免费文献传递   相关文献

次氯酸钙处理对金柑采后腐烂及抗氧化物酶活性的影响



全 文 :DOI:10.13925/j.cnki.gsxb.20150548
次氯酸钙处理对金柑采后腐烂及
抗氧化物酶活性的影响
刘 萍,范七君,牛 英,娄兵海,刘冰浩,邓崇岭*
(广西柑橘生物学重点实验室·广西特色作物研究院,广西桂林 541004)
摘 要:【目的】探讨次氯酸钙在金柑果实贮藏保鲜上的应用效果。【方法】以‘金弹’(Fortunella crassifolia Swingle)为材
料,分别使用质量浓度为 0.15、0.6 g·L-1的次氯酸钙水溶液浸泡金柑果实 2 min(温度 10~12 ℃),然后在室温为(10±
2)℃、湿度为85%~90%的条件下贮藏30 d,每隔5~7 d取样1次,研究次氯酸钙处理对金柑果实腐烂率、品质以及抗氧
化酶活性的影响。【结果】经0.6 g·L-1次氯酸钙处理的果实总酸含量较低,在0.3%左右;贮藏第30天失重率达到4.2%,
与对照相比提高1.4%;各处理间可溶性固形物含量在17%上下波动且差异不显著;次氯酸钙处理可有效降低果实腐
烂率,减小果实青霉病病斑直径,提高贮藏过程中金柑果实过氧化物酶活性,减缓超氧化物歧化酶活性的降低速率,降
低过氧化氢酶活性,减少过氧化氢含量,从而延缓果实衰老。【结论】次氯酸钙可有效延缓金柑果实衰老,在金柑贮藏保
鲜中,不同采收期的金柑所需的次氯酸钙浓度不同,对于采收较晚的金柑,0.6 g·L-1次氯酸钙浸泡2 min可有效降低果
实腐烂率。
关键词:金柑;次氯酸钙;腐烂率;品质;抗氧化物酶
中图分类号:S666.1 文献标志码:A 文章编号:1009-9980(2016)09-1148-08
收稿日期:2015-12-31 接受日期:2016-05-20
基金项目:广西柑橘生物学重点实验室项目(201301X007);广西自然科学基金(2014GXNSFBA118130;2013GXNSFBA019112;桂科合
1347004-11);桂北柑橘综合试验站项目;优质变异单株“滑皮金柑”的砧木筛选及综合评价(2011GXNSFA018112)
作者简介:刘萍,硕士,主要从事采后生物技术研究。Tel:13558036125,E-mail:liupingsmile@126.com
*通信作者 Author for correspondence. Tel: 0773-5816600,E-mail:cldeng88168@126.com
果树学报 2016,33(9):1148-1155
Journal of Fruit Science
Effects of calcium hypochlorite treatment on postharvest decay and de⁃
fense enzyme activity of kumquat fruits
LIU Ping,FAN Qijun,NIU Ying,LOU Binghai,LIU Binghao,DENG Chongling*
(Guangxi Key Laboratory of Crtius Biology,Guangxi Academy of Specialty Grops,Guilin 541004,Guangxi,China)
Abstract:【Objective】The objective of this study was to investigate the effects of calcium hypochlorite
treatment to the postharvest preservation of kumquat fruits. Because peel and pulp of kumquat are edible,
general fungicides used for citrus postharvest preservation with low, middle or high toxic chemical are in⁃
appropriate for kumquat. Calcium hypochlorite can form hypochlorous acid in water, the free chlorine can
attack endogenous enzymes in microbial cells and cause microbial death. Moreover, the calcium hypochlo⁃
rite treatment has low residue, and is harmless to the human body comparing with the other general disin⁃
fectants and bactericides. Calcium hypochlorite had been used on a wild range of horticultural products
such as peach, orange, apple, strawberry and mushrooms to maintain product quality and reduce the decay
rate. It was presumed that calcium hypochlorite treatment should also have the corresponding preservation
effects on kumquat. However, there was little experimental evidences, and the period of usage, concentra⁃
tion and supporting measures of treatment also were not clear.【Methods】According to the application of cal⁃
cium hypochlorite on postharvest preservation of apple, the current test set two concentrations, 0.15 g·L-1
and 0.6 g·L-1, respectively. Fruits harvested at January 4 and March 3 were tested, respectively. For pack⁃
aging storage test, the kumquat fruits were soaked with calcium hypochlorite for 2 minutes at 10-12 ℃,
,等:抗氧化物酶活性的影响第9期
and then forced ventilation, dry storage at room temperature (10±2) ℃ with humidity at 85%- 90% for 30
d. For each treatment, 200 fruits were used. Rot rate of treated kumquats was investigated every 7-10 d.
