免费文献传递   相关文献

荨麻根水煎液化学成分研究(英文)



全 文 :1. Introduction
Urtica fissa belonging to Urticaceae is widely distributed
in Anhui, Fujian, Gansu, Guangxi, Chongqing, Sichuan,
Guizhou, Henan, Hubei, Hunan, Shaanxi, Yunnan,
Zhejiang, and northern Vietnam [1]. Its rhizome (Urticae
Rhizoma, Qianma Gen in Chinese), with a history more
than 1000 years, is an important medicinal material.
Urticae Rhizoma decoction is commonly used for
rheumatism and urticaria in China. Up to present, some
lignanoids, flavones, triterpenes and polysaccharides
have been isolated from its roots[2–7]. However, the
chemical constituents in Urticae Rhizoma decoction
remain poorly explored.
In our previous study, we have investigated the
constituents in alcohol extract of the aerial part of
U. fissa, and various compounds have been isolated
and identified [8, 9]. In the present study, we, for the first
time, investigated the chemical constituents of Urticae





Rhizoma decoction. A total of 23 compounds were
isolated and identified (Fig. 1).
2. Experimental
2.1. General methods and instruments
Silica gel G (200–300 mesh, Qingdao Haiyang Chemical
Group Co., Ltd.) was used for column chromatography.
TLC was carried out using pre-coated silica gel aluminum
sheets (Silica gel 60F254, Merck & Co., Inc.) and
visualized by spraying 10% H2SO4 in alcohol followed by
heating. 1H and 13C NMR spectra, using TMS as internal
standard, were recorded on Bruker Avance DRX-600
spectrometer with a 5-mm 13C/1H/15N TCI CryoProbe.
Semi-preparative HPLC chromatography was performed
on a Shimadzu LC 2010 AHT liquid chromatography
system, equipped with a quaternary solvent delivery
system, an auto-sampler, a UV-Vis detector, and a
Nova-Pak HR C18 column (7.9 mm×300 mm, 6 μm).
2.2. Plant materials
The rhizomes of Urtica fissa were collected from
The chemical constituents in the decoction of Urtica fissa rhizomes
Mengyue Wang, Xiaoru Feng, Chengqin Zhang, Jun Cheng, Enjia Liu, Li′ang Sun, Xiaobo Li*
School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract: Phytochemical investigation of the decoction of Urtica fissa rhizomes led to the isolation of 23 known compounds.
Their structures were identified as medioresinol dimethyl ether (1), L-pyroglutamic acid methyl ester (2), nicotinic acid (3),
L-pyroglutamic acid (4), erythritol (5), 6-methyl-2′-deoxy thymidine (6), 2-methyl-6-(2′,3′,4′-trihydroxybutyl)-pyrazine (7),
5-hydroxyl-2-hydroxymethyl pyridine (8) , adenine (9), uracil (10), thymine (11), adenosine (12), inosine (13), 2′-deoxyadenosine (14),
2′-deoxyguanosine (15), 2′-deoxyinosine (16), uridine (17), n-butyl-O-β-D-fructopyranoside (18), di-D-fructose (19), β-D-fructofuranosyl-
α-D-galactopyranoside (20), bis (5-formyl-furfuryl) ether (21), chlorogenic acid (22), and 5-hydroxymethyl furaldehyde (23) by
spectroscopic methods. In addition, a total of 20 compounds (1–20) were isolated from U. fissa for the first time. Meanwhile,
compounds 1, 6, 7, 8, 19 and 20 were isolated from the Urticaceae plants for the first time.
Keywords: Urtica fissa; Rhizome; Decoction; Chemical constituents
CLC number: R284 Document code: A Article ID: 1003–1057(2016)10–764–07
Received: 2016-06-10, Revised: 2016-07-05, Accepted: 2016-07-15.
Foundation item: National Natural Science Foundation of China
(Grant No. 81374067).
*Corresponding author. Tel.: +86-021-34204806, Fax: +86-021-34204804,
E-mail: xbli@sjtu.edu.cn
http://dx.doi.org/10.5246/jcps.2016.10.085
764 Journal of Chinese Pharmaceutical Sciences http://www.jcps.ac.cn
765 Wang, M.Y. et al. / J. Chin. Pharm. Sci. 2016, 25 (10), 764–770
Nanchong, Sichuan Province (China) in August 2014,
and authenticated by one of authors, Mengyue Wang.
A voucher specimen (SJTU 20140816) was deposited
in School of Pharmacy, Shanghai Jiao Tong University,
Shanghai, China.
