免费文献传递   相关文献

法落海的化学成分及抗HIV活性(英文)



全 文 :天然产物研究与开发 NatProdResDev2008, 20:239-244
文章编号:1001-6880(2008)02-0239-06
 
 
 ReceivedDecember5, 2006;AcceptedApril9, 2007
 FoundationItem:ThisprojectwassupportedbytheRencaiPeiyang
Xiangmu, theDepartmentofScienceandTechnology, YunnanProvince
(2005-2007)toprof.Ji-JunChen.
*CorrespondingauthorTel:86-871-5223265;E-mail:chenj@mail.kib.
ac.cn
法落海的化学成分及抗 HIV活性
顾 琼 1, 5 ,张雪梅 1 ,王睿睿 3, 5 ,刘清明 2 ,郑永唐 3, 4 ,周 俊 1, 4 ,陈纪军 1, 4*
1中国科学院昆明植物研究所 植物化学与西部植物资源持续利用国家重点实验室 ,昆明 650204;
2云南省宇斯制药有限公司 ,昆明;3中国科学院昆明动物研究所 分子免疫药理实验室 , 动物模型和人类疾
病机理重点实验室 ,昆明 650223;4中国科学院天然药物抗病毒联合实验室昆明分部 ,昆明 650204;
5中国科学院研究生院 ,北京 100039
摘 要:利用多种柱层析方法 , 从法落海 (Angelicaapaensis)95%乙醇提取物中分离得到 8个化合物。经 IR、
MS、NMR等波谱数据鉴定为氧化前胡素(oxypeucedanin, 1)、氧化前胡素水合物 (oxypeucedaninhydrate, 2)、异欧
芹属乙素 (isoimperatorin, 3)、白当归脑 (byakangelicin, 4)、白当归素 (byakangelicol, 5)、 3′-O-acetylhamaudol
(6)、 (+)-9(Z), 17-octadecadiene-12, 14-diyne-1, 11, 16-triol(7)和 9, 17-octadecadiene-12, 14-diyne-1, 11, 16-tri-
ol, 1-acetate(8), 其中 ,化合物 6 ~ 8是首次从该植物中分离得到。我们对所有得到的 8个化合物进行抗 HIV活
性分析 , 化合物 1具有明显的抗 HIV活性 , 其抑制合胞体形成的半数有效浓度 (EC50)为 1.6 mg/L, 治疗指数
(TI)为 17.59。
关键词:抗 HIV活性;法落海;香豆素;多炔;色酮
中图分类号:Q946.91;R285 文献标识码:A
Anti-HIVActiveConstituentsfromAngelicaapaensis
GUQiong1, 5 , ZHANGXue-mei1 , WANGRui-rui3, 5 , LIUQing-ming2 ,
ZHENGYong-tang3, 4 , ZHOUJun1, 4 , CHENJi-jun1, 4*
1StateKeyLaboratoryofPhytochemistryandPlantResourcesinWestChina, KunmingInstituteofBotany,
ChineseAcademyofSciences, Kunming650204 , China;2YusiPharmaceuticalCorporation, YunnanProvince,
China;3LaboratoryofMolecularImmunopharmacology, KeyLaboratoryofAnimalModelsandHumanDiseases
Mechanisms, KunmingInstituteofZoology, ChineseAcademyofSciences, Kunming650223 , China;
4TheJoint-LaboratoryofAnti-viralNaturalMedicines, KunmingBranch, ChineseAcademyofSciences, Kunming
650204 , China;5GraduateSchooloftheChineseAcademyofSciences, Beijing100039 , China
Abstract:Eightcompoundswereisolatedfromthe95% EtOHextractofAngelicaapaensis.Theywereidentifiedas
oxypeucedanin(1), oxypeucedaninhydrate(2), isoimperatorin(3), byakangelicin(4), byakangelicol(5), 3′-O-
acetylhamaudol(6), (+)-9 (Z), 17-octadecadiene-12, 14-diyne-1, 11, 16-triol(7)and9, 17-octadecadiene-12, 14-
diyne-1, 11, 16-triol-1-acetate(8).Compounds6-8 werefirstlyisolatedfromA.apaensis.Allcompoundswereassayed
foranti-HIVactivities, compound1 showedpotentanti-HIVactivitywithEC
50
valueof1.6 mg/L, andTIvalueof
17.59.