The packaging storage test was repeated twice. For Penicillium inoculation test, 45 fruits were used. Rot
rate and lesion size were counted. Content of soluble solids, hydrogen peroxide, soluble protein, and activi⁃
ty of superoxide dismutase, peroxidase and catalase were measured at room temperature for every 5-7 d.
Water treatment was used as control.【Results】The kumquat fruit collected in January 4 showed better
storability, the fruit rot rate was low, after the 35 d of storage, the fruit rot rate increased significantly. In
the late period of storage (49 d) the fruit rot rate of both the 0.15 g·L-1 and 0.6 g·L-1 calcium hypochlorite
treatments were lower, compared with the control, and the fruit rot rates were 7.5%, 5.5% and 9.5%, re⁃
spectively. The decay rate of the kumquat fruits harvested in March was significantly increased at the 17th
day. The decay rates at the 25th day of both the 0.15 g·L-1 and 0.6 g·L-1 calcium hypochlorite treatments
were lower, compared with the control, and the decay rates were 12%, 8% and 14%, respectively. The in⁃
oculation experiment showed that the fruit decay rate and lesion size of the calcium hypochlorite treat⁃
ments were smaller as the control. After 4 d of the inoculation, the fruit incidence rates of the 0.15 g·L-1
and 0.6 g·L-1 calcium hypochlorite treatments and the control were 73.33%, 62.22% and 77.78%, respec⁃
tively, and the lesion diameter were 0.99 cm, 0.93 cm and 1.04 cm, respectively. The weightlessness rate
experiments showed that the fruit weight of the kumquat fruits treated by 0.6 g·L-1 calcium hypochlorite
dropped fastest, at the 20th day of storage, the fruit weight loss rate of the 0.15 g·L-1, 0.6 g·L-1 calcium hy⁃
pochlorite treatment and the control were 1.50% and 2.55% and 1.62%, respectively. The result showed
that the total acid content of the calcium hypochlorite treatment was 0.3% lower than that of the control.
The content of soluble solid content in each treatment fluctuated at 17% and the difference was not signifi⁃
cant. The H2O2 content in the storage process fluctuated and gradually decreased, the H2O2 content of the
calcium hypochlorite treatment was significantly lower than that of the control. The fruits CAT activity de⁃
creased and then raised during the storage, but showed an overall downward trend. The fruit CAT activity of
the calcium hypochlorite treatment was lower than that of the control, and the fruit activity of the 0.15 g·L-1
calcium hypochlorite treatment was the lowest. The fruit POD activities of the 0.6 g·L-1 calcium hypochlo⁃
rite treatment in storage increased until the 27th day and then decreased slightly. However, during the
whole storage period, the POD activity of the 0.6 g·L- 1 calcium hypochlorite treatment was significantly
higher than that of the 0.15 g·L-1 calcium hypochlorite treatment and the control. The fruit POD activity of
the 0.15 g·L-1 calcium hypochlorite treatment was lower than that of control. During storage, the kumquat
fruit SOD activity decreased gradually and the 0.6 g·L- 1 calcium hypochlorite treatment can effectively
slow the decrease of the SOD activity and increased the activity of SOD in the process of storage, and, the