2.3. Extraction and isolation
The air-dried rhizomes of Urtica fissa (1.2 kg) were
chopped and decocted with water (6 L) twice (1 h for
each). The collected water extract was concentrated
under vacuum to yield a residue (A, 117 g). Part of
the residue (112 g) was fractioned by an HPD100
macroporous resin column (8.0 cm×90 cm) and successively
eluted with water, 30%, 60%, 90% ethanol at a flow
rate of 3 mL/min. The eluent was completely evaporated
under vacuum to afford the water portion (B, 28.2 g),
30% ethanol portion (C, 48.3 g), 60% ethanol portion
(D, 21.5 g) and 90% ethanol portion (E, 13.5 g),
respectively.
Part of E (10.4 g) was further subjected to silica gel
column chromatography (5.5 cm×60 cm, eluted with
CH2Cl2–MeOH increasing methanol ration from 0% to
30%) to obtain Fractions 1–42 (250 mL for each). The
obtained fractions were concentrated under vacuum
and monitored by TLC. Fractions 6 and 7 with the
same Rf on TLC were combined (1.2 g in total) and
further purified on silica gel column chromatography
(3.5 cm×60 cm, eluted with CH2Cl2–MeOH (99:1–
95:5, v/v)) to obtain compounds 1 (2.7 mg), 2 (2.3 mg),
21 ( 8.9 mg) and 22 (9.7 mg).
O
O
OMe
OMe
MeO
OMe
OMe
1
2 R = CH3
4 R = H
N
H
ORO
O
3
N
OH
O OH
OH
OH
HO
5
HN
N
O
O
O
OH
HO
6
N
N
OH
OH
N CH2OH
HO
N
N N
H
N
NH2
HN
N
H
O
O
HN
N
H
O
O
N
N N
N
NH2
O
OH
HO
R
12 R = OH
14 R = H
HN
N N
O
OH
HO
15
O
H2N
N
HN
N N
O
OH
HO
13 R = OH
16 R = H
O
N
R
HN
N
O
O
17
O
OH
HO
OH
O
(CH2)3
18
OO OH
OH
OH
HO
O
HO
OHHO
HO
19
O
O
OH
HO
OH
OH
OHHO
HO
O
20
O O
O
CHOOHC
O
O
HHO
23
O
OH
O
HO
OH
OHOHO OH
21 22
HO
1
1
3
1
24
6 8
3
1
2 5
2
3
6
2
4
6
26
HO 2
2
5
2
6
4
5
8
2 4
5
6
8
2 4
5
6
8
2
4
1
2
6
2
1
1
2
5
6
7
2
1
9
7 1
3 25
6
7
OH
O
OH
OH
2
1
5
7 8 9 10 11
HO
Figure 1. Chemical structures of compounds 1−23.
766 Wang, M.Y. et al. / J. Chin. Pharm. Sci. 2016, 25 (10), 764–770
Fractions 10 and 11 with the same Rf on TLC were
combined (532 mg in total) and further purified on
silica gel column chromatography (3.5 cm×60 cm, eluted
with CH2Cl2–MeOH (99:1–90:10, v/v)) to obtain
compounds 3 (11.7 mg), 4 (5.6 mg) and 23 (20.4 mg).
Fraction 17 (52 mg) was further purified by semi-
preparative HPLC (column temperature: 30 ºC; detection
wavelength: 210 nm; eluent: acetonitrile–H2O (25:75,
v/v); flow rate: 3.0 mL/min) to afford compounds 5
(5.2 mg), 6 (19.3 mg) and 7 (7.7 mg).
Fractions 25 and 26 with the same Rf on TLC were
combined (920 mg) and further purified on silica gel
column chromatography (3.5 cm×60 cm, eluted with
CH2Cl2–MeOH increasing methanol ration from 8% to
12%) to obtain Fractions 25-1~25-17 (150 mL for
each). Fraction 25-10 (71 mg) was further purified by
preparative HPLC (column temperature: 30 ºC; detection
wavelength: 210 nm; eluent: acetonitrile–H2O (20:80,
v/v); flow rate: 2.0 mL/min) to afford compound 8
(3.2 mg), 9 (26.7 mg) and 10 (3.7 mg). Fraction 25-10
(88 mg) was further purified by semi-preparative HPLC
(column temperature: 30 ºC; detection wavelength: 210 nm;
eluent: acetonitrile–H2O (20:80, v/v); flow rate: 2.0 mL/min)
to afford compounds 11 (32 mg) and 12 (7.6 mg).
Fractions 35 and 36 with the same Rf on TLC were
combined (708 mg) and further purified by preparative
HPLC (column temperature: 30 ºC; detection wavelength:
210 nm; eluent: acetonitrile–H2O (15:85, v/v); flow
rate: 2.0 mL/min) to afford compounds 13 (4.7 mg), 14
(3.3 mg), 15 (4.8 mg) and 16 (15.2 mg).