Keywords:anti-HIVactivities;Angelicaapaensis;coumarins;polyacetylene;chromone
Introduction
Thereisanongoingneedfornew, structuralydiferent
anti-HIVagentswhicharelesstoxicandcheapenough
tobeaccessibletoalAIDSpatients.Coumarinsand
structuralyrelatedcompoundshavebeenrecentlyre-
portedtopresentanti-HIVactivities[ 1] .Toourknowl-
edge, Angelica(umbeliferous)plantsarerichincou-
marins[ 2] andacetylene[ 3] .SeveralspeciesofAngelica
genushavebeenreportedtocontaincoumarins[ 4-9] .An-
gelicaapaensisisherbaceousperennialplantmainly
distributedinmountainousareaatanaltitudeof4000
DOI :10.16333/j.1001-6880.2008.02.020
meterinYunnanProvince, China.TherootsofA.apaensis
aretraditionalyusedtoreducegastrointestinalache
andpreventasthma.Previously, SunHDandhiscol-
leagues[ 9] reportedthecoumarinsfromA.apaensis.In
thecourseofsearchingforanti-HIVagentsfrommedic-
inalplants, wefoundthatthe95% ethanolextractof
A.apaensispossessedslightanti-HIVactivitieswith
50% efectiveconcentration(EC50)valueof56.31
mg/L, andtherapeuticindex(TI)valueof1.5.The
bioassayresultsandtherichcoumarinsinthisplant
promptedustorevealtheanti-HIVactiveconstituents
fromA.apaensis.Wedescribeheretheisolationofeight
compoundsfromA.apaensisandtheiranti-HIVactivi-
ties.
MaterialsandMethods
Generalprocedures
Columnchromatography(CC):silicagel(200-300
mesh;QingdaoMarineChemicalInc.;Qingdao;Chi-
na);LichroprepRP-18 gel(40-63μm;Merck, Darms-
tadt, Germany);MCIgel(75-150 μm, Mitsubishi
ChemicalCorporation, Japan).Meltingpointwerecon-
ductedonaXRC-1 apparatus(SichuanUniversity, Si-
chuan, China);Opticalrotationsweremeasuredwitha
HoribaSEPA-300 polarimeter;UVspectrawereob-
tainedonaShimadzudouble-beam210 Aspectropho-
tometer;IRspectraweremeasuredonaBio-RadFTS-
135spectrometer(Bio-Rad, Richmond, CA)withKBr
discs;MSspectrawerecariedoutonVGAutoSpec-
3000 instrument(VG., Manchester, England)at70
eVorAPIQstarPulsarspectrometer;NMR spectra
wererecordedonBrukerAM400 (1H/13C, 400 MHz/
100MHz)orDRX-500(1H/13C, 500MHz/125MHz)
spectrometerwithTMSasinternalreference.
Plantmaterials
TherootsofA.apaensiswerecolectedinDongchuan,
YunnanProvinceinMay, 2003 andidentifiedbysen-
ior-engineerLiuQing-ming, andavoucherspecimen
(KUN2003-09-003)wasdepositedattheStateKey
LaboratoryofPhytochemistryandPlantResourcesin
WestChina, KunmingInstituteofBotany, theChinese
AcademyofSciences.
Extractionandisolation
ThepowderedrootsofA.apaensis(5 kg)wereextrac-
tedwith95% EtOH(3×40 L)underreflux.Theex-
tractwasconcentratedundervacuumtogivearesidue
whichwasfurtherextractedwithEtOAc(3×2L)un-
derrefluxtoobtainEtOAcfraction(142g).TheEtO-
Ac(142g)fractionwasdirectlyseparatedoverasilica
gelcolumn(10×120cm, 200-300mesh, 1500 g)gra-
dientlyelutedwithpetroleumether/EtOAc(90:10※
60:40, each3 L)toafordsixfractions(Fr.sA-F).