effect of the 0.15 g·L-1 calcium hypochlorite treatment was not obvious, compared with the control, the dif⁃
ference was not significant.【Conclusion】Calcium hypochlorite treatment could effectively delay the se⁃
nescence of fruit, and did not affect the normal flavor of kumquat. Calcium hypochlorite treatment in kum⁃
quat postharvest storage had non-toxic side effects and prospects for practical application. However, ac⁃
cording to the different harvest period, the concentration of calcium hypochlorite should be corresponding⁃
ly adjusted. For the fruit harvested at January 4 , soaking with 0.15 g·L-1 and 0.6 g·L-1 calcium hypochlo⁃
rite for 2 minutes could effectively reduce the incidence of fruit decay, while for the fruit harvested at
March 3 , Soking with 0.6 g·L-1 calcium hypochlorite for 2 minutes was the best treatment in this study.
Key words: Kumquat; Calcium hypochlorite; Rotting rate; Quality; Defense enzyme
刘 萍,等:次氯酸钙处理对金柑采后腐烂及抗氧化物酶活性的影响 1149
果 树 学 报 第33卷
金柑(Fortunella crassifolia Swingle),果实表皮
金黄、色泽鲜艳、营养丰富,且春节前后上市,深受消
费者喜欢。避雨栽培技术的完善和推广,大大提高
了果农的经济效益和果农的种植积极性,但同时也
造成果农根据价格选择采收时期,一味延长留树期
致使果实在运输过程中腐烂率急剧上升等现象。因
此,研究金柑的采后保鲜技术,延长金柑的运输期和
货架期,具有重要的经济意义。
金柑是果皮和果肉同时鲜食的柑果类型,正因
为对果皮的食用需求,柑橘采后保鲜处理中低、中、
高毒化学杀菌剂在金柑中不适用。而次氯酸钙属含
氯制剂在水中形成次氯酸,分解出的游离态氯可破
坏核蛋白中的巯基或进攻微生物细胞中的内源酶,
从而导致微生物死亡,且残留低[1],对人体几乎无害,
是当前国际上通用的水体消毒剂和杀菌剂,其在种
子、组织培养基和蛋制品消毒等方面都有应用。钙
离子通过降低多聚半乳糖醛酸酶、果胶甲酯酶和纤
维素酶活性 [2],减少果实中可溶性果胶含量 [3],维持
细胞壁和细胞膜的结构和功能,从而降低细胞膜透
性 [4],抑制呼吸强度 [5- 6],提高果实硬度,降低腐烂
率[7-8],减缓膜脂过氧化和活性氧在细胞中的积累等
作用[9],在果实采后生理代谢中起着重要的作用。常
用的钙盐主要有氯化钙、乳酸钙、次氯酸钙、氢氧化
钙和碳酸氢钙等,其通常单独或与热处理、过氧乙
酸、草酸、低温处理等结合在桃[10]、梨[11]、李[12]、脐橙[4]、
樱桃[13]、草莓[9]、枇杷[6]、蘑菇[5]以及芹菜[8]等园艺产品
中使用,起到维持产品品质、降低腐烂率等作用。由
此推测次氯酸钙处理金柑也应有相应的保鲜效果,
但目前还缺乏试验证据,对使用的时期、浓度和配套
的处理措施等均无相关报道。有关金柑的贮藏保鲜
研究较少,物理方法主要有臭氧处理和低温处理,化
学方法主要有涂膜处理、采前水杨酸以及喷钙处理
等。李明娟等[7]研究报道,采前喷钙可延缓果实硬度
下降,抑制果实腐烂和失重现象的发生。但避雨栽
培技术的应用以及种植密度大、生产中存在封行等
现象,使采前处理存在操作难度大、用药不均匀等问
题。笔者从采后处理入手,研究次氯酸钙处理对金
柑果实腐烂率、贮藏品质以及抗氧化酶活性的影响,
以期明确次氯酸钙用于金柑贮藏保鲜上的可能性,
为生产实践提供一定的理论基础。
1 材料和方法
1.1 材料及处理
试验于 2014—2015年在广西阳朔县白沙镇赖
玉梅果园进行,10 a生‘金弹’(Fortunella crassifolia
Swingle),实生树,种植密度为 4 m×4 m。于 3月 3
日,采集完全成熟的果实,经处理后室温贮藏。鲜果
进行品质分析,果皮液氮冷冻后放超低温冰箱备
用。每个处理果实用量约30 kg,2年重复。
对照:经清水浸泡,通风晾干后室温贮藏。
次氯酸钙处理:根据次氯酸钙在苹果采后保鲜
上的应用,该试验设 0.15、0.6 g·L-1两个质量浓度分
别浸泡金柑果实 2 min(水温 10~12 ℃),强制通风,
晾干后室温贮藏。
1.2 测定项目及方法
1.2.1 自然贮藏腐烂率统计 分别在 1月 4日和 3
月 3日采集样品进行处理,各处理标记 200个果实,
进行单果包装后室温贮藏,每隔7~10 d统计腐烂果
个数,剔除腐烂果,计算果实腐烂率,2次重复。
1.2.2 青霉菌接种试验 每个处理取45个果实(每
组15个,3次重复)进行接种试验。将8枚缝衣针捆扎
在一起,用酒精灯灼烧灭菌,冷却后在果皮赤道处打
约4 mm深,3 mm宽小孔,加10 μL的1×105 CFU·mL-1
的青霉菌液,然后用薄膜覆盖,保湿RH 90%~95%,
室温贮藏。接种后每隔2 d统计发病率及病斑直径,
2次重复。
1.2.3 失重率 各处理标记100个果实,3月3日称
质量并贮藏,以后每隔 5d再称质量一次标记为 Tn,
则每一段时期的失重率用如下公式计算:失重率
(%)=(Tn-1–Tn)/ ×100。
Tn-1:前一次测同一处理果实的质量,如有腐烂
果,则每次要除去烂果剩余果的质量作为计算下一
贮藏时段果实失重率的基数。
1.2.4 可溶性固形物含量 使用数显糖度计(RA-
250WE、KEM)测量。
1.2.5 可滴定酸含量 采用酸碱滴定法测定。
1.2.6 可溶性蛋白含量 采用考马斯亮蓝法,用牛
血清蛋白做标准溶液,在595 nm比色测定[14]。
1.2.7 POD活性 采用愈创木酚还原法,470 nm比
色测定,以每分钟变化0.01为1个酶活性单位[14]。
1.2.8 CAT活性 采用高锰酸钾还原法,240 nm比
色测定,以 1 min催化反应 1 μm H2O2定义为 1个酶
活单位[14]。
1.2.9 SOD活性 采用NBT还原法,在560 nm比色
1150
,等:抗氧化物酶活性的影响第9期
0
20
40
60
80
100
120
4 6 8
0.15g/L 0.6g/L CK
a
0
1
2
3
4
4 6 8
0.15g/L 0.6g/L CK
0
5
10
15
20
25
30
35
40
45
7 17 25 31 39 46 56 61 68