Fractions 40 (708 mg) was further purified by ODS
chromatography and eluted with acetonitrile–H2O (25:75,
v/v) to afford compounds 17 (12.2 mg), 18 (8.2 mg),
19 (13.7 mg) and 20 (27.4 mg).
3. Identification
3.1. Medioresinol dimethyl ether (1)
Brown powder (MeOH). 1H NMR (600 MHz, DMSO-d6)
δ: 6.97 (1H, d, J 2.0 Hz, H-2′), 6.90 (1H, d, J 2.0 Hz,
H-2′′), 6.97 (1H, d, J 2.0 Hz, H-6′), 6.74 (1H, dd, J1 2.0 Hz,
J2 8.0 Hz, H-6′′), 6.71 (1H, d, J 8.0 Hz, H-5′′), 3.75
(6H, s, 3′,3′′-OCH3), 3.74 (6H, s, 4′,4′′-OCH3), 4.10
(3H, 5′-OCH3), 4.70 (2H, d, J 5.4 Hz, H-2, 6), 4.87 (2H,
m, H-4a, 8a), 4.30 (2H, m, H-4b, 8b), 3.11 (2H, m,
H-1, 5); 13C NMR (150 MHz, DMSO-d6) δ: 153.0 (C-5′),
153.0 (C-3′), 148.0 (C-3′′), 147.3 (C-4′′), 133.4 (C-1′),
133.4 (C-4′), 132.7 (C-1′′), 119.1 (C-6′′), 111.4 (C-5′′),
110.9. (C-2′′), 103.7 (C-2′), 103.7 (C-6′), 85.6 (C-2),
85.6 (C-6), 71.7 (C-4), 71.4 (C-8), 60.6 (OCH3), 56.4
(OCH3), 56.1 (OCH3), 56.0 (C-1), 54.3 (C-5). These data
were in good agreement with those of medioresinol
dimethyl ether[10].
3.2. L-Pyroglutamic acid methyl ester (2)
Colorless needle (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 7.99 (1H, s, NH) , 4.19 (1H, dd, J1 4.2 Hz,
J2 9.0 Hz, H-2), 3.67 (1H, s, OCH3), 2.32 (1H, m, H-4a),
2.14 (2H, m, H-3), 1.97 (1H, m, H-4b). 13C NMR
(150 MHz, DMSO-d6) δ: 176.9 (C-5), 173.3 (C-1), 51.9
(OCH3), 54.5 (C-2), 28.8 (C-4), 24.4 (C-3). These data
were in good agreement with those of L-pyroglutamic
acid methyl ester[11].
3.3. Nicotinic acid (3)
Colorless needle (MeOH).1H NMR (600 MHz,
DMSO-d6) δ: 13.87 (1H, s, -COOH), 9.03 (1H, d, J 1.8 Hz,
H-2), 8.70 (1H, dd, J1 1.8 Hz, J2 4.8 Hz, H-6), 8.21
(1H, dt, J1 1.8 Hz, J2 7.8 Hz, H-4), 7.50 (1H, dd, J1 4.8 Hz,
J2 7.8 Hz m, H-5);
13C NMR (150 MHz, DMSO-d6)
δ: 167.4 (-COOH), 153.4 (C-6), 150.3 (C-2), 137.0 (C-4),
126.7 (C-3), 123.8 (C-5). These data were in good
agreement with those of nicotinic acid[12].
3.4. L-Pyroglutamic acid (4)
Colorless needle (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 12.52 (1H, s, -COOH), 7.92 (1H, s, NH-1),
4.06 (1H, dd, J1 4.2 Hz, J2 9.1 Hz, H-2), 2.30 (1H, m,
H-4a), 2.09 (2H, m, H-3), 1.94 (1H, m, H-4b); 13C NMR
767 Wang, M.Y. et al. / J. Chin. Pharm. Sci. 2016, 25 (10), 764–770
(150 MHz, DMSO-d6) δ: 176.9 (C-5), 174.2 (C-1), 54.5
(C-2), 28.7 (C-4), 24.4 (C-3). These data were in good
agreement with those of L-pyroglutamic acid[13].
3.5. Erythritol (5)
Colorless powder (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 4.52 (1H, d, J 6.6 Hz, H-2), 4.44 (2H,
t, J1 8.4 Hz, J2 16.2 Hz, H-1);
13C NMR (150 MHz,
DMSO-d6) δ: 72.9 (C-2), 63.5 (C-1). These data were
in good agreement with those of erythritol[14].
