.目前,对油松的生态生理特性、遗传多样性、种群结构、生态格局与过程及适应性等方面
开展了广泛研究.研究油松细根生物量分布及其与土壤水分、理化性质的关系,分析土壤资源与细
根分布之间的耦合效应,可以为提高黄土高原人工植被群落稳定性提供科学参考.
8781 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 应摇 用摇 生摇 态摇 学摇 报摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 25 卷