R
o
t
t
i
n
g

r
a
t
e
/
%
0.15g/L
0.6g/L
CK
0
5
10
15
20
25
30
35
40
45
7 14 21 28 35 49 60 70



R
o
t
t
i
n
g

r
a
t
e
/
%
0.15 g/L
0.6 g/L
CK
不同小写字母表示同一时间不同处理在 P<0.05水平差异显
著。下同。
Different small letters mean different treatments at the same time
had significant difference at P<0.05 level. The same below.
图 1 次氯酸钙处理对 1月初采收金柑腐烂率的影响
Fig. 1 Effects of calcium hypochlorite treatment on rotting
rate of January harvest in Fortunella crassifolia Swingle
fruit which during storage at ambient temperature
图 2 次氯酸钙处理对 3月初采收金柑腐烂率的影响
Fig. 2 Effects of calcium hypochlorite treatment on rotting
rate of March harvest in Fortunella crassifolia Swingle fruit
during storage at ambient temperature
图 3 次氯酸钙处理对室温贮藏金柑青霉病发病情况的影响
Fig. 3 Effects of calcium hypochlorite treatment on disease
development in Fortunella crassifolia Swingle fruit during
storage at ambient temperature
接种时间Time after treatment/d



Dise
ase
inci
den
ce/%
接种时间Time after treatment/d




Les
ion
diam
eter
/cm
测定[14]。
1.2.10 H2O2活性 采用Ti(SO4)2法,以不同浓度的
H2O2溶液做标准曲线,410 nm比色测定[15]。
1.3 数据统计与分析
数据用Excel和 SAS软件进行处理和差异显著
性分析。
2 结果与分析
2.1 不同处理对不同采收期金柑腐烂率的影响
从图1可以看出,1月份采收的金柑果实贮藏性
较好,在贮藏前 35 d各处理果实腐烂率较低,贮藏
35 d后开始明显上升,贮藏后期(49 d)经次氯酸钙
处理的果实腐烂率低于对照,且经 0.6 g·L-1次氯酸
钙处理的果实腐烂率最低,效果最好。贮藏35 d时,
经0.15、0.6 g·L-1次氯酸钙处理和对照果实的腐烂率
分别为3%、4.5%和1.5%;49 d各处理腐烂率分别为
7.5%、5.5%和9.5%;70 d各处理腐烂率分别为33%、
26.5%和 38.5%。由图 2可知,3月初采收的各处理
金柑果实在贮藏7 d腐烂率为0,贮藏17 d腐烂率开
始明显上升,且整个贮藏过程中经0.15 g·L-1次氯酸
钙处理的果实略低于对照,经 0.6 g·L-1次氯酸钙处
理的果实腐烂率显著低于其他处理。在贮藏25 d经
0.15、0.6 g·L-1次氯酸钙处理和对照果实的腐烂率分
别为 12%、8%和 14%;在贮藏 56 d各处理腐烂率分
别为37%、23%和33%。
2.2 不同处理对果实接种后腐烂率及病斑直径的
影响
为进一步验证次氯酸钙处理对金柑果实贮藏性
的影响,进行青霉菌接种试验。由图3可以看出,经
处理的果实在接种后4 d开始发病,经0.15、0.6 g·L-1
次氯酸钙处理和对照果实发病率分别为 73.33%、
62.22%和 77.78%,经 0.6 g·L-1次氯酸钙处理的果实
0.15 g·L-1
. ·L-1
对照 Control
0.15 g· -1
0.6 g· -1
对照 Control
.15 ·L-1 对照Control0.6 g·L
-1
.1 ·L-1 对照Control. ·L-1
ab b a
a a a
ab c
a a a a a a
a b a
aaa aaa
abb abb abc
abc
ab
c
ab
c
ab
c
a
b
c
aaa
a
bc
ab
c
aa
b
ab
c
a
b
c
a
b
c
贮藏时间Storage time/d
贮藏时间Storage time/d
刘 萍,等:次氯酸钙处理对金柑采后腐烂及抗氧化物酶活性的影响 1151
果 树 学 报 第33卷
0
2
4
6
8
10
12
14
1 7 12 23 27 31
0.15 g/l 0.6 g/L CK
0
1
2
3
4
5
5 10 15 20 25 30
0.15g/l 0.6g/l CK
0
5
10
15
20
25
1 5 10 15 20 30
0.15g/L 0.6g/L CK



Wei
ght
loss
rate
/%
图 5 次氯酸钙处理对金柑果实可溶性蛋白含量的影响
Fig. 5 Effect of calcium hypochlorite treatment on total
soluble protein content in fruit during storage
ω(





物)
Solu
ble
soli
dsc
onte
nt/%
贮藏时间
Storage time/d
0
0.1
0.2
0.3
0.4
0.5
1 5 10 15 20 30
0.15g/L 0.6g/L CK
ω(