3.6. 6-Methyl-2′-deoxy thymidine (6)
Colorless powder (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 6.17 (1H, t, J 6.5 Hz, H-1′), 4.25 (1H, m,
H-3′), 3.78 (1H, m, H-4′), 3.57 (1H, m, H-5′a), 3.55
(1H, m, H-5′b), 3.18 (3H, s, H-8), 2.05 (2H, m, H-2′),
1.78 (3H, s , H-7). 13C NMR (150 MHz, DMSO-d6)
δ: 162.7 (C-4), 151.3 (C-2), 141.4 (C-6), 102.0 (C-5),
87.6 (C-1′), 84.5 (C-4′), 70.6 (C-3′), 61.5 (C-5′), 40.2
(C-2′), 30.6 (C-8), 13.0 (C-7). These data were in good
agreement with those of 6-methyl-2′-deoxy thymidine[15].
3.7. 2-Methyl-6-(2′,3′,4′-trihydroxybutyl)-pyrazine (7)
Colorless powder (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 8.32 (1H, s, H-3), 8.32 (1H, s, H-5),
3.75 (1H, m, H-2′), 3.56 (1H, m, H-4′b), 3.39 (1H, m,
H-4′a), 3.35 (1H, m, H-3′), 3.04 (1H, dd, J1 13.8 Hz,
J2 2.7 Hz, H-1′a), 2.69 (1H, dd, J1 13.8 Hz, J2 9.7 Hz,
H-1′b), 2.45 (3H, s, 2-CH3);
13C NMR (150 MHz,
DMSO-d6) δ: 155.3 (C-6), 152.8 (C-2), 142.8 (C-5),
141.8 (C-3), 75.5 (C-3′), 71.8 (C-2′), 63.7 (C-4′),
39.1 (C-1′), 21.5 (2-CH3). These data were in good
agreement with those of 2-methyl-(2′,3′,4′-trihydroxybutyl)-
pyrazine[16].
3.8. 5-Hydroxyl-2-hydroxymethyl pyridine (8)
Colorless power (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 9.79 (1H, brs, 5-OH), 8.02 (1H, d, J 2.6 Hz,
H-6), 7.25 (1H, d, J 8. 4 Hz, H-3), 7.14 (1H, dd, J1 2.6 Hz,
J2 8.4 Hz, H-4), 5.20 (1H, brs, 2-OH), 4.42 (2H, s, H-7).
13C NMR (150 MHz, DMSO-d6) δ: 152.7 (C-5), 152.5
(C-2), 136.9 (C-6), 123.0 (C-3), 121.5 (C-4), 64.4
(C-7). These data were in good agreement with those
of 5-hydroxyl-2-hydroxymethyl pyridine[17].
3.9. Adenine (9)
Colorless powder (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 8.30 (1H, s, H-8), 8.11 (1H, s, H-2);
13C NMR (150 MHz, DMSO-d6) δ: 155.8 (C-6), 152.4
(C-2), 150.2 (C-4), 138.9 (C-8), 118.4 (C-5) 156.1 (C-6),
152.3 (C-2), 148.9 (C-4), 139.5 (C-8), 119.2 (C-5). These
data were in good agreement with those of adenine[18].
3.10. Uracil (10)
Yellow powder (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 11.00 (1H, s, NH-3), 10.81 (1H, s, NH-1),
7.39 (1H, d, J 7.6 Hz, H-6), 5.45 (1H, d, J 7.6 Hz, H-5);
13C NMR (150 MHz, DMSO-d6) δ: 164.9 (C-4), 152.0
(C-2), 142.7 (C-6), 100.7 (C-5). These data were in good
agreement with those of uracil[19].
3.11. Thymine (11)
Yellowish powder (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 11.00 (1H, s, NH-3), 10.58 (1H, s, NH-1),
7.25 (1H, s, H-6), 1.72 (3H, s, 5-CH3);
13C NMR (150
MHz, DMSO-d6) δ: 165.3 (C-4), 151.9 (C-2), 138.1
(C-6), 108.1 (C-5), 12.2 (C-7). These data were in
good agreement with those of thymine[20].
3.12. Adenosine (12)
Yellowish powder (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 8.35 (1H, s, H-8), 8.14 (1H, s, H-2), 5.89
(1H, d, J 6.4 Hz, H-1′), 4.61 (1H, d, J 6.0 Hz, H-2′),
4.15 (1H, dd, J1 2.8 Hz, J2 4.8 Hz, H-3′), 3.98 (1H, dd,
J1 2.8 Hz, J2 6.4 Hz), 3.69 (1H, dd, J1 3.6 Hz, J2 8.4 Hz,
H-5′a), 3.56 (1H, dd, J1 3.6 Hz, J2 7.9 Hz, H-5′b);
13C NMR
(150 MHz, DMSO-d6) δ: 156.6 (C-6), 152.8 (C-2),
149.5 (C-4), 140.3 (C-8), 119.8 (C-5), 88.3 (C-1′), 86.3
(C-4′), 73.9 (C-2′), 71.1 (C-3′), 62.1 (C-5′). These data
were in good agreement with those of adenosine[20].