TheFr.B(15 g)wassubjectedtosilicagelcolumn
(3.5×80 cm, 200-300 mesh, 150 g)elutedwithpe-
troleumether/Me2CO(95:5, 3L)togivecompound1
(958 mg).TheFr.C(12 g)wassubjectedtosilica
gelcolumnchromatography(3.5 ×80 cm, 200-300
mesh, 120 g)elutedwithpetroleum ether/Me2CO
(90:10, 3 L)toobtaincompound2 (2.7 g)and3
(430 mg).TheFr.D(35 g)wasdividedintofour
fractions(D1-D4)oversilicagelcolumn(6.5 ×80
cm, 200-300 mesh, 350 g)elutedwithpetroleume-
ther/EtOAc(80:20, 5 L).TheFr.D2 (21 g)was
subjectedtosilicagelcolumn(4.5×60 cm, 200-300
mesh, 200g)elutedwithCHCl3 /Me2CO(95:5, 4 L)
toobtainamajorconstituent, thenfurtherpurifiedby
recrystalizationfromMe2COtogive4 (11.3 g).The
Fr.D3 (5 g)wasseparatedtosilicagelcolumn(3 ×
40 cm, 200-300 mesh, 100 g)elutedwithCHCl3 /
Me2CO(90:10, 2 L)toprovidecompound5 (2.2
g).Compound6(71mg)wasobtainedfromFr.E(15
g)byrepeatedcolumnchromatographywithpetroleum
ether/EtOAc(70:30, 3 L)assolvents.TheFr.F(10
g)wasdecolorizedonMCICHP-20 (2.5 ×35 cm)
columnelutedwithMeOH/H2O(30%※80%, each1
L)toafordamainfraction, whichwasfurtherpurified
byRP-18 column(2 ×38 cm)usingMeOH/H2O
(80%, 1 L)aseluenttogivecompounds7 (210 mg)
and8 (320mg).
Oxypeucedanin(1)  Paleyelow grainycrystals
(Me2CO), mp.141-142 ℃;EI-MSm/z:286 [ M] +
(90), 217 (5), 202 (61), 174 (25), 157 (5), 145
(22), 118 (5), 85(97), 59 (100);IRυKBrmaxcm-1:1730
(C=O), 1622, 1605, 1579, 1156, 1127 , 1097, 1075,
823, 746;1HNMR(400 MHz, CDCl3)δ:8.19 (1H,
d, J=9.8 Hz, H-4), 7.61(1H, d, J=2.3 Hz, H-2′),
240 NatProdResDev                       Vol.20
7.15(1H, s, H-8), 6.96 (1H, d, J=2.3 Hz, H-3′),
6.29(1H, d, J=9.8 Hz, H-3), 4.62 (1H, dd, J=
10.9, 4.2 Hz, H-1″a), 4.42 (1H, ddJ=10.9, 6.7
Hz, H-1″b), 3.24 (1H, dd, J=6.7, 4.2 Hz, H-2″),
1.42(3H, s, H-4″), 1.26 (3H, s, H-5″);13 CNMR
(100 MHz, DEPT, CDCl3)δ:160.7 (s, C-2), 113.0
(d, C-3), 138.8 (d, C-4), 148.3 (s, C-5), 114.2
(s, C-6), 158.0 (s, C-7), 94.7 (d, C-8), 152.5(s,
C-9), 107.4(s, C-10), 145.2 (d, C-2′), 104.4 (d,
C-3′), 72.3 (t, C-1″), 61.0 (d, C-2″), 58.2 (s, C-
3″), 24.5(s, C-4″), 18.9(s, C-5″)[ 5] .