酸)
Tria
tabl
eac
idc
onte
nt/%
贮藏时间
Storage time/d
贮藏时间
Storage time/d
腐烂率显著低于其他处理。6 d后各处理间果实发
病率差异不显著,均达到 98%以上。病斑直径统计
显示,经 0.6 g·L-1次氯酸钙处理的果实病斑直径显
著小于对照,在接种后 4 d,0.15、0.6 g·L-1次氯酸钙
处理和对照果实病斑直径分别为 0.99、0.93和 1.04
cm,接种 8 d各处理果实病斑直径分别为 3.32、3.14
和3.49 cm。
2.3 不同处理对果实失重率、可溶性固形物及有机
酸含量的影响
由图4可知,经0.6 g·L-1次氯酸钙处理的果实失
重最快,经 0.15 g·L-1次氯酸钙处理的果实,在贮藏
前 15 d失重率高于对照,15 d后失重率低于对照。
在贮藏后20 d,经0.15、0.6 g·L-1次氯酸钙处理和对
照果实失重率分别为 1.50%、2.55%和 1.62%。贮藏
过程中,可溶性固形物含量在17%上下浮动,且各处
理间差异不显著。可滴定酸含量在贮藏过程中呈现
先上升后下降的变化趋势,经次氯酸钙处理的果实
可滴定酸含量低于对照。可溶性蛋白含量差异不显
著。
2.4 不同处理对金柑果实H2O2和可溶性蛋白含量
的影响
从图5可以看出,各处理在贮藏期间可溶性蛋白
质含量起伏波动略有下降,且各处理间可溶性蛋白含
量差异不显著。图6表明,各处理果实H2O2含量在贮
藏过程中波动并逐渐下降,且经次氯酸钙处理的果实
H2O2含量显著低于对照果实,但经0.15、0.6 g·L-1两个
质量浓度处理的果实H2O2含量差异不显著。
0
5
10
15
20
25
1 7 12 23 27 31
0.15 g/L 0.6 g/L CK






Hyd
roog
enp
erox
ide
con
tent
/(m
mol
·g-1 )
贮藏时间
Storage time/d
ω(可




)
Tota
lso
lubl
epr
otei
nco
nten
t/(m
g·g
-1 )
贮藏时间
Storage time/d
aaa
aabb
abb
abb abc
abc abc
a
bb
a
bc
aaa
aabb
a
bbaabb
a
abb
a
bb
aaa
aab
aaa
aaa
a
b
c
aaa
aaa
aab
b
aab
b
aaa
aaa
a
a
a
a
a
a
a
a
b
aaa
0.15 g·L-1 对照Control0.6 g·L
-1
0.15 g·L-1 对照Control. ·L-1
0.15 · -1 对照Control0.6 g·L
-1 0.15 g·L-1 对照Control0.6 g·L-1
.15 g·L-1 对照Control0.6 g·L
-1
图 4 室温贮藏过程中各处理果实失重、
可溶性固形物和有机酸含量变化
Fig. 4 Changes in weight loss rate,soluble solids content
and TA of Fortunella crassifolia Swingle fruit with
different treatments and sored at ambient temperature
图 6 次氯酸钙处理对金柑果实 H2O2含量的影响
Fig. 6 Effect of calcium hypochlorite treatment on H2O2
content in fruit during storage
1152
,等:抗氧化物酶活性的影响第9期
0
10
20
30
40
50
60
1 7 12 23 27 31
0.15 g/l 0.6 g/L CK
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1 7 12 23 27 31
0.15 g/l 0.6 g/L CK
CAT


CAT
acti
vity
/(U·
g-1 ·
min
-1 )
贮藏时间Storage time/d
图 7 次氯酸钙处理对金柑果实 CAT活性的影响
Fig. 7 Effect of calcium hypochlorite treatment on CAT
activity in fruit during storage
图 8 次氯酸钙处理对金柑果实 POD活性的影响
Fig. 8 Effect of calcium hypochlorite treatment on POD
activity in fruit during storage
POD


POD
acti
vity
/(U
·g-1
·mi
n-1 )
贮藏时间
Storage time/d
0
20
40
60
80
100
120
140
160
180
1 7 12 23 27 31
0.15 g/l 0.6 g/L CK
SOD