768 Wang, M.Y. et al. / J. Chin. Pharm. Sci. 2016, 25 (10), 764–770
3.13. Inosine (13)
Colorless powder (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 12.40 (1H, brs, NH), 8.34 (1H, s, H-8),
8.08 (1H, s, H-2), 5.88 (1H, d, J 5.8 Hz, H-1′), 4.49
(1H, d, J 4.2 Hz, H-2′), 4.13 (1H, brs, H-4′), 3.93
(1H, brs, H-3′), 3.65 (1H, m, H-5′a), 3.55 (1H, s, H-5′b);
13C NMR (150 MHz, DMSO-d6) δ: 156.5 (C-6), 148.2
(C-2), 145.9 (C-4), 138.7 (C-8), 124.4 (C-5), 87.4 (C-1′),
85.6 (C-4′), 74.1 (C-3′), 70.3 (C-2′), 61.2 (C-5′). These
data were in good agreement with those of inosine[20].
3.14. 2′-Deoxyadenosine (14)
Yellowish powder (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 8.33 (1H, s, H-8), 8.13 (1H, s, H-2), 6.34
(1H, t, J 6.4 Hz, H-1′), 5.31 (1H, d, J 4.0Hz, OH-3′),
5.25 (1H, dd, J1 5.0 Hz, J2 6.5 Hz, OH-5′), 4.41 (1H,
m, H-3′), 3.88 (1H, m, H-4′), 3.61 (1H, m, H-5′a), 3.52
(1H, m, H-5′b), 2.74 (1H, m, H-2′a), 2.25 (1H, m, H-2′
b); 13C NMR (150 MHz, DMSO-d6) δ: 156.1 (C-6),
152.3 (C-2), 148.9 (C-4), 139.5 (C-8), 119.2 (C-5),
88.0 (C-1′), 83.9 (C-4′), 70.9 (C-3′), 61.9 (C-5′), 39.6
(C-2′). These data were in good agreement with those
of 2′-deoxyadenosine[21].
3.15. 2′-Deoxyguanosine (15)
Colorless powder (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ:10.60 (1H, s, NH-1), 7.92 (1H, s, H-8),
6.46 (2H, br s, -NH2), 6.12 (1H, dd, J1 6.0 Hz, J2 7.8 Hz,
H-1′), 5.26 (1H, s, OH-3′), 4.95 (1H, d, J 4.6 Hz, OH-5′),
4.33 (1H, dd, J1 3.0 Hz, J2 6.0 Hz, H-3′), 3.80 (1H, d,
J 4.5 Hz, H-4′), 3.54 (1H, m, H-5′a), 3.49 (1H, m, H-5′b),
2.53 (1H, m, H-2′a), 2.20 (1H, m, H-2′b); 13C NMR
(150 MHz, DMSO-d6) δ: 156.7 (C-6), 153.6 (C-2), 150.8
(C-4), 135.2 (C-8), 116.6 (C-5), 87.5 (C-1′), 82.5 (C-4′),
70.7 (C-3′), 61.6 (C-5′), 39.5 (C-2′). These data were in
good agreement with those of 2′-deoxyguanosine[20].
3.16. 2′-Deoxyinosine (16)
Yellow powder (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 12.38 (1H, brs, NH), 8.31 (1H, s, H-8),
8.07 (1H, s, H-2), 6.32 (1H, t, J 8.4 Hz, H-1′), 5.33 (1H,
brs, OH-3′), 4.98 (1H, s, OH-5′), 4.39 (1H, brs, H-3′),
3.86 (1H, d, J 7.5 Hz, H-4′), 3.58 (1H, m, H-5′a), 3.51
(1H, m, H-5′b), 2.61 (1H, m, H-2′a), 2.30 (1H, m, H-2′
b); 13C NMR (150 MHz, DMSO-d6) δ: 156.5 (C-2),
147.8 (C-4), 145.8 (C-6), 138.5 (C-8), 124.4 (C-5),
87.9 (C-1′), 83.5 (C-4′), 70.6 (C-3′), 61.6 (C-5′), 39.6
(C-2′). These data were in good agreement with those
of 2′-deoxyinosine[22].