Oxypeucedaninhydrate(2) Yelowpowder, EI-MS
m/z:304[ M] +(55), 289 (5), 244 (5), 202 (100),
174(48), 145 (31), 118 (9), 89 (29), 75 (8);1H
NMR(400 MHz, CDCl3)δ:8.20(1H, d, J=9.7Hz,
H-4), 7.51(1H, d, J=1.9 Hz, H-2′), 7.02 (1H, s,
H-8), 6.94(1H, d, J=1.9 Hz, H-3′), 6.15 (1H, d,
J=9.7Hz, H-3), 4.50 (1H, d, J=9.7 , 2.6 Hz, H-1″
a), 4.29(1H, dd, J=9.7, 8.0Hz, H-2″), 3.74 (1H,
dd, J=8.0, 2.6 Hz, H-1″b), 1.20 (3H, s, H-4″),
1.17 (3H, s, H-5″);13 CNMR(100 MHz, DEPT,
CDCl3)δ:161.9 (s, C-2), 111.9 (d, C-3), 140.0
(s, C-4), 148.8 (s, C-5), 113.8(s, C-6), 158.0 (s,
C-7), 94.0 (d, C-8), 152.1 (s, C-9), 106.9 (s, C-
10), 145.0 (d, C-2′), 104.8 (d, C-3′), 74.1 (t, C-
1″), 76.4(d, C-2″), 71.3 (s, C-3″), 25.5(q, C-4″),
24.9(q, C-5″)[ 6] .
Isoimperatorin(3)  Lightyelow sheetcrystals
(Me2CO), mp.106-108 ℃;EI-MSm/z:270 [ M] +
(5), 202 (100), 174 (22), 145 (21), 118 (5), 89
(18), 69 (70), 53 (2);UV(EtOH)λmaxnm(logε):
221(4.48), 242(4.30), 250 (4.34), 258 (4.29),
268(4.27), 308 (4.22);IRυKBrmaxcm-1:1730(C=O),
1073, 1642, 1628 , 1603, 1583, 1546;1HNMR(400
MHz, CDCl3)δ:8.09(1H, d, J=9.8 Hz, H-4), 7.53
(1H, d, J=2.4 Hz, H-2′), 7.06 (1H, s, H-8), 6.90
(1H, d, J=2.4 Hz, H-3′), 6.20 (1H, d, J=9.8 Hz,
H-3), 5.50(1H, t, J=7.0 Hz, H-2″), 4.87 (2H, d, J
=7.0 Hz, H-1″), 1.17 (3H, s, H-4″), 1.16 (3H, s,
H-5″);13CNMR(100 MHz, DEPT, CDCl3)δ:161.2
(s, C-2), 112.3 (d, C-3), 139.5 (d, C-4), 148.8
(s, C-5), 113.9 (s, C-6), 158.0 (s, C-7), 93.9 (d,
C-8), 152.5(s, C-9), 107.3(s, C-10), 144.8 (d, C-
2′), 105.1(d, C-3′), 69.6 (t, C-1″), 119.0 (d, C-
2″), 139.6(s, C-3″), 25.7(q, C-4″), 18.1(q, C-5″)
[ 5].
Byakangelicin(4)  Paleyelowneedlecrystals
(Me2CO), mp.124-125 ℃;EI-MSm/z:334 [ M] +
(52), 319 [ M-CH3 ] +(14), 232 (100), 217 (86),
203 (11), 189 (34), 175 (7), 160 (22), 145 (5),
133 (7), 116 (4), 105 (7), 89 (8), 77 (10), 66
(5);IRυKBrmaxcm-1:3363 (OH), 1719 (C=O), 1593,
1483, 1070, 1149 (C-O-C);1H NMR(400 MHz,
CDCl3)δ:8.10(1H, d, J=9.8Hz, H-4), 7.59 (1H,
d, J=2.0 Hz, H-2′), 6.97 (1H, d, J=2.0 Hz, H-
3′), 6.22 (1H, d, J=9.8 Hz, H-3), 4.50 (1H, dd, J
=10.1, 2.5 Hz, H-1″a), 4.18 (1H, dd, J=10.1, 7.8
Hz, H-2″), 3.79 (1H, dd, J=7.8, 2.5 Hz, H-1″b),
3.30 (3H, s, OCH3), 1.22 (3H, s, H-4″), 1.20
(3H, s, H-5″);13CNMR(100 MHz, DEPT, CDCl3)
δ:161.2 (s, C-2), 111.8 (d, C-3), 140.1 (d, C-4),
144.4 (s, C-5), 114.5 (s, C-6), 149.9 (s, C-7),
126.6 (s, C-8), 143.2 (s, C-9), 107.0 (s, C-10),
145.2 (d, C-2′), 105.0 (d, C-3′), 75.5 (t, C-1″),
76.2 (d, C-2″), 71.3 (s, C-3″), 25.3 (q, C-4″),
24.8 (q, C-5″), 60.4 (q, OCH3)[ 6] .