SOD
acti
vity
/U
贮藏时间Storage time/d
图 9 次氯酸钙处理对金柑果实 SOD活性的影响
Fig. 9 Effect of calcium hypochlorite treatment on SOD
activity in fruit during storage
aaa
a
b
c
a
b
b
a
b
c
a
b
c
aaa a
a
b
a
b
c
a
a
b
a
a
b
aaa
aaa
a
bb
a
bb
a
bb
a
ab
b
0.15 g·L-1 对照Control.6 g·
-1
0.15 g·L-1 对照Control
0.6 g·L-1
0.15 g·L-1 对照Control0.6 g·L
-1
a
b
c
a
bb
2.5 次氯酸钙处理对金柑果实 CAT、POD和 SOD
活性的影响
由图 7可以看出,贮藏过程中金柑果实CAT活
性先下降后上升,但整体呈下降趋势。各处理果实
在贮藏后7 d,CAT活性达到最低值。经次氯酸钙处
理的果实CAT活性低于对照果实,且经0.15 g·L-1次
氯酸钙处理的果实活性最低。
由图 8可知,贮藏过程中,经 0.6 g·L-1次氯酸钙
处理的果实POD活性在贮藏前 27 d略有上升,27 d
后开始下降但整个贮藏过程中 POD活性显著高于
0.15 g·L-1次氯酸钙处理和对照。经 0.15 g·L-1次氯
酸钙处理和对照果实,在贮藏过程中POD活性整体
下降趋势,略有波动,且经 0.15 g·L-1次氯酸钙处理
的果实酶活性低于对照果实。
由图 9可以看出,贮藏过程中各处理金柑果实
SOD活性逐渐降低,且经 0.6 g·L-1次氯酸钙处理可
有效地减缓SOD活性降低的速率,提高贮藏过程中
SOD活性,而 0.15 g·L-1次氯酸钙处理作用不明显,
与对照相比差异不显著。
3 讨 论
果实腐烂率是果实采后贮藏性的重要指标之
一。该试验发现,次氯酸钙处理可有效降低金柑果
实腐烂率,说明次氯酸处理可在一定程度上抑制金
柑果实的腐烂,起到延长贮藏期的作用,但采收期越
晚,所需浓度也越高(对于 1月份采收的果实,0.15、
0.6 g·L-1次氯酸钙处理可降低果实腐烂率;3月份采
收的果实,0.6 g·L-1次氯酸钙处理可降低果实腐烂
率)。果实失重率、TA和 TSS是衡量果实内在品质
的重要指标,同样与果实的贮藏性能密切相关。有
研究表明,TA的高低直接反应果实的贮藏性能并直
接影响果实的风味,而TSS下降过多容易导致果实
腐烂加剧和引发多种生理病害 [16]。该试验结果表
明,低浓度的次氯酸钙处理对果实失重、TSS和 TA
没有显著的影响。高浓度(0.6 g·L-1)次氯酸钙处理
增快贮藏后期金柑果实失重率,这可能因为高浓度
的次氯酸钙处理增加了果实的细胞渗透压,增加了
果实失水,这与王艳颖等[8]在芹菜上的研究一致,而
与陈丽娟等[5]在蘑菇和王玉玲等[11]在梨上的研究不
一致,说明不同种类果实间存在差异。
生物细胞代谢过程中会产生一系列活性氧物质
刘 萍,等:次氯酸钙处理对金柑采后腐烂及抗氧化物酶活性的影响
1.0
1153
果 树 学 报 第33卷
(如H2O2),其为氧直接和间接转变的氧自由基及其
衍生物等比分子氧活泼的物质。有研究表明,低浓
度H2O2对细胞和组织起保护性作用,其参与的信号
转导过程包括 2大类,一类是胁迫条件引发的植物
防御反应中的信号转导途径,另一类是植物处于正
常生理状态下调控植物生长发育和成熟衰老过程的
信号途径[17]。而过量的活性氧会对植物造成氧化胁
迫,不可逆性地损伤细胞,破坏膜系统,造成组织结
构和细胞区域化丧失,还可以直接参与植物中某些
基因的表达,减缓或降低蛋白质合成,造成植物细胞
伤害甚至死亡[18-19]。在植物体内,CAT、POD和 SOD
等一系列活性酶能有效地阻止活性氧的积累并清除
植物体内多余的自由基,对维持体内活性氧的动态
平衡发挥着重要作用。因此,CAT、POD和SOD活性
在采后果实的衰老进程上起着重要作用。该试验结
果表明,在室温贮藏过程中,金柑果实 POD活性降
低,而 0.6 g·L-1次氯酸钙处理可以显著提高组织中
POD活性(图8)。而POD在分解多余的H2O2转变成
H2O和O2的同时,参与植物酚类物质的聚合和氧化,
催化木质素和植保素的合成,其在抵御黄瓜[20]冷害,
延缓杧果[21]衰老等方面起着重要的作用,故POD活
性增强可能与次氯酸钙处理可有效降低金柑果实腐
烂率直接相关。SOD是清除ROS的第一道防线,可
将O2-歧化为H2O2和O2 [22],在植物体内活性氧的清除
和维持、保持正常水平中起重要作用。研究结果表
明,次氯酸钙处理可有效延缓 SOD活性降低,经 0.6
g·L-1次氯酸钙处理的果实 SOD活性显著高于对照
果实(图 9),这与王炜等[23]研究一致,表明次氯酸钙
处理可通过抑制SOD活性降低,加速超氧阴离子降
解从而增强金柑果实贮藏性。CAT通过直接清除逆
境环境胁迫产生的过剩H2O2,减轻氧化胁迫,并抑制
其作为第二信使对其他代谢途径的影响。贮藏过程
中,金柑果实CAT活性降低,但次氯酸钙处理果实
CAT活性低于对照果实(图 7)。该试验结果表明,
经处理的果实H2O2含量低于对照果实,这暗示次氯
酸钙处理的金柑果实在贮藏过程中H2O2的清除主
要依靠POD。
另外,不同浓度次氯酸钙处理对 CAT、POD和
SOD活性的影响不同。该试验结果表明,随着浓度的
增加,次氯酸钙对 POD和 SOD活性影响越明显,而
CAT相反,低浓度次氯酸钙可显著促进CAT活性的
降低(图7),这与胡佳羽等[24]在脐橙上的研究一致。
4 结 论
次氯酸钙处理可有效延缓果实衰老,且不影响
金柑果实正常风味。次氯酸钙处理在金柑采后贮藏
保鲜上是一种低廉、无毒副作用、具有实际应用前景
的方法,但根据采收期不同,所需要的作用浓度也有
所不同。1月初采收的果实,0.15、0.6 g·L-1次氯酸钙
浸泡2 min可有效降低果实腐烂率;3月初采收的金
柑果实,当次氯酸钙质量浓度达到 0.6 g·L-1才可有
效降低金柑果实腐烂率。
参考文献 References:
[1] JULIA B,SONJA W,PETER F,ROBER P. Efficacy of chlorine
for inactivation of Escherichia coli on vegetables [J]. Postharvest
Biology and Technology,2000,19(2):187-192.
[2] 王玲利,刘超,黄艳花,李兴发,曹明 .黄冠梨采后热处理和钙
处理对其钙形态及细胞壁物质代谢的影响 [J]. 园艺学报,
2014,41(2):249-258.
WANG Lingli,LI Chao,HUANG Yanhua,LI Xingfa,CAO Ming.
Effects of postharvest heat and calcium treatments on calcium
fractions and cell wall metabolism of huangguan pear fruit[J]. Ac⁃