3.17. Uridine (17)
Colorless powder (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 11.33 (1H, s, NH-3), 7.89 (1H, d, J 8.0 Hz,
H-6), 5.78 (1H, d, J 5.5 Hz, H-1′), 5.57 (1H, d, J 8.0 Hz,
H-5), 4.04 (1H, dd, J1 5.5 Hz, J2 10.8 Hz, H-2′), 3.96 (1H,
dd, J1 4.9 Hz, J2 9.1 Hz, H-3′), 3.84 (1H, dd, J1 2.7 Hz,
J2 6.9 Hz, H-4′), 3.61 (1H, m, H-5′a), 3.53 (1H, m, H-5′b);
13C NMR (150 MHz, DMSO-d6) δ: 163.2 (C-4), 150.8
(C-2), 140.8 (C-6), 102.1 (C-5), 87.4 (C-1′), 84.4 (C-4′),
73.4 (C-3′), 69.9 (C-2′), 60.7 (C-5′). These data were in
good agreement with those of uridine[21].
3.18. n-Butyl-O-β-D-fructopyranoside (18)
Colorless power (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 3.82 (2H, d, J 10.0 Hz, H-3), 3.76
(1H, m, H-5), 3.71 (1H, d, J 10.0 Hz, H-4), 3.69 (1H,
d, J 10.2 Hz, H-6a), 3.66 (1H, d, J 11.0 Hz, H-1a),
3.61 (1H, d, J 11.0 Hz, H-1b), 3.57 (1H, d, J 10.2 Hz,
H-6b) , 3.41 (2H, m, H-1′), 1.48 (2H, m, H-2′), 1.33
(2H, m, H-3′), 0.88 (3H, t, J 7.2 Hz, H-4′); 13C NMR
(150 MHz, DMSO-d6) δ: 100.3 (C-2), 69.4 (C-4), 69.3
(C-5), 69.1 (C-3), 63.9 (C-6), 62.2 (C-1), 59.5 (C-1′),
32.0 (C-2′), 19.0 (C-3′), 14.0 (C-4′). These data
were in good agreement with those of n-butyl-O-β-D-
fructopyranoside[23].
3.19. di-D-Fructose (19)
Colorless power (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 5.14 (1H, d, J 8.0 Hz, H-3), 5.06 (1H, d,
769 Wang, M.Y. et al. / J. Chin. Pharm. Sci. 2016, 25 (10), 764–770
J 8.0 Hz, H-4), 4.83 (1H, d, J 12.0 Hz, H-4′), 4.64 (1H,
dd, J1 8.0 Hz, J2 12.0 Hz, H-3′), 4.60 (1H, m, H-5), 4.51
(1H, d, J 12.0 Hz, H-6′), 4.40 (1H, d, J 8.0 Hz, H-1′),
4.40 (1H, m, H-5′), 4.33 (m, H-1′), 4.31 (m, H-6), 4.25
(1H, d, J 12.0 Hz, H-6), 4.12 (1H, dd, J1 4.0 Hz, J2 12.0 Hz,
H-6′). 13C NMR (150 MHz, DMSO-d6) δ: 101.6 (C-2),
97.7 (C-2′), 81.3 (C-5), 76.5 (C-5′), 75.3 (C-3), 70.3
(C-4′), 69.7 (C-3′), 68.2 (C-4′), 64.4 (C-6′), 62.7 (C-1),
62.7 (C-1′), 61.1 (C-6). These data were in good
agreement with those of di-D-fructose[24].
3.20. β-D-Fructofuranosyl-α-D-galactopyranoside (20)
Colorless power (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 5.12 (1H, d, J 3.0 Hz, H-1′), 4.81 (1H, d,
J 3.7 Hz, H-1), 3.65 (1H, d, J 10.2 Hz, H-2), 3.70 (1H,
d, J 3.7 Hz, H-3), 3.80 (1H, d, J 3.2 Hz, H-3), 3.76
(1H, d, J 3.5 Hz, H-5), 3.55 (2H, m, H-6); 13C NMR
(150 MHz, DMSO-d6) δ: 103.9 (C-2), 92.6 (C-1′), 81.5
(C-5), 76.8 (C-4), 74.1 (C-3′), 71.5 (C-3), 69.3 (C-5′),
69.2 (C-2′), 67.9 (C-4′) , 62.4 (C-1), 61.6 (C-6), 61.0
(C-6′). These data were in good agreement with those
of β-D-fructofuranosyl-α-D-galactopyranoside[25].