Byakangelicol(5) Yelowsheetcrystals(Me2CO),
mp.108-109 ℃;EI-MSm/z:316 [ M] + (55), 232
(100), 217 (80), 203 (10), 189 (16), 175(7), 160
(20), 132 (5), 85 (67), 59 (71);IRυKBrmaxcm-1:1739
(C=O), 1071, 1055, 1606, 1592, 1546 , 1480, 1432,
1348, 1201, 1138, 1071, 1054;1HNMR(400 MHz,
CDCl3)δ:8.05(1H, d, J=9.8Hz, H-4), 7.59(1H,
d, J=2.1 Hz, H-2′), 6.97 (1H, d, J=2.1 Hz, H3′),
6.21 (1H, d, J=9.8 Hz, H-3), 4.38 (2H, d, J=5.6
Hz, H-1″), 4.19 (3H, s, OCH3), 3.26 (1H, t, J=5.6
Hz, H-2″), 1.29 (3H, s, H-4″), 1.20 (3H, s, H-
5″);13CNMR(100MHz, DEPT, CDCl3)δ:160.3(s,
C-2), 112.5 (d, C-3), 139.4 (d, C-4), 144.0 (s, C-
5), 114.2(s, C-6), 150.4 (s, C-7), 126.3(s, C-8),
144.7 (s, C-9), 107.1 (s, C-10), 145.1 (d, C-2′),
105.2 (d, C-3′), 72.6 (t, C-1″), 61.2 (d, C-2″),
58.0 (s, C-3″), 24.4 (q, C-4″), 18.7 (q, C-5″)[ 9] .
3′-O-Acetylhamaudol(6)  Lightyelow crystals
(Me2CO), mp.129-130 ℃;EI-MSm/z:318 [ M] +
(17), 258 (37), 243 (100), 217 (12), 205 (30),
241Vol.20 GUQiong, etal:Anti-HIVActiveConstituentsfromAngelicaapaensis
189(9), 176 (9), 165 (5), 123 (8), 93 (6), 77
(6), 69 (10), 55 (8);IRυKBrmaxcm-1:3500 (OH), 1739
(C=O), 1650, 1630, 1584, 1452, 1259 , 1144;1H
NMR(500 MHz, CDCl3)δ:13.00 (1H, s, OH), 6.34
(1H, s, H-8), 6.00 (1H, s, H-3), 5.11 (1H, dd, J=
5.0, 4.5 Hz, H-3′), 3.00 (1H, dd, J=11.8, 5.0 Hz,
H-4′a), 2.77 (1H, dd, J=17.8, 4.5 Hz, H-4′b),
2.34(3H, s, CH3), 2.07 (3H, s, CH3), 1.36(3H, s,
CH3), 1.34 (3H, s, CH3 );13 CNMR(125 MHz,
DEPT, CDCl3)δ:166.6 (s, C-2), 108.3 (d, C-3),
182.4 (s, C-4), 159.5 (s, C-5), 102.4 (s, C-6),
158.7 (s, C-7), 94.7 (d, C-8), 156.2 (s, C-9),
104.4 (s, C-10), 76.9 (s, C-2′), 69.8 (d, C-3′),
22.6 (t, C-4′), 24.7 (q, CH3), 22.8 (q, CH3),
170.1 (s, OAc), 20.9 (q, OAc), 20.4 (q, CH3 )
[ 13] .