ta Horticulturae Sinica,2014,41(2):249-258.
[3] 梁庆沙,张东亚,李芳,冷平,胡建芳.钙处理对白凤桃果实冰温贮
藏后细胞壁代谢物质的影响[J].果树学报,2009,26(5):714-718.
LIANG Qingsha,ZHANG Dongya,LI Fang,LENG Ping,HU Jian⁃
fang. Effetcs of Ca treatment on metabolite of cell wall o f baifeng
peach fruit stroed at ice point[J]. Journal of Fruit Science,2009,
26(5):714-718.
[4] 陈继群,刘丽贞,陈永忠,张海岚 .不同钙处理对脐橙裂果及其
细胞壁酶活性的影响[J].华南农业大学学报,2014,35(6):29-
32.
CHEN Jiqun,LIU Lizhen,CHEN Yongzhong,ZHANG Hailan. Ef⁃
fects of various calcium treatments on fruit cracking and cell wall
enzyme activities in navel orange[J]. Journal of South China Agri⁃
cultural University,2014,35(6):29-32.
[5] 陈丽娟,王赵改,杨慧,张乐,王晓敏,史冠莹 .真空与乳酸钙处
理对双孢蘑菇采后贮藏品质的影响[J].中国农业科学,2015,
49(14):2818-2826.
CHEN Lijuan,WANG Zhaogai,YANG Hui,ZHANG Le,WANG
Xiaomin,SHI Guanying. Effects of calcium salts based on vacu⁃
um infiltration on quality of postharvest Agaricus bisporus[J]. Sci⁃
entia Agricultura Sinica,2015,49(14):2818-2826.
[6] 宋虎卫,郑永华,袁卫明,张瑞越,杨立明 .过氧乙酸结合钙处
理对枇杷贮藏品质的影响 [J].农业科学与技术,2013(10):
1476-1481.
SONG Huwei,ZHENG Yonghua,YUAN Weiming,ZHANG
Ruiyue,YANG Liming,Effects of peracetic acid (PAA) combined
with calcium treatments on storage quality of loquat fruit[J].Agri⁃
cultural Science & Technology,2013(10):1476-1481.
1154
,等:抗氧化物酶活性的影响第9期
[7] 李明娟,何新华,刘根华,李德安,周祥杰.采前喷钙结合低温处
理对金柑果实贮藏品质的影响 [J].西南农业学报,2012,25
(2):630-634.
LI Mingjuan,HE Xinhua,LIU Genhua,LI Dean,ZHOU Xiangjie.
Effect of perharvest calcium sprays and low temperature treatment
on storage quality of Fortunella crassifolia fruits[J]. Southwest Chi⁃
na Journal of Agricultural Sciences,2012,25(2):630-634.
[8] 王艳颖,刘程惠,田密霞,李婷婷,胡文忠 .氯化钙处理对鲜切
芹菜生理与品质的影响[J].食品安全质量检测学报,2015,6
(7):2458-2463.
WANG Yanying,LIU Chenghui,TIAN Mixia,LI Tingting,HU
Wenzhong. Effects of calcium chloride treatment on the physiolog⁃
ic quality of fresh-cut celery[J]. Journal of Food Safety and Quali⁃
ty,2015,6(7):2458-2463.
[9] HERNANDEZ M P,ALMENAR E,DEL V V,VELEZ D,GA⁃
VARA R. Effect of chitosan coating aombined with postharvest
calcium treatment on strawberry quality during refrigerated stor⁃
age[J]. Food Chemistry,2008,110(2): 428-435.
[10] 曹永庆,曹艳平,李壮,任杰,冷平 .采前喷钙对中华寿桃采后
贮藏品质及褐变的影响[J].果树学报,2008,25(6):811-815.
CAO Yongqing,CAO Yanping,LI Zhuang,REN Jie,LENG Ping.
Effect of perharvest calcium sprays on quality attributes and flesh
browning of Zhong hua shou tao peach fruit [J]. Journal of Fruit
Science,2008,25(6):811-815.
[11] 王玉玲,路贵龙,张新富,王然,杨绍兰 .采前钙处理对黄金梨
果顶硬化果实贮藏特性及 Pp EXPA2基因表达的影响[J].现
代食品科技,2016(2):1-11.
WANG Yuling,LU Guilong,ZHANG Xinfu,WANG Ran,YANG
Shaolan. Effects of perharvest calcium treatment on the storage
characters of hard and whangkeumbae pear and the expression⁃
analysis of PpEXPA2[J]. Modern Foot Science and Technology,
2016(2):1-11.
[12] 李金龙 .采后不同浓度钙处理对贮藏期间李果实硬度及果胶
含量的影响[J].中国林副特产,2015(2):20-22.
LI Jinlong. Effect of various calcium concentrations dip treatment
on firmness and pectin content during post- harvest of plum[J].
Forest by-product and Speciality in China,2015(2):20-22.