3.21. Bis (5-formyl-furfuryl) ether (21)
Colorless needle (MeOH); 1H NMR (600 MHz,
DMSO-d6) δ: 9.58 (1H, s, CHO), 7.51 (1H, d, J 3.6 Hz,
H-4, 4′), 6.76 (1H, d, J 3.6 Hz, H-3, 3′), 4.63 (2H, s,
H-6, 6′). 13C NMR (150 MHz, DMSO-d6) δ: 178.4 (CHO),
157.3 (C-5), 152.3 (C-2), 123.7 (C-3), 112.3 (C-4), 63.7
(CH2). These data were in good agreement with those
of bis (5-formyl-furfuryl) ether[3].
3.22. Chlorogenic acid (22)
Colorless needle (MeOH). 1H NMR (600 MHz,
DMSO-d6) δ: 7.43 (1H, d, J 15.8 Hz, H-7′), 7.03 (1H,
d, J 2.0, H-2′), 6.98 (1H, dd, J1 2.0 Hz, J2 8.1 Hz H-6′),
6.77 (1H, d, J 8.1 Hz, H-5′), 6.14 (1H, d, J 15.9 Hz,
H-8′), 5.05 (1H, m, H-3), 3.93 (1H, m, H-5), 3.57 (1H, m,
H-4), 2.03 (2H, m, H-6), 1.78 (2H, m, H-2); 13C NMR
(150 MHz, DMSO-d6) δ: 175.4 (C-7), 166.1 (C-9′),
148.8 (C-4′), 145.4 (C-3′), 146.0 (C-7′), 126.0 (C-1′),
121.8 (C-6′), 117.3 (C-5′), 116.0 (C-2′), 115.6 (C-8′),
114.3 (C-1), 73.9 (C-3), 71.3 (C-4), 70.7 (C-5), 37.6
(C-6), 36.6 (C-2). These data were in good agreement
with those of chlorogenic acid[25].
3.23. 5-Hydroxymethyl furaldehyde (23)
Colorless needle (MeOH); 1H NMR (600 MHz,
DMSO-d6) δ: 9.55 (1H, s, CHO), 7.50 (1H, d, J 3.6 Hz,
H-4), 6.61 (1H, d, J 3.6 Hz, H-3), 4.52 (2H, d, J 5.6 Hz,
H-7); 13C NMR (150 MHz, DMSO-d6) δ: 178.0 (CHO),
151.8 (C-2), 124.5 (C-3), 109.6 (C-4), 162.2 (C-5), 55.9
(C6). These data were in good agreement with those of
5-hydroxymethyl furaldehyde[26].
Acknowledgements
This study was financially supported by a grant of
National Natural Science Fund of China (Grant No.
81374067). The authors are grateful to Dr. Bona Dai
from the Instrumental Analysis Center of Shanghai
Jiao Tong University for the measurements of NMR.
References
[1] Chen, J.R.; Lin, Q.; Friis, I.; Wilmot-Dear, C.M.; Monro,
A.K. Flora of China (Vol. 5). Beijing: Science Press, and
St. Louis: Missouri Botanical Garden Press. 2003, 78–84.
[2] Zhang, J.H.; Lu, H.X.; Li, J.Z; Lu, X.P. J. Guangdong
Pharm. Coll. 2011, 27, 144–146.
[3] Ji, B.Q.; Feng, B.M.; Shi, L.Y.; Tang, L.; Wang, Y.Q.;
Chin. Pharm. J. 2009, 44, 1372–1374.
[4] Feng, B.M.; Qin, H.H.; Wang, H.G.; Shi, L.Y.; Yu, D.Y.;
Ji, B.Q.; Zhao, Q.; Wang, Y.Q. J. Nat. Med. 2012, 66,
562–565.
[5] Ji, B.Q.; Yan, X.G.; Duan, L.X.; Tang, L.; Shi, L.Y.;
Wang, Y.Q.; Feng, B.M. Helv. Chim. Acta. 2009, 92,
997–1001.
770 Wang, M.Y. et al. / J. Chin. Pharm. Sci. 2016, 25 (10), 764–770
[6] Wang, Y.L.; Li, L.; Cheng, X.C.; Lu, Y.X.; Zhang, Q.L.
J. Asian Nat. Prod. Res. 2012, 14, 592–595.
[7] Li, Y.; Wang, Y.L.; Li, L.; Liu, L.; Lu, Y.X.; Cheng, X.C.;
Zhang, Q.L. J. Asian Nat. Prod. Res. 2009, 11, 951–957.
[8] Wang, M.Y.; li, W.; Li, X.B. Chin. J. Pharm. 2005,
40, 1853–1855.
[9] Wang, M.Y.; Wei, Y.F.; Li, X.B. Chin. Tradit. Herb.
Drugs. 2006, 39, 1300–1303.
[10] Hiroki, T.; Sueo, H.; Sansei, N. Chem. Pharm. Bull.