(+)-9 (Z), 17-Octadecadiene-12, 14-diyne-1, 11,
16-triol(7) Brownoil;[ α] 26D +211.3°(c0.51,
CH3OH);PositiveESI-MSm/z:313 [ M+Na] +;1H
NMR(400 MHz, C5D5N)δ:6.18 (1H, m, H-17),
5.86(1H, dd, J=9.5, 8.9Hz, H-10), 5.67(1H, dt,
J=9.5, 6.3Hz, H-9), 5.65 (1H, bd, J=17.0Hz, H-
18a), 5.58 (1H, bd, J=8.9 Hz, H-11), 5.29 (1H,
dd, J=10.1, 1.2 Hz, H-18b), 5.25 (1H, brs, H-
16), 3.85(2H, t, J=6.5 Hz, H-1), 2.23 (2H, t, J=
6.3Hz, H-8), 1.76 (2H, m, H-2), 1.52-1.15 (8H,
m, H-3, 4, 5 , 6, 7);13 CNMR(100 MHz, DEPT,
C5D5N)δ:62.5 (t, C-1), 33.8 (t, C-2), 26.7 (t, C-
3), 29.7-30.1 (t, C-4, 5, 6, 7), 28.2 (t, C-8), 132.9
(d, C-9), 130.4 (d, C-10), 58.4 (d, C-11), 82.2
(s, C-12), 68.7 (s, C-13), 70.1(s, C-14), 80.8 (s,
C-15), 63.2(d, C-16), 138.4 (d, C-17), 116.1 (t,
C-18)[ 14] .
9, 17-Octadecadiene-12, 14-diyne-1 , 11, 16-triol, 1-
acetate(8) Brownoil;[ α] 26D +175.0°(c0.51,
CHCl3);EI-MSm/z:332 (2), 314 (6), 276 (3),
184(10), 171 (16), 157 (28), 141 (30), 128
(56), 119(29), 115 (63), 105 (32), 102 (42), 91
(41), 81(72), 77(52), 67 (52), 56(25);1HNMR
(400 MHz, C5D5N)δ:6.20 (1H, m, H-17), 5.93
(1H, dd, J=9.5, 9.4 Hz, H-9), 5.66-5.60 (3H, m,
H-18a, 10, 11), 5.31 (1H, d, J=4.2 Hz, H-16),
5.23(1H, d, J=10.2 Hz, H-18b), 4.10 (2H, t, J=
6.7 Hz, H-1), 2.16 (2H, dq, J=7.3 Hz, H-8), 2.04
(3H, s, OAc), 1.57(2H, m, H-2), 1.33-1.19 (10H,
m, H-3, 4, 5, 6, 7);13 CNMR(100 MHz, DEPT,
C5D5N)δ:64.8 (t, C-1), 26.3 (t, C-2), 28.0 (t, C-
3), 29.1 (t, C-4), 29.5 (t, C-5), 29.6 (t, C-6),
29.7 (t, C-7, 8), 132.7 (d, C-9), 130.6 (d, C-10),
58.4 (d, C-11), 82.5 (s, C-12), 68.5 (s, C-13),
69.8 (s, C-14), 81.1 (s, C-15), 63.1 (d, C-16),
138.5 (d, C-17), 115.8 (t, C-18), 171.0 (s, OAc),
21.0 (q, OAc)[ 15].
Fig.1 Compounds1-8 isolatedfromA.apaensis
Anti-HIV-1 bioassay
Theanti-HIV-1 bioassaywasperformedwiththemeth-
oddiscussedinourpreviousreport[ 10] .C8166 cels
weremaintainedinRPMI-1640 supplementedwith
10% heatinactivatednewborncalfserum(Gibco).3′-
azido-3′-deoxythymidine(AZT), thepositivecontrol,
waspurchasedfromSigma(USA).
Syncytiumreductionassay
Inthepresenceof100 μLofvariousconcentrationsof
compounds, C8166 cels(4 ×105 mL-1)wereinfected
withHIV-1ⅢBatamultiplicityofinfection(MOI)of
0.06.Thefinalvolumeperwelwas200 μL.AZTwas
usedasapositivecontrol.After3dofculture, thecyto-
pathicefect(CPE)wasmeasuredbycountingthe
numberofsyncytia(multinucleatedgiantcel)ineach
welunderaninvertedmicroscope.Percentageinhibi-
tionofsyncytialcelnumberintreatedculturetothat
ininfectedcontrolcultureand50% efectiveconcen-
tration(EC50)wascalculated[ 11] .
Cytotoxicityassay
242 NatProdResDev                       Vol.20
ThecelulartoxicityofcompoundsonC8166 celswas
assessedbyMTTmethodsasdescribedpreviously[ 12] .
Briefly, celswereseededonamicroplateintheab-
senceorpresenceofvariousconcentrationsofcom-
poundsintriplicateandincubatedat37℃ inahumid
atmosphereof5% CO2 for72 h.Thesupernatantswere
discardedandMTTreagent(5 mg/mLinPBS)was
addedtoeachwel, andthenincubatedfor4h, 100μL
of50% DMF-20% SDSwasadded.Aftertheformazan
wasdissolvedcompletely, theplateswerereadona
Bio-TekELx800 ELISAreaderat595 /630 nm.The
cytotoxicconcentrationthatcausedthereductionofvia-
blecelsby50%(CC50)wascalculatedfromdose-re-
sponsecurve.
ResultsandDiscussion
Inconclusion, eightcompoundswereisolatedandiden-
tified.TheNMRandMSdataofcompound5arefirstly
report.Amongofthem, compounds6-8 werefirstlyiso-
latedfromA.apaensis.AsshowninTable1, compound
1 showedpotentanti-HIVactivitywithEC50 valueof
1.6mg/L, andTIvalueof17.59.Compounds1-3were
linearfuranocoumarins, andstructuralysimilaronly
withdiferenceatthesubstitutionofC-5.ZhouP[ 16]
andcoworkershavereportedanti-HIV activitiesof
furanocoumarins.Comparingwithcompound1, com-
pound2 withanepoxy-ringopengroupatC-5, only
showedmoderateanti-HIVactivitywithTIvalueof
3.61.Compound3, withaprenyloxysubstitutelocated
atC-5, alsoshowedmoderateanti-HIVactivitywithTI
valueof4.54.Thisfindingsuggestedthatepoxysubsti-
tuteappearedtobefavoredforpotentanti-HIVactivi-
ty.ButwhenC-5 andC-8 bothweresubstituted, such
ascompounds4 and5, anti-HIVactivitieswerede-
creased.Interestingly, heraclenol, analogoustocom-
pound2 withtheidenticalsubstituteatdiferentposi-
tion, showedsignificantanti-HIVactivity[ 16] .There-
fore, wecannotconcludewhichisthefavoredposition
forpotentanti-HIV activities.Compound 6, a
chromone-typecompound, presentedslightanti-HIV
activitywithEC50 valueof6.9 mg/LandTIvalueof
2.34.Thisisthefirstreportaboutanti-HIVactivityof
chromone-typecompound.Compounds7 and8 were
polyacetylenes, auniqueclassofnaturalproductspos-
sessingdiversebiologicalactivitiessuchasantimicrobi-
al, antifungal, antifouling, H+, K+-ATPaseinhibitory,
HIVinhibitory, immunosuppressive, andantitumorac-
tivities[ 17] .Herein, wefirstlyreportedanti-HIVactivi-
tiesoftwopolyacetylenes(7 and8).Compound8was
structuralysimilarto7 withonlydiferenceinthe
acetylationofhydroxylatC-1.Theyshowednosignifi-
cantdiferenceoftheactivitybetween7 and8wasob-
served.
Table1 Anti-HIVactivitiesofcompounds1-8
Sample CC50(mg/L) EC50(mg/L) TI
AAa 82.56 56.31 1.5
1 28.15 1.60 17.59
2 40.56 11.24 3.61
3 130.69 28.80 4.54
4 167.98 36.65 4.58
5 27.02 12.63 2.14
6 16.16 6.90 2.34
7 18.35 4.40 4.17
8 18.92 6.86 2.76
AZTb 1288.24 2.73×10﹣ 3 >471883
    Note:a95% ethanolextractofAngelica apaensisShan et
Yuan;breversetranscriptaseinhibitor, asapositivecontrol.
Fromtheaboveresults, theepoxygroupsubstitutedat
C-5 wasessentialforthepotentanti-HIVactivityof
compound1, whichseemedtoberesponsibleforthe
anti-HIVactivityofA.apaensis.Themechanismre-
sponsibleforanti-HIVactivityofcompound1 wilbe
furtherstudied.
Acknowledgements Thisstudywasfinancialysup-
portedbytheRencaiPeiyangXiangmu, theDepartment
ofScienceandTechnology, YunnanProvince(2005-
2007)toProf.Ji-JunChen.Theauthorsthankthe
membersoftheAnalyticalGroupofKunmingInstitute
ofBotanyforthemeasurementsofUV, IR, massspec-
tralandNMRspectraldata.
References
1 SanchoR, MárquezN, Gómez-GonzaloM, etal.Imperatorin
inhibitsHIV-1 replicationthroughanSp1-dependentpath-
way.JBiolChem, 2004, 279:37349-37359.
2 MurrayRDH.ProgressintheChemistryofOrganicNatural
Products.Vol35.NewYork:Springer, 1978.325-326.
243Vol.20 GUQiong, etal:Anti-HIVActiveConstituentsfromAngelicaapaensis
3 HansenL, BolPM.Reviewarticlenumber13polyacetylenes
inAraliaceae:theirchemistry, biosynthesisandbiological
significance.Phytochemistry, 1986, 25:285-293.
4 WeiY, ItoY.Preparativeisolationofimperatorin, oxypeuce-
daninandisoimperatorinfromtraditionalChineseherb“bai
zhi” Angelicadahurica(Fisch.exHoffm)Benth.etHooku-
singmultidimensionalhigh-speedcounter-currentchromatog-
raphy.JChromatogrA, 2006, 1115:112-117.
5 HarkarS, RazdanTK, WaightES.Steroids, chromoneand
coumarinsfrom Angelicaoficinalis.Phytochemistry, 1984,
23:419-426.
6 FujiokaT, FurumiK, FujiiH, etal.Antiproliferativeconstitu-
entsfromUmbelliferaeplants.V.anewfuranocoumarinand
falcarindiolfuranocoumarinethersfromtherootofAngelica
japonica.ChemPharmBul, 1999, 47:96-100.
7 LemmichJ, HavelundS, ThastrupO.Dihydrofurocoumarin
glucosidesfromAngelicaarchangelicaandAngelicasilvestris.
Phytochemistry, 1983, 22:553-555.
8 ThastrupO, LemmichJ.FurocoumaringlucosidesofAngelica
archangelicasubsp.Litoralis.Phytochemistry, 1983, 22:2035-
2037.
9 SunHD, LinZW, NiuFD.ThestudyoftheChinesedrugsof
UmbeliferaeⅠ .onthechemicalconstituentsoftherootsof
AngelicaapaensisShanetYuan., HeracleumrapulaFr., and
HeracleumscabridumFr.ActaBotSin, 1978, 20:244-254.
10 WangRR, GuQ, YangLM, etal.Anti-HIV-1 activitiesofex-
tractsfromthemedicinalplantRhuschinensis.JEthnophar-
macol, 2006, 105:269-273.
11 ZhangGH, WangQ, ChenJJ, etal.TheAnti-HIV-1 effectof
scutellarin.BiochemBiophysResCommun, 2005, 334:812-
816.
12 ZhengYT, ZhangWF, BenKL, etal.Invitroimmunotoxicity
andcytotoxicityoftrichosanthinagainsthumannormalimmu-
nocytesandleukemia-lymphomacels.ImmunopharmacolIm-
munotoxicol, 1995, 17:69-79.
13 YuDQ, YangJS.AnalyticalChemistryManualⅦ Fascicle:
NMRAnalyses.Beijing:ChemicalIndustryPress, 1999.841.
14 PapajewskiS, GuseJH, KlaiberI, etal.Bioassyguidedisola-
tionofanewC18-polyacetylene, (+)-9 (Z), 17-octadeca-
diene-12, 14-diyne-1, 11, 16-triol, from cussoniabarteri.
PlantaMed, 1998, 64:479-481.
15 KobaisyM, AbramowskiZ, LermerL, etal.Antimycobacterial
polyynesofDevil sclub(Oplopanaxhorridus), aNorthA-
mericannativemedicinalplant.JNatProd, 1997, 60:1210-
1213.
16 ZhouP, TakaishiY, DuanH, etal.Coumarinsandbiocouma-
rinfromFerulasumbul:anti-HIVactivityandinhibitionof
cytokinerelease.Phytochemistry, 2000, 53:689-697.
17 KimJS, ImKS, JungJH, etal.Newbioactivepolyacetylenes
fromthemarinespongePetrosiasp..Tetrahedron, 1998, 54:
3151-3158.
244 NatProdResDev                       Vol.20