[13] 徐凌,郝义,郝树池,王岩,吕任强 .采前钙和钾处理对红灯樱
桃果实采后生理的影响[J].果树学报,2009,26(4):568-571.
XU Ling,HAO Yi,HAO Shuchi,WANG Yan,LÜ Renqiang. Ef⁃
fect of perharvest calcium and potassium treatments on post-har⁃
vest physiology of sweet cherry cv. Hongdeng[J]. Journal of Fruit
Science,2009,26(4):568-571.
[14] 李合生 .植物生理生化实验原理和技术[M].北京:高等教育出
版社,2000.
LI Hesheng. Principles and technology of plant physiology and bio⁃
chemistry experiments[M]. Beijing:Higher Education Press,2000.
[15] 谭钺,王茂生,吕勐,崔海金.不同破眠处理对油桃休眠芽 H2O2
含量及相关酶活性的影响[J].中国农学通报,2014,30(28):
128-132.
TAN Yue,WANG Maosheng,LÜ Meng,CUI Haijin. Effects of dif⁃
ferent dormancy-bieaking treatemts on H2O2 content and acticity
of related enzymes of dormant nectarine buds [J]. Chinese Agricul⁃
tural Science Bulletin,2014,30(28):128-132.
[16] 牛锐敏,饶景萍,韩新花.不同采收期对红富士苹果贮藏品质的
影响[J].西北农业学报,2006,15(3):171-174.
NIU Ruimin,RAO Jingping,HAN Xinhua. Effect of harvest date
on storage quality of fuji apple[J]. Acta Agriculturae Boreali-Occi⁃
dentalis Sinica,2006,15(3):171-174.
[17] 田世平,罗云波,王贵禧 . 园艺产品采后生物学基础[M]. 北
京:科学出版社,2011.
TIAN Shiping,LUO Yunbo,WANG Guixi. Biological basis of hor⁃
ticultural products[M]. Beijing: The Science Publishing Company,
2011.
[18] ROGIERS S Y,KUMAR G N,KMOWLES N R. Maturation and rip⁃
ening of fruit of Amelanchier alnifolia Nutt. are accompanied by in⁃
creasing oxidative stress[J]. Annals of Botany,1998,81: 203-211.
[19] 生吉萍,代晓霞,刘灿,孙建军,申琳. H2O2在采后果蔬冷害中
的作用机制[J].北京农学院学报,2007,22(3):77-80.
SHENG Jiping,DAI Xiaoxia,LIU Can,SUN Jianjun,SHEN Lin.
Mechanism of the effect of H2O2 on chilling injury of post-harvest
fruit and vegetable[J]. Journal of Beijing University of Agricul⁃
ture,2007,22(3):77-80.
[20] 韩晋,田世平 .外源茉莉酸甲酯对黄瓜采后冷害及生理生化的
影响[J].园艺学报,2006,33(2):289-293.
HAN Jin,TIAN Shiping. Effects of exogenous methyi jasmonate
on chilling injury and physiology and biochemistry in postharvest
cucumber[J]. Acta Horticulturae Sinica,2006,33(2):289-293.
[21] 郑小林,田世平,李博强,徐勇.外源草酸延缓采后芒果成熟及
其生理基础的研究[J].中国农业科学,2007,40(8):1767-1773.
ZHENG Xiaolin,TIAN Shiping,LI Boqiang,XU Yong. Physiologi⁃
cal roles of exogenous oxalic acid in delaying ripening of mango
fruit during storage[J]. Scientia Agricultura Sincca,2007,40(8):
1767-1773.
[22] WANG Q,LAI T F,QIN G Z,TIAN S P. Response of jujube fruits
to exogenous oxalic acid treatment based on proteomic analysis[J].
Plant Cell Physiology,2009,50:230-242.
[23] 王炜,李鹏霞,黄开红,王毓宁,胡花丽 .次氯酸钙处理对红富
士苹果防御酶活性的影响[J].江西农业学报,2009,21(1):48-
50.
WANG Wei,LI Pengxia,HUANG Kaihong,WANG Minning,HU
Huali. Effects of cakcium hypochlorite treatment on defense en⁃
zyme activity of stored red fuji apple [J]. Acta Agriculturae Ji⁃
angxi,2009,21(1):48-50.
[24] 胡佳羽,刘亚敏,李鹏霞,王炜,尹克林 .次氯酸钙对贮藏脐橙
膜脂过氧化和保护酶活性的影响[J].食品科学,2009,30(14):
292-295.
HU Jiayu,LIU Yamin,LI Pengxia,WANG Wei,YIN Kelin. Ef⁃
fects of calcium hypochlorite on membrane lipid peroxidation and
activity of defensive enzymes of“Newhall”Navel oranges(Cit⁃
rus sinensis Osbeck Newhall)during storage[J]. Food Science,
2009,30(14):292-295.
刘 萍,等:次氯酸钙处理对金柑采后腐烂及抗氧化物酶活性的影响 1155