1984, 32, 4482–4489.
[11] Chen, Q.W.; Tian, Y.; Chen, H.W.; Gao, T.; Dong, J.X.
Mil. Med. Sci. 2014, 38, 62–66.
[12] Wang, X.L.; Yu, K.B.; Peng, S.L. China J. Chin. Mater.
Med. 2008, 33, 1415–1417.
[13] Ren, D.C, Qian, S.H.; Yang, N.Y.; Xie, N.; Duan, J.A.
J. Chin. Med. Mater. 2008, 31, 47–49.
[14] Li, F.; Zhou, B.H.; Yan, X.G.; Duan, L.X.; Feng, B.M.;
Wang, Y.Q. Chin. J. Hosp. Pharm. 2008, 28, 873–874.
[15] Peng, Y.; Zheng, J.X.; Huang, R.M.; Zhou, X.F.; Chai,
X.Y.; Liu, Y.H. Chin. Tradit. Herb. Drugs. 2010, 41,
208–210.
[16] Li, Z.L.; Li, D.Y.; Li, X.; Li, N.; Meng, D.L. Acta
Pharm. Sin. 2006, 41, 1197–1200.
[17] Guo, L.N.; Bai, J.; Pei, Y.H. J. Shenyang Pharm. Univer.
2013, 30, 506–509.
[18] Chen, Q.; Wu, L.J.; Ruan, L.J. J. Shenyang Pharm.
Univer. 2002, 19, 257–259.
[19] Liu, R.H.; Luo, H.; Li, Y.L.; Yang, M.; Xu, X.K.; Li, H.L.;
Shen, Y.H.; Zhang, C.; Su, J.; Zhang, W.D. Chem. Nat.
Comp. 2009, 45, 599–600.
[20] Li, G.Q.; Deng, Z.W.; Li, J.; Fu, H.Z.; Lin, W.H. J. Chin.
Pharm. Sci. 2004, 13, 81–86.
[21] Li, Y.Q.; Wang B.; Yang, B.; Huang, R.M.; Liu, Y.H.;
Zou, X.L. J. Trop. Oceanogr. 2011, 30, 124–126.
[22] Zhuo, R.P.; Fu, H.Z.; Zhang, L.H.; Lin, W.H. Chin.
Tradit. Herb. Drugs. 2001, 32, 289–291.
[23] Zuo, Y.M.; Cai, M.T.; Zhang, Z.L.; Liu, R.H.; Chen, L.Y.
J. Chin. Med. Mater. 2014, 37, 1786–1788.
[24] Samoylenko, V.; Rahman, M.M.; Tekwani, B.L.; Tripathi,
L.M.; Wang, Y.H.; Khan, S.I.; Khan, I.A.; Miller, L.S.;
Joshi, V.C.; Muhammad, I. J. Ethnopharmacol. 2010,
127, 357–367.
[25] Han, T.; Li, H.L.; Zhang, Q.Y.; Zheng, H.C.; Qin, L.P.
Chem. Nat. Comp. 2006, 42, 567–570.
[26] Chen, Y.; Tian, J.K.; Cheng, Y.Y. Chin. Pharm. J. 2005,
40, 1373–1375.
荨麻根水煎液化学成分研究
王梦月, 冯晓茹, 张澄沁, 陈珺, 刘恩佳, 孙立昂, 李晓波*
上海交通大学 药学院, 上海 200240
摘要: 对荨麻根水煎液的化学成分进行研究。从中分离鉴定了23个成分, 分别为梣皮树脂醇二甲酯 (1), L-焦谷氨酸
甲酯 (2), 烟酸 (3), L-焦谷氨酸(4), 赤藓醇 (5), 6-甲基-2′-脱氧胸腺嘧啶核苷 (6), 2-甲基-6-(2′,3′,4′-三羟基丁基)-吡嗪 (7),
5-羟基-2-羟甲基-吡啶 (8), 腺嘌呤 (9), 尿嘧啶 (10), 胸腺嘧啶 (11), 腺苷 (12), 肌苷 (13), 2′-脱氧腺苷 (14), 2′-脱氧鸟苷 (15),
2′-脱氧肌苷 (16), 尿苷 (17), 正丁基-O-β-D-吡喃果糖苷 (18), 二-D-果糖 (19), β-D-呋喃果糖基-α-D-吡喃半乳糖苷 (20),
双(5-甲酰基糠基)醚 (21), 绿原酸 (22), 5-羟甲基-2-呋喃甲醛 (23)。化合物1–20均为首次从荨麻中分离得到, 其中化合物
1、6、7、8、19、20尚属首次从荨麻科植物中分得。
关键词: 荨麻; 根; 水煎液; 化